Regional Hydro-Chemistry of Hydrothermal Springs in Northeastern Algeria, Case of Guelma, Souk Ahras, Tebessa and Khenchela Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Technics
2.2.1. Fieldwork
2.2.2. Analyzed Parameters
2.2.3. Data Conditioning
2.2.4. Principal Component Analysis
2.2.5. Unsupervised Agglomerative Hierarchical Clustering
2.2.6. Discriminant Analysis
3. Results
4. Discussion
4.1. Origins of Chemical Signature Diversity
4.2. A zoning for Thermal Waters Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancellieri, M. The use of water as indication of the presence of life: Technical ways of employment in the archaelogical documentation. Med. Secoli 1995, 7, 451–459. [Google Scholar] [PubMed]
- Gianfaldoni, S.; Tchernev, G.; Wollina, U.; Roccia, M.; Fioranelli, M.; Gianfaldoni, R.; Lotti, T. History of the baths and thermal medicine. Open Access Maced. J. Med. Sci. 2017, 5, 566–568. [Google Scholar] [CrossRef]
- Bekkouch, M.F.; Benhamza, M. Hydrochemical characteristics of the thermal sources in the extreme northeastern part of Algeria. AIP Conf. Proc. 2016, 1758, 30035. [Google Scholar]
- Khallef, B. Analysis of Urban Heat Islands Using Landsat 8 OLI/TIR Data: Case of the City of Guelma (Algeria). Asian J. Environ. Ecol. 2020, 12, 42–51. [Google Scholar] [CrossRef]
- Ranjit, M. Hot and Mineral Spring Water for Health Benefits. In Hot Springs in Nepal: Health Benefits and Geothermal Applications; Ranjit, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 161–187. ISBN 978-3-030-99500-3. [Google Scholar]
- Rapolienė, L. The Effect of Geothermal Water on Skin Condition and Body Fat. J. Adv. Med. Med. Res. 2016, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lebbihiat, N.; Atia, A.; Arıcı, M.; Meneceur, N. Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. J. Clean. Prod. 2021, 302, 126950. [Google Scholar] [CrossRef]
- Stober, I.; Bucher, K. History of Geothermal Energy Use. In Geothermal Energy: From Theoretical Models to Exploration and Development; Stober, I., Bucher, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–24. ISBN 978-3-642-13352-7. [Google Scholar]
- Ellis, A.J. Geothermal fluid chemistry and human health. Geothermics 1977, 6, 175–182. [Google Scholar] [CrossRef]
- Morales-Simfors, N.; Bundschuh, J. Arsenic-rich geothermal fluids as environmentally hazardous materials—A global assessment. Sci. Total Environ. 2022, 817, 152669. [Google Scholar] [CrossRef]
- Waggott, A. An investigation of the potential problem of increasing boron concentrations in rivers and water courses. Water Res. 1969, 3, 749–765. [Google Scholar] [CrossRef]
- Borović, S.; Marković, I. Utilization and tourism valorisation of geothermal waters in Croatia. Renew. Sustain. Energy Rev. 2015, 44, 52–63. [Google Scholar] [CrossRef]
- Afsin, M.; Allen, D.M.; Kirste, D.; Durukan, U.G.; Gurel, A.; Oruc, O. Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data: A case study in the Cappadocia region of Turkey. Hydrogeol. J. 2014, 22, 7–23. [Google Scholar] [CrossRef]
- Dib, H. Guide Pratique des Sources Thermales de l’Est Algérien . 2008. Available online: https://searchworks.stanford.edu/view/7794233 (accessed on 10 April 2024).
- Djaafri, I. Contribution to the hydro-structural study of the thermo-mineral waters of the Guelma region (East Algerian). In Proceedings of the International Water Forum IWFC, Hammamet, Tunisia, 19–21 March 2018; IWFC: Hammamet, Tunisia, 2018; p. 315. [Google Scholar]
- Seghir, K. Vulnérabilité à la Pollution, Protection des Ressources en Eaux et Gestion Active du sous Système Aquifère de Tébessa Hammamet (Est Algérien). Ph.D. Thesis, University of Annaba, Annaba, Algeria, 2008. [Google Scholar]
- Seghir, K. La vulnérabilité à la pollution des eaux souterraines de la région de Tebessa-Hammamet (Est Algérien). Larhyss J. 2014, 18, 53–61. [Google Scholar]
- Beaudry, P.; Stefánsson, A.; Fiebig, J.; Rhim, J.H.; Ono, S. High temperature generation and equilibration of methane in terrestrial geothermal systems: Evidence from clumped isotopologues. Geochim. Cosmochim. Acta 2021, 309, 209–234. [Google Scholar] [CrossRef]
- Mao, X.; Dong, Y.; He, Y.; Zhu, D.; Shi, Z.; Ye, J. The effect of granite fracture network on silica-enriched groundwater formation and geothermometers in low-temperature hydrothermal system. J. Hydrol. 2022, 609, 127720. [Google Scholar] [CrossRef]
- Porkhial, S.; Salehpour, M.; Ashraf, H.; Jamali, A. Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics 2015, 53, 320–327. [Google Scholar] [CrossRef]
- Sekine, Y.; Shibuya, T.; Postberg, F.; Hsu, H.-W.; Suzuki, K.; Masaki, Y.; Kuwatani, T.; Mori, M.; Hong, P.K.; Yoshizaki, M.; et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 2015, 6, 8604. [Google Scholar] [CrossRef] [PubMed]
- Shock, E.L. Hydrothermal systems as environments for the emergence of life. Ciba Found. Symp. 1996, 202, 40–60. [Google Scholar] [PubMed]
- Wang, Y.; Zhou, X.; Yu, Y.; Liu, C.; Zhou, H. Application of Geothermometers to Calculation of Temperature of Geothermal Reservoirs. Geoscience 2007, 21, 605–612. [Google Scholar]
- Borović, S.; Pola, M.; Bačani, A.; Urumović, K. Constraining the recharge area of a hydrothermal system in fractured carbonates by numerical modelling. Geothermics 2019, 82, 128–149. [Google Scholar] [CrossRef]
- Boudoukha, A.; Athamena, M. Caractérisation des eaux thermales de l’ensemble Sud sétifien. Est algérien. Rev. des Sci. l’Eau/J. Water Sci. 2012, 25, 103–118. [Google Scholar] [CrossRef]
- Chenaker, H. Traçage Chimique et Isotopique des eaux des Gisements Hydrothermaux de l’est Algérien et leur Potentiel en énergie Renouvelable. Ph.D. Thesis, Khenchela Abbas Laghour University, Khenchela, Algeria, 2019. [Google Scholar]
- Chenaker, H.; Houha, B.; Vincent, V. Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria. Geothermics 2018, 75, 137–145. [Google Scholar] [CrossRef]
- D’Amore, F.; Panichi, C. Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta 1980, 44, 549–556. [Google Scholar] [CrossRef]
- Filipovich, R.; Chiodi, A.; Báez, W.; Ahumada, M.F.; Invernizzi, C.; Taviani, S.; Aldega, L.; Tassi, F.; Barrios, A.; Corrado, S.; et al. Structural analysis and fluid geochemistry as tools to assess the potential of the Tocomar geothermal system, Central Puna (Argentina). Geothermics 2022, 98, 102297. [Google Scholar] [CrossRef]
- Ghodbane, M.; Boudoukha, A.; Benaabidate, L. Hydrochemical and statistical characterization of groundwater in the Chemora area, Northeastern Algeria. Desalin. Water Treat. 2016, 57, 14858–14868. [Google Scholar] [CrossRef]
- Grasby, S.E.; Hutcheon, I.; Krouse, H.R. The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl. Geochem. 2000, 15, 439–454. [Google Scholar] [CrossRef]
- Benaabidate, L. Caractérisation du Bassin Versant de Sebou: Hydrologie, Qualité des eaux et Géochimie des Sources Thermales. Unpublished Dissertation, University of Fes, Fes, Morocco, 2000. [Google Scholar]
- Castany, G. Principes et Méthodes de l’hydrogéologie; Dunod Université: Paris, France, 1986. [Google Scholar]
- De Launay, L. Recherche, Captage et Aménagement des Sources Thermo-minérales, Origine des eaux Thermo-minérales, Géologie, Propriétés Physiques et Chimiques; Librairie Polythechnique Baudry et Cie: Paris, France, 1899. [Google Scholar]
- Barbel-Périneau, A.; Barbiero, L.; Danquigny, C.; Emblanch, C.; Mazzilli, N.; Babic, M.; Simler, R.; Valles, V. Karst flow processes explored through analysis of long-term unsaturated-zone discharge hydrochemistry: A 10-year study in Rustrel, France. Hydrogeol. J. 2019, 27, 1711–1723. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Abraham, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Bahaj, T.; Kassou, N.; Touiouine, A.; Jabrane, M.; et al. Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering. Water 2023, 15, 1603. [Google Scholar] [CrossRef]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension reduction and analysis of a 10-year physicochemical and biological water database applied to water resources intended for human consumption in the provence-alpes-cote d’azur region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef]
- Djaafri, I.; Djeliel, H. L’impact de la Tectonique sur la Température, le Chimisme, et la Répartition des eaux dans la Région de Guelma et les Massifs du Nord. Master’s Thesis, University of Constantine, Constantine, Algeria, 2015. [Google Scholar]
- Mebarki, A. Ressources en eau et Aménagement en Algérie; Les bassins hydrographiques de l’Est; Office des Publications Universitaires Alger: Ben Aknoun, Algeria, 2009.
- Verdeil, P. Algerian thermalism in its geostructural setting—How hydrogeology has helped in the elucidation of Algeria’s deep-seated structure. J. Hydrol. 1982, 56, 107–117. [Google Scholar] [CrossRef]
- Askri, H.; Belmecheri, B.; Boudjema, A.; Boumendjel, K.; Daoudi, M.; Drid, M.; Ghalem, Y.; Docca, A.; Ghandriche, H.; Ghomari, A.; et al. Geology of Algeria; Internal Report Schlumberger-WEC; Sonatrach: Hydra, Algeria, 1991. [Google Scholar]
- Bouaicha, F.; Dib, H.; Belkhiri, L.; Manchar, N.; Chabour, N. Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J. Geol. Soc. India 2017, 90, 226–232. [Google Scholar]
- Benamara, A.; Kherici-Bousnoubra, H.; Bouabdallah, F. Thermo-mineral waters of Hammam Meskoutine (north-east Algeria): Composition and origin of mineralization. J. Water Land Dev. 2017, 34, 47–57. [Google Scholar] [CrossRef]
- Chabbi, A. Les Nappes Telliennes de la Région Nord de Souk Ahras (NE algérien): Etude Géologique et Structurale. Ph.D. Thesis, Badji Mokhtar-Annaba University, Annaba, Algeria, 2017. [Google Scholar]
- Kowalski, W.M.; Hamimed, M.; Pharisat, A. Les étapes d’effondrement des grabens dans les confins algéro-tunisiens; The graben slumping stages within the Algerian-Tunisian confines. Bull. Serv. Géologique L’algérie 2002, 13, 131–152. [Google Scholar]
- Vila, J. La Chaine Alpine d’Algérie Orientale et les Confins Algéro-Tunisiens. Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, Paris, France, 1980. [Google Scholar]
- Drias, T. Hydrogeologie du Bassin Versant de l’oued Ksob (Tebessa): Vulnerabilite et Protection de la Ressource. Ph.D. Thesis, University Of Science And Technology Houari Boumediene, Bab Ezzouar, Algeria, 2013. [Google Scholar]
- Fekraoui, A.; Kedaid, F. Geothermal Resources and Uses in Algeria: A Country Update Report. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–8. [Google Scholar]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2023, 15, 84. [Google Scholar] [CrossRef]
- Royston, J.P. An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. J. R. Stat. Soc. Ser. C 1982, 31, 115–124. [Google Scholar] [CrossRef]
- Marden, J.I. Positions and QQ Plots. Stat. Sci. 2004, 19, 606–614. [Google Scholar] [CrossRef]
- Ayach, M.; Lazar, H.; Bousouis, A.; Touiouine, A.; Kacimi, I.; Valles, V.; Barbiero, L. Multi-Parameter Analysis of Groundwater Resources Quality in the Auvergne-Rhône-Alpes Region (France) Using a Large Database. Resources 2023, 12, 869. [Google Scholar]
- Bouaicha, F.; Dib, H.; Bouteraa, O.; Manchar, N.; Boufaa, K.; Chabour, N.; Demdoum, A. Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim. 2019, 38, 683–702. [Google Scholar] [CrossRef]
- Saibi, H. Geothermal resources in Algeria. Renew. Sustain. Energy Rev. 2009, 13, 2544–2552. [Google Scholar] [CrossRef]
- Kouadra, R.; Demdoum, A.; Chabour, N.; Benchikh, R. The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal springs in the Constantine area, Northeastern Algeria. Acta Geochim. 2019, 38, 292–306. [Google Scholar] [CrossRef]
- Bekkouche, M. Caractéristiques Hydrochimiques Des Sources Thermales De L’extrême Nord-est Algerien. Ph.D. Thesis, Université Badji Mokhtar, Annaba, Algeria, 2016. [Google Scholar]
- Goldman, M.P.; Merial-Kieny, C.; Nocera, T.; Mery, S. Comparative benefit of two thermal spring waters after photodynamic therapy procedure. J. Cosmet. Dermatol. 2007, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Nocera, T.; Jean-Decoster, C.; Georgescu, V.; Guerrero, D. Benefits of Avène thermal hydrotherapy in chronic skin diseases and dermatological conditions: An overview. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef] [PubMed]
- Berkani, C.; Houba, B. Physico-Chemical And Therapeutic Characteristics Of The Thermo-Mineral Waters of Khenchela Region (Northeastern Algeria). J. Mater. Environ. Sci. 2017, 8, 1546–1553. [Google Scholar]
Parameter | Unit | Observations | Minimum | Maximum | Mean |
---|---|---|---|---|---|
T | °C | 32 | 18.7 | 94.7 | 49.2 |
pH | - | 32 | 5.71 | 9.88 | 7.08 |
EC | µs cm−1 | 32 | 531 | 16,850 | 2886 |
Na+ | mg L−1 | 32 | 9.53 | 4800 | 491 |
K+ | mg L−1 | 32 | 0.24 | 81.2 | 15 |
Ca2+ | mg L−1 | 32 | 51.74 | 2001 | 262 |
Mg2+ | mg L−1 | 32 | 6.06 | 54.85 | 25.95 |
Cl− | mg L−1 | 32 | 14.13 | 6130 | 696 |
SO42− | mg L−1 | 32 | 12.47 | 1061 | 368 |
NO3− | mg L−1 | 32 | 0.69 | 1180 | 71 |
HCO3− | mg L−1 | 32 | 91.5 | 1671 | 469 |
Li+ | mg L−1 | 32 | 0.01 | 1.73 | 0.42 |
Parameter | Shapiro–Wilk Test |
---|---|
NO3− | <0.0001 |
Log (NO3−) | 0.88 |
EC | <0.0001 |
Log (EC) | 0.02 |
Variables | T | EC | Ca2+ | Mg2+ | Na+ | K+ | Cl− | SO42− | NO3− | HCO3− | H+ | Li |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1 | |||||||||||
EC | 0.31 | 1 | ||||||||||
Ca2+ | 0.33 | 0.78 | 1 | |||||||||
Mg2+ | 0.36 | 0.39 | 0.61 | 1 | ||||||||
Na+ | 0.31 | 0.94 | 0.66 | 0.21 | 1 | |||||||
K+ | 0.67 | 0.85 | 0.77 | 0.57 | 0.81 | 1 | ||||||
Cl− | 0.33 | 0.94 | 0.66 | 0.25 | 0.98 | 0.82 | 1 | |||||
SO42− | 0.66 | 0.47 | 0.52 | 0.40 | 0.37 | 0.63 | 0.33 | 1 | ||||
NO3− | 0.11 | 0.50 | 0.38 | −0.17 | 0.51 | 0.35 | 0.41 | 0.44 | 1 | |||
HCO3− | −0.07 | 0.70 | 0.60 | 0.27 | 0.64 | 0.50 | 0.63 | −0.02 | 0.33 | 1 | ||
H+ | 0.03 | 0.21 | 0.05 | −0.25 | 0.28 | 0.20 | 0.23 | −0.06 | 0.27 | 0.16 | 1 | |
Li | 0.59 | 0.89 | 0.72 | 0.42 | 0.89 | 0.95 | 0.91 | 0.54 | 0.36 | 0.53 | 0.24 | 1 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Eigenvalue | 6.65 | 1.85 | 1.31 | 0.86 |
Variance (%) | 55.41 | 15.41 | 10.88 | 7.19 |
Cum. % | 55.41 | 70.82 | 81.69 | 88.88 |
From/to | Guelma | Khenchela | Souk Ahras | Tebessa | Total | % Correct |
---|---|---|---|---|---|---|
Guelma | 17 | 0 | 0 | 0 | 17 | 100% |
Khenchela | 0 | 6 | 0 | 0 | 6 | 100% |
Souk Ahras | 0 | 0 | 6 | 0 | 6 | 100% |
Tebessa | 0 | 0 | 0 | 3 | 3 | 100% |
Total | 17 | 6 | 6 | 3 | 32 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaafri, I.; Seghir, K.; Valles, V.; Barbiero, L. Regional Hydro-Chemistry of Hydrothermal Springs in Northeastern Algeria, Case of Guelma, Souk Ahras, Tebessa and Khenchela Regions. Earth 2024, 5, 214-227. https://doi.org/10.3390/earth5020011
Djaafri I, Seghir K, Valles V, Barbiero L. Regional Hydro-Chemistry of Hydrothermal Springs in Northeastern Algeria, Case of Guelma, Souk Ahras, Tebessa and Khenchela Regions. Earth. 2024; 5(2):214-227. https://doi.org/10.3390/earth5020011
Chicago/Turabian StyleDjaafri, Ibtissem, Karima Seghir, Vincent Valles, and Laurent Barbiero. 2024. "Regional Hydro-Chemistry of Hydrothermal Springs in Northeastern Algeria, Case of Guelma, Souk Ahras, Tebessa and Khenchela Regions" Earth 5, no. 2: 214-227. https://doi.org/10.3390/earth5020011
APA StyleDjaafri, I., Seghir, K., Valles, V., & Barbiero, L. (2024). Regional Hydro-Chemistry of Hydrothermal Springs in Northeastern Algeria, Case of Guelma, Souk Ahras, Tebessa and Khenchela Regions. Earth, 5(2), 214-227. https://doi.org/10.3390/earth5020011