Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons †
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
- The iodine number increases with increasing temperature (but only up to a certain point).
- Mechanical strength increases with increasing temperature (but only up to a certain point, then decreases).
- The efficiency of the regeneration process largely depends on the degree of use of the activated carbon and the content of volatile substances.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, H.; Nakabayashi, K.; Yoon, S.-H.; Miyawaki, J. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon 2021, 183, 735–742. [Google Scholar] [CrossRef]
- Bansal, R.C.; Goyal, M. Adsorpcja na w ̨eglu aktywnym. In Adsorption on Activated Carbon; WNT: Warszawa, Poland, 2009. [Google Scholar]
- Dębowski, Z. Węgiel Aktywny w Ochronie Środowiska i Przemyśle: Praca Zbiorowa/pod Red. Zygmunta Dębowskiego; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2008. [Google Scholar]
- Ignatowicz, K. Occurrence Study of Agrochemical Pollutants in Waters of Suprasl Catchment. Arch. Environ. Prot. 2009, 35, 69–77. [Google Scholar]
- Ruthven, D.M. Principles of Adsorption and Adsorptionprocess; John Wiley & Sons Inc.: New York, NY, USA, 2020. [Google Scholar]
- Rouquerol, J. Adsorption by Powders and Porous Solids; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Jankowska, H.; Świątkowski, A.; Starostin, L.; Ławinienko-Omiecynska, J. Adsorpcja Jonów na Węglu Aktywnym (Ion Adsorption on Activated Carbon); Wydawnictwo Naukowe PWN: Warsaw, Poland, 1991. [Google Scholar]
- Tóth, J. (Ed.) Adsorption: Theory, Modeling, and Analysis; Surfactant Science Series; Marcel Dekker: New York, NY, USA, 2002; ISBN 978-0-8247-0747-7. [Google Scholar]
- Ghaedi, M. Adsorption: Fundamental Processes and Applications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Werle, S.; Dudziak, M.; Sobek, S. Water Solution Purification by Phenol Adsorption on Solid Fraction from Thermal Treatment of Waste Biomass—Occurrences of Unfavourable Phenomenon. Desalin. Water Treat. 2020, 186, 72–77. [Google Scholar] [CrossRef]
- Piekarski, J.; Ignatowicz, K.; Dąbrowski, T. