Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review
Abstract
:Highlights
- Climate-change-induced freshwater shortage and soil salinity have a long-term potential effect on agriculture.
- Salinity of agricultural soil and irrigation water imposes a critical barrier to food production.
- Technology-driven desalination technologies may not be feasible for the production of irrigation water.
- Alternative sustainable desalination techniques for irrigation water need to be further researched and developed.
Abstract
1. Introduction
2. Global Population and Food Security
3. Climate Change and Water Shortage
4. Climate Change and Increased Soil Salinity
5. Influence of Salinity on Food Production
5.1. Salinity and Sodicity
5.2. Salinity Influences on Soil Health
5.3. Salinity Influences on Plants/Produce/Crops
6. Reclamation of Sodic Soil
7. Desalination of Water
7.1. Available Technologies for Desalination
7.1.1. Effect of Conventional Desalination Technologies on the Environment
7.1.2. Cost of Desalination
7.2. Technologies Used for Desalination of Irrigation Water
8. Sustainable Salinity Management
8.1. Adsorption-Based Desalination
8.2. Plant-, Algal-, and Microbial-Based Desalination
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WMO. State of Global Climate 2021 WMO Provisional Report; World Meteorological Organization: Geneva, Switzerland, 2021; Available online: https://public.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts (accessed on 18 January 2023).
- Kibria, G.; Nugegoda, D.; Rose, G.; Haroon, A.K.Y. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. Mar. Pollut. Bull. 2021, 167, 112364. [Google Scholar] [CrossRef]
- Ezlit, Y.D.; Smith, R.J.; Raine, S.R. A Review of Salinity and Sodicity in Irrigation; Project Report; University of Southern Queensland: Toowoomba, Australia, 2010. [Google Scholar]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Kiridi, E.A.; Zalmon, G.P. A Study of Phytodesalination Rate of Water Hyacinth (Eichhornia crassipes) in Brackish Water. Int. J. Adv. Sci. Res. Eng. 2020, 6, 203–209. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. The use of desalinated seawater for crop irrigation in the Segura River Basin (south-eastern Spain). Desalination 2017, 422, 153–164. [Google Scholar] [CrossRef]
- Barron, O.; Ali, R.; Hodgson, G.; Smith, D.; Qureshi, E.; McFarlane, D.; Campos, E.; Zarzo, D. Feasibility assessment of desalination application in Australian traditional agriculture. Desalination 2015, 364, 33–45. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Pan, T.; Chen, Q.; Qin, Y.; Ge, Q. Climate-associated major food crops production change under multi-scenario in China. Sci. Total Environ. 2022, 811, 151393. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Fleisher, D.H.; Resop, J.P.; Timlin, D.; Reddy, V.R. Regional food production and land redistribution as adaptation to climate change in the U.S. Northeast Seaboard. Comput. Electron. Agric. 2018, 154, 54–70. [Google Scholar] [CrossRef]
- Vogel, E.; Meyer, R. Climate change, climate extremes, and global food production-Adaptation in the agricultural sector. In Resilience: The Science of Adaptation to Climate Change; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–49. [Google Scholar] [CrossRef]
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate change and future of agri-food production. In Future Foods. Global Trends, Opportunities, and Sustainability Challengies; Bhat, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 49–79. [Google Scholar] [CrossRef]
- Peter, N.; Tan, B.; Mae, P.; Ucab, L.; Dadol, G.C.; Jabile, L.M.; Talili, I.N.; Theresa, M.; Cabaraban, I. A review of desalination technologies and its impact in the Philippines. Desalination 2022, 534, 115805. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M. Adapting to climate change: Towards societal water security in dry-climate countries. Int. J. Water Resour. Dev. 2013, 29, 123–136. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Hoogeveen, J. Monitoring Water Use in Agriculture through Satellite Remote Sensing—Global Cause; Global Cause. 2021. Available online: https://www.globalcause.co.uk/water/monitoring-water-use-in-agriculture-through-satellite-remote-sensing/ (accessed on 18 January 2023).
- Haidera, M.; Alhakimi, S.A.; Noaman, A.; al Kebsi, A.; Noaman, A.; Fencl, A.; Dougherty, B.; Swartz, C. Water scarcity and climate change adaptation for yemen’s vulnerable communities. Local Environ. 2011, 16, 473–488. [Google Scholar] [CrossRef]
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.R.; Wright, G.H. The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. Climate Change. 2022. Available online: https://www.ers.usda.gov/topics/natural-resources-environment/climate-change/ (accessed on 18 January 2023).
- Tan, L.; Feng, P.; Li, B.; Huang, F.; Liu, D.L.; Ren, P.; Liu, H.; Srinivasan, R.; Chen, Y. Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China. Agric. Water Manag. 2022, 266, 107560. [Google Scholar] [CrossRef]
- Khan, M.Z.; Abbas, H.; Khalid, A. Climate vulnerability of irrigation systems in the Upper Indus Basin: Insights from three Karakoram villages in northern Pakistan. Clim. Dev. 2021, 14, 499–511. [Google Scholar] [CrossRef]
- Antia, D.D.J. Provision of desalinated irrigation water by the desalination of groundwater within a saline aquifer. Hydrology 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Dau, Q.V.; Adeloye, A.J. Water security implications of climate and socio-economic stressors for river basin management. Hydrol. Sci. J. 2021, 66, 1097–1112. [Google Scholar] [CrossRef]
- Goh, Y.C.; Zainol, Z.; Mat Amin, M.Z. Assessment of future water availability under the changing climate: Case study of Klang River Basin, Malaysia. Int. J. River Basin Manag. 2016, 14, 65–73. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Banner, J.L.; Cook, B.I.; Tremaine, D.M.; Wong, C.I.; Mace, R.E.; Gao, H.; Yang, Z.L.; Gonzalez, M.F.; Hoffpauir, R.; et al. Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know? Earth’s Fut. 2020, 8, e2020EF001552. [Google Scholar] [CrossRef]
- Santikayasa, I.P.; Babel, M.S.; Shrestha, S.; Jourdain, D.; Clemente, R.S. Evaluation of water use sustainability under future climate and irrigation management scenarios in Citarum River Basin, Indonesia. Int. J. Sustain. Dev. World Ecol. 2014, 21, 181–194. [Google Scholar] [CrossRef]
- Okur, B.; Örçen, N. Soil salinization and climate change. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–350. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Rahman, A.; Al, M.; Samarah, N.; Ranga, A.D.; Darvhankar, M.S. Sustainable Soil and Land Management and Climate Change. In Sustainable Soil and Land Management and Climate Change; Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V., Eds.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Pessarakli, M.; Szabolcs, I. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook of Plant And Crop Stress, 4th ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Sadik, M.S.; Shaw, R.; Rahman, M.R.; Nakagawa, H.; Kawaike, K. Event-consequence chain of climate change-induced salinity intrusion in Sundarbans mangrove socioecological system, Bangladesh. In Science and Technology in Disaster Risk Reduction in Asia: Potentials and Challenges; Shaw, R., Shiwaku, K., Izumi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 77–94. [Google Scholar] [CrossRef]
- FAO. Irrigation in Central Asia in Figures; AQUASTAT Survey-2012; Rome, Italy. 2013. Available online: https://www.fao.org/publications/card/en/c/I3289E/ (accessed on 18 January 2023).
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. 2015. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [Green Version]
- Apostolakis, A.; Wagner, K.; Daliakopoulos, I.N.; Kourgialas, N.N.; Tsanis, I.K. Greenhouse Soil Moisture Deficit under Saline Irrigation and Climate Change. Procedia Eng. 2016, 162, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Ghermandi, A.; Messalem, R. The advantages of NF desalination of brackish water for sustainable irrigation: The case of the Arava Valley in Israel. Desalination Water Treat. 2009, 10, 101–107. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Soil and Water Quality: An Agenda for Agriculture; National Academies Press: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Kourgialas, N.N. A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef]
- Okon, E.M.; Falana, B.M.; Solaja, S.O.; Yakubu, S.O.; Alabi, O.O.; Okikiola, B.T.; Awe, T.E.; Adesina, B.T.; Tokula, B.E.; Kipchumba, A.K.; et al. Systematic review of climate change impact research in Nigeria: Implication for sustainable development. Heliyon 2021, 7, E07941. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Läuchli, A.; Grattan, S.R. Plant responses to saline and sodic conditions. In Agricultural Salinity Assessment and Management; Wallenger, W.W., Kenneth, K.T., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 169–205. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- McGeorge, W.T. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. Soc. Am. J. 1954, 18, 348. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Miyamoto, S. Chapter 12 Testing Soils for Salinity and Sodicity. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, A.A., Heng, L.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–42. [Google Scholar]
- Bernstein, L. Effects of salinity abd sodicity on plant growth. Annu. Rev. Phytopathol. 1975, 13, 295–312. [Google Scholar] [CrossRef]
- MSU Extension (n.d.). Basics of Salinity and Sodicity Effects on Soil Physical Properties; Montana State University: Bozeman, MT, USA, 2002; Available online: https://waterquality.montana.edu/energy/cbm/background/soil-prop.html (accessed on 18 January 2023).
- Abro, S.A.; Otho, A.A.; Bughio, F.A.; Sahito, O.M.; Jamali, A.R.; Mahar, A. Desodification from calcareous saline sodic soil through phytoremediation with Phragmites australis (Cav.) Trin. ex Steud. and gypsum. Int. J. Phytoremediation 2017, 19, 1142–1149. [Google Scholar] [CrossRef]
- Dennis, W.W.; Robert, S.A. Irrigation Water Quality Criteria. In Irrigation with Reclaimed Municipal Wastewater–A Guidance Manual; Pettygrove, G.S., Ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar] [CrossRef]
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid. Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ashraf, M.; Al-Qurainy, F.; Harris PJ, C. Salt Tolerance in Selected Vegetable Crops. Crit. Rev. Plant Sci. 2012, 31, 303–320. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Essington, M.E. Soil Salinity and Sodicity. In Soil and Water Chemistry; Essington, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- FAO. Global Symposium on Salt-Affected Soils: Outcome Document. In Proceedings of the Global Symposium on Salt-Affected Soils, Rome, Italy, 20–22 October 2021. [Google Scholar] [CrossRef]
- Li, S.; Li, Z. Reverse osmosis and forward osmosis in desalination membrane systems. In Current Trends and Future Developments on (Bio-) Membranes: Reverse and Forward Osmosis: Principles, Applications, Advances; Basile, A., Cassano, A., Rastogi, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 281–303. [Google Scholar] [CrossRef]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C. Desalination by Membrane Distillation. In Emerging Membrane Technology for Sustainable Water Treatment; Elsevier: Boston, MA, USA, 2016; pp. 77–109. [Google Scholar] [CrossRef]
- Dore, M.H.I. Forecasting the economic costs of desalination technology. Desalination 2005, 172, 207–214. [Google Scholar] [CrossRef]
- Kim, I.S.; Hwang, M.; Choi, C. Membrane-Based Desalination Technology for Energy Efficiency and Cost Reduction. In Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach; Arafat, H.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 31–74. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, H. Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 2010, 20, 4551–4566. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Ayaz, M.; Namazi, M.A.; ud Din, M.A.; Ershath, M.I.M.; Mansour, A.; Aggoune, E.M. Sustainable seawater desalination: Current status, environmental implications and future expectations. Desalination 2022, 540, 116022. [Google Scholar] [CrossRef]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef]
- Advisian (n.d.). The Cost of Desalination. Available online: https://www.advisian.com/en/global-perspectives/the-cost-of-desalination?fbclid=IwAR21lwo9N7QOgev2cnuGIfuSPm7-e8s2yaw4La-_UMCanlfL-T9GkU-Wt9M# (accessed on 18 January 2023).
