Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Physiography
2.3. Climate
2.4. Slope
2.5. Methodology
2.5.1. Data Collection and Analysis
2.5.2. Estimation of Missing Data
2.5.3. Meteorological and Hydrological Data
2.6. Methods of Recharge Estimation
WetSpass-M Modeling
3. Results and Discussions
3.1. Hydro-Meteorological Data Analysis
3.1.1. Rainfall
3.1.2. Temperature
3.1.3. Potential Evapotranspiration (PET)
3.1.4. Wind Speed
3.1.5. Groundwater Depth
3.2. Output of WetSpass-M Model
3.2.1. Actual Evapotranspiration (AET)
3.2.2. Surface Runoff (Qo)
3.2.3. Groundwater Recharge
3.2.4. Monthly Simulated Groundwater Recharge Raster Maps
3.3. Model Verification
3.4. Model Sensitivity Analysis
3.5. Model Performance Analysis
3.5.1. Model Calibration
3.5.2. Model Sensitivity Analysis
3.5.3. Model Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate change impacts on water and agriculture sectors in southern africa: Threats and opportunities for sustainable development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Liersch, S.; Tecklenburg, J.; Rust, H.; Dobler, A.; Fischer, M.; Kruschke, T.; Koch, H.; Hattermann, F.F. Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile. Hydrol. Earth Syst. Sci. 2018, 22, 2163–2185. [Google Scholar] [CrossRef]
- Gebremeskel, G.; Kebede, A. Estimating the effect of climate change on water resources: Integrated use of climate and hydrological models in the Werii watershed of the Tekeze river basin, Northern Ethiopia. Agric. Nat. Resour. 2018, 52, 195–207. [Google Scholar] [CrossRef]
- Tigabu, T.B.; Wagner, P.D.; Hörmann, G.; Kiesel, J.; Fohrer, N. Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia. J. Water Clim. Chang. 2021, 12, 1544–1563. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Characteristics and Water Demand in Semi-Arid Mediterranean Catchments under Water Deficit Conditions. Climate 2023, 11, 137. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Nannawo, A.S.; Lohani, T.K.; Eshete, A.A. Envisaging the actual evapotranspiration and elucidating its effects under climate change scenarios on agrarian lands of bilate river basin in Ethiopia. Heliyon 2022, 8, e10368. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G.; Ahmed, I.; Dar, M.A.; Yibeltal, M. Groundwater recharge estimation using empirical methods from rainfall and streamflow records. J. Hydrol. Reg. Stud. 2021, 37, 100917. [Google Scholar] [CrossRef]
- Davidson, A. The Omo river project, reconnaissance geology and geochemistry of parts of Ilubabor, Kefa, Gemu Gofa and Sidamo, Ethiopia. Ethiop. Inst. Geol. Surv. Bull. 1983, 2, 1–89. [Google Scholar]
- Sahle, M.; Saito, O.; Fürst, C.; Demissew, S.; Yeshitela, K. Future land use management effects on ecosystem services under different scenarios in the Wabe River catchment of Gurage Mountain chain landscape, Ethiopia. Sustain. Sci. 2019, 14, 175–190. [Google Scholar] [CrossRef]
- Guduru, J.U.; Jilo, N.B. Groundwater potential zone assessment using integrated analytical hierarchy process-geospatial driven in a GIS environment in Gobele watershed, Wabe Shebele river basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 44, 101218. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate 2023, 11, 106. [Google Scholar] [CrossRef]
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; El Moçayd, N. Climate change effect on groundwater characteristics within semi-arid zones from western Morocco. Groundw. Sustain. Dev. 2020, 11, 100380. [Google Scholar] [CrossRef]
- Walker, D.; Parkin, G.; Schmitter, P.; Gowing, J.; Tilahun, S.A.; Haile, A.T.; Yimam, A.Y. Insights from a multi-method recharge estimation comparison study. Groundwater 2018, 57, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Sophocleous, M.A. Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. J. Hydrol. 1991, 124, 229–241. [Google Scholar] [CrossRef]
- Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J. Hydrol. 2008, 356, 209–222. [Google Scholar] [CrossRef]
- Manghi, F.; Mortazavi, B.; Crother, C.; Hamdi, M.R. Estimating Regional Groundwater Recharge Using a Hydrological Budget Method. Water Resour. Manag. 2009, 23, 2475–2489. [Google Scholar] [CrossRef]
- El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1–21. [Google Scholar] [CrossRef]
- Moon, S.-K.; Woo, N.C.; Lee, K.S. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J. Hydrol. 2004, 292, 198–209. [Google Scholar] [CrossRef]
- Noor, Q.S.; Thair, S.K. Average monthly recharge, surface runoff, and actual evapotranspiration estimation using WetSpass-M model in Low Folded Zone, Iraq. Open Eng. 2023, 13, 20220451. [Google Scholar] [CrossRef]
- Al Kuisi, M.; El-Naqa, A. GIS based spatial groundwater recharge estimation in the Jafr basin, Jordan: Application of WetSpass models for arid regions. Rev. Mex Cienc. Geol. 2013, 30, 96–109. [Google Scholar]
- Batelaan, O.; DeSmedt, F. WetSpass: A flexible, GIS-based, distributed recharge methodology for regional groundwater modelling. Impact Hum. Act Groundw Dyn. 2001, 269, 11–17. [Google Scholar]
- Anteneh, Z.S.; Awoke, B.G.; Reda, T.M.; Ramasamy, M.J. Spatio-temporal evaluation of water balance components using WetSpass model: In the case of Ataye watershed, Middle Awash Basin, Ethiopia. Arab. J. Geosci. 2023, 16, 1–22. [Google Scholar] [CrossRef]
- Danebo, D.; Atilebachew, A.; Abebe, A.; Jothimani, M. Applications of Geospatial Technologies and Wetspass Model in Groundwater Recharge Estimation in Sana River Catchment, Kembata Tembaro Zone, Southern Ethiopia. In Recent Advances in Civil Engineering; CTCS 2021. Lecture Notes in Civil Engineering; Nandagiri, L., Narasimhan, M.C., Marathe, S., Eds.; Springer Nature: Singapore, 2023; p. 256. [Google Scholar]
- Wang, L.; ODochartaigh, B.; Macdonald, D. A Literature Review of Recharge Estimation and Groundwater Resource Assessment in Africa; British Geological Survey, 2010; p. 51. Available online: https://nora.nerc.ac.uk/id/eprint/14145 (accessed on 5 December 2023).
- Tilahun, K.; Merkel, B.J. Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeol. J. 2009, 17, 1443–1457. [Google Scholar] [CrossRef]
- Arefaine, T.; Nedaw, D.; Gebreyohannes, T. Groundwater recharge, evapotranspiration and surface runoff estimation using WetSpass modeling method in Illala Catchment Northern Ethiopia. Momona Ethiop. J. Sci. 2012, 4, 96–110. [Google Scholar]
- Armanuos, A.M.; Negm, A.; Yoshimura, C.; Valeriano, O.C.S. Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arab. J. Geosci. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Dereje, B.; Nedaw, D. Groundwater recharge estimation using WetSpass modeling in Upper Bilate Catchment Northern Ethiopia. Momona Ethiop. J. Sci. 2019, 11, 37–51. [Google Scholar] [CrossRef]
- Gebremeskel, G.; Kebede, A. Spatial estimation of long-term seasonal and annual groundwater resources: Application of WetSpass model in the Werii watershed of the Tekeze River Basin, Ethiopia. Phys. Geogr. 2017, 38, 338–359. [Google Scholar] [CrossRef]
- Edamo, M.L.; Bushira, K.M.; Ukumo, T.Y.; Ayele, M.A.; Alaro, M.A.; Borko, H.B. Effect of climate change on water availability in Bilate catchment, Southern Ethiopia. Water Cycle 2022, 3, 86–99. [Google Scholar] [CrossRef]
- Ukumo, T.Y.; Lohani, T.K.; Edamo, M.L.; Alaro, M.A.; Ayele, M.A.; Borko, H.B. Application of regional climatic models to assess the performance evaluation of changes on flood frequency in Woybo catchment, Ethiopia. Adv. Civ. Eng. 2022, 16, 3351375. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Statistical bias correction of regional climate model simulations for climate change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia. Theor. Appl. Clim. 2020, 139, 1569–1588. [Google Scholar] [CrossRef]
- Thorntwaite, C.W.; Mather, J. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Laboratory of Climatology. Publ. Climatol. 1957, 10, 311. [Google Scholar]
- Wakjira, T. Groundwater Recharge Estimation and Aquifer Characterization for Walga Catchment. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Trajkovic, S.; Gocic, M.; Pongracz, R.; Bartholy, J. Adjustment of Thornthwaite equation for estimating evapotranspiration in Vojvodina. Theor. Appl. Clim. 2019, 138, 1231–1240. [Google Scholar] [CrossRef]
- Pereira, A.R.; Pruitt, W.O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
- Yadeta, D.; Kebede, A.; Tessema, N. Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Model. Earth Syst. Environ. 2020, 6, 2165–2176. [Google Scholar] [CrossRef]
- Shaw, E. Hydrology in Practice; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ahmadi, T.; Ziaei, A.N.; Rasoulzadeh, A.; Davary, K.; Esmaili, K.; Izady, A. Mapping groundwater recharge areas using CRD and RIB methods in the semi-arid Neishaboor Plain, Iran. Arab. J. Geosci. 2014, 8, 2921–2935. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; De Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, K.; Deckers, J.; Gebrehiwot, K. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J. Hydrol. 2013, 499, 110–123. [Google Scholar] [CrossRef]
- Abu-Saleem, A. Estimation of Water Balance Components in the Hasa Basin with GIS Based–WetSpass Model. Master’s Thesis, Al Balqa Applied University, Salt, Jordan, 2010. [Google Scholar] [CrossRef]
- Ferede, M.; Haile, A.T.; Walker, D.; Gowing, J.; Parkin, G. Multi-method groundwater recharge estimation at Eshito micro-watershed, Rift Valley Basin in Ethiopia. Hydrol. Sci. J. 2020, 65, 1596–1605. [Google Scholar] [CrossRef]
- Nannawo, A.S.; Lohani, T.K.; Eshete, A.A. Exemplifying the Effects Using WetSpass Model Depicting the Landscape Modifications on Long-Term Surface and Subsurface Hydrological Water Balance in Bilate Basin, Ethiopia. Adv. Civ. Eng. 2021, 2021, 7283002. [Google Scholar] [CrossRef]
Location | |||||
---|---|---|---|---|---|
S.No | Station Name | Easting (m) | Northing (m) | Elevation (m) | Station Type |
1 | Welkite | 37.7911 | 8.2691 | 1884 | Class 3 |
2 | Gunchire | 37.8444 | 8.24444 | 2099 | Class 3 |
3 | Emdibir | 37.9615 | 8.1617 | 2082 | Class 1 |
4 | Weliso | 37.9707 | 8.535 | 2028 | Class 3 |
5 | Agena | 38.198 | 8.1982 | 2310 | Class 3 |
6 | Kokir | 38.23889 | 8.463889 | 2613 | Class 3 |
7 | Bui | 38.362 | 8.286 | 2054 | Class 1 |
8 | Butajira | 38.3114 | 8.165 | 2074 | Class 3 |
Station Name | Area (km2) | Weighted Area (%) | Rainfall (mm) | Weighted Rainfall (mm) |
---|---|---|---|---|
Agena | 445 | 24.2 | 1500.4 | 362.9 |
Kokirgedebano | 444 | 24.1 | 1766.8 | 426.3 |
Emdibir | 267 | 14.5 | 1225.1 | 177.8 |
Bui | 224 | 12.3 | 1043.8 | 127.1 |
Welkite | 194 | 10.5 | 1131.8 | 119.33 |
Gunchire | 192 | 10.4 | 1370.9 | 143.1 |
Weliso | 52 | 2.8 | 1220.1 | 34.5 |
Butajira | 22 | 1.2 | 1075.2 | 12.9 |
Model Parameter | Description | Units | Range Values |
---|---|---|---|
LP | Soil moisture factor at which AET and PET are at equilibrium | - | 0.1–1 |
a | Interception threshold | mm/day | >0.25 |
α | Non-linearity coefficient related to evaporative efficiency | - | >0.9 |
Ι | Long-term average rainfall intensity during wet days | mm/h | >0 |
ω1 | Slope factor contribution to runoff | - | 0–1 |
ω2 | Land use contribution factor to runoff | - | 0–1 |
ω3 | Soil factor contribution to runoff | - | 0–1 |
x | Runoff routing delay factor | - | 0–1 |
β | Groundwater recharge storage parameter | - | 0–1 |
ϕ | Groundwater recharge contribution parameter to current base-flow | - | 0–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, G.; Jothimani, M. Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model. Earth 2024, 5, 20-44. https://doi.org/10.3390/earth5010002
Tadesse G, Jothimani M. Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model. Earth. 2024; 5(1):20-44. https://doi.org/10.3390/earth5010002
Chicago/Turabian StyleTadesse, Gideon, and Muralitharan Jothimani. 2024. "Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model" Earth 5, no. 1: 20-44. https://doi.org/10.3390/earth5010002
APA StyleTadesse, G., & Jothimani, M. (2024). Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model. Earth, 5(1), 20-44. https://doi.org/10.3390/earth5010002