- Zotalis, K.; Dialynas, E.G.; Mamassis, N.; Angelakis, A.N. Desalination technologies: Hellenic experience. Water 2014, 6, 1134–1150. [Google Scholar] [CrossRef] [Green Version]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Adeeyo, A.O.; Odiyo, J.O.; Enitan, A.M.; Motsa, M.M.; Msagati, T.A.M.; Mkoyi, H.D.; Makungo, R. Morphometric and structural properties of a sustainable plant biomass with water purification potentials. Sustainability 2021, 13, 11075. [Google Scholar] [CrossRef]
- Hemalatha, D.; Narayanan, R.M.; Sanchitha, S. Removal of Zinc and Chromium from industrial wastewater using water hyacinth (E. crassipes) petiole, leaves and root powder: Equilibrium study. Mater. Today Proc. 2020, 43, 1834–1838. [Google Scholar] [CrossRef]
- Hettiarachchi, E.; Perera, R.; Chandani Perera AD, L.; Kottegoda, N. Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination Water Treat. 2016, 57, 22341–22352. [Google Scholar] [CrossRef]
- Kim, G.; Garcia, H.; Japhe, T.; Ivengar, R.; Llanos, B.P.; Navarro, A.E. On the Desalination of Saline Waters via Batch Adsorption with Spent Tea Leaves. J. Pet. Environ. Biotechnol. 2017, 7, 326. [Google Scholar] [CrossRef]
- Sagar, A.S.; Shruti, A.S.; Kore, V.S.; Kore, S. Chloride Removal from Wastewater by Biosorption with the Plant Biomass. Univers. J. Environ. Res. Technol. 2011, 1, 416–422. [Google Scholar]
- Al-Tabbal, J.; Al-Jedaih, M.; Al-Zboon, K.K.; Alrawashdeh, K.A.B. Mitigation of salinity stress effects on kochia (Bassia scoparia L.) biomass productivity using biochar application. Int. J. Phytoremediation 2023, 4, 1–11. [Google Scholar] [CrossRef]
- Chimayati, R.L.; Titah, H.S. Removal of salinity using interaction mangrove plants and bacteria in batch reed bed system reactor. J. Ecol. Eng. 2019, 20, 84–93. [Google Scholar] [CrossRef]
- Sahle-Demessie, E.; Aly Hassan, A.; El Badawy, A. Bio-desalination of brackish and seawater using halophytic algae. Desalination 2019, 465, 104–113. [Google Scholar] [CrossRef] [PubMed]
Desalination Technologies | Basic Process | Disadvantages and Challenges | Reference |
---|---|---|---|
Thermal distillation (Multiple-Effect Distillation (MED) and Multi-Stage Flash distillation (MSF)) | The thermal process heats seawater to turn it into vapor for fresh water and brine. After cooling, the vapor is condensed to produce fresh water. | The latent heat, constant energy needed for this conversion process, makes thermal desalination devices generally uneconomical | [12,60] |
Membrane Separation (Reverse Osmosis (RO)) | RO is a process that removes salts from water by applying external pressure to overcome the osmotic pressure and force water to pass through a semi-permeable membrane, leaving the salt and other impurities behind. The solution-diffusion mechanism mainly regulates the process of water transport through the membrane. |
| [61,62] |
Factors | Environmental Impacts |
---|---|
Salinity | Physical impacts Differences in density can cause convective currents, which can result in changes to the stratification of water columns. Chemical impacts
If the salinity of seawater exceeds the tolerance level of organisms, it can lead to an increase in their mortality rate. Additionally, the growth rates and photosynthesis metabolism can also be altered. |
Chemical additives | Physical impacts Turbidity may increase from suspended solids that affect the lights to penetrate. Chemical impacts
Fluctuating metabolism and growth rate may occur due to the high concentration of heavy metal; also, light cannot pass through the water due to the high density. Moreover, the mortality rate of organisms can increase because of unbearable heavy metals. |
Disinfection byproducts | Chemical and biological impacts Toxic substances formed from disinfection byproducts in aquatic environments result in a higher mortality rate for organisms and alterations in growth rates and metabolism due to their high toxicity. |
Heavy metals | Physical impacts Turbidity may increase from the oxidation of metals that affect the lights to penetrate. Chemical impacts Density of corrosion substances may increase. Biological impacts Fluctuating metabolism and growth rate may occur due to the high concentration of heavy metal; also, light cannot pass through the water due to the high density. Moreover, the mortality rate of organisms can increase because of unbearable heavy metals. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khondoker, M.; Mandal, S.; Gurav, R.; Hwang, S. Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth 2023, 4, 223-240. https://doi.org/10.3390/earth4020012
Khondoker M, Mandal S, Gurav R, Hwang S. Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth. 2023; 4(2):223-240. https://doi.org/10.3390/earth4020012
Chicago/Turabian StyleKhondoker, Marufa, Sujata Mandal, Ranjit Gurav, and Sangchul Hwang. 2023. "Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review" Earth 4, no. 2: 223-240. https://doi.org/10.3390/earth4020012
APA StyleKhondoker, M., Mandal, S., Gurav, R., & Hwang, S. (2023). Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth, 4(2), 223-240. https://doi.org/10.3390/earth4020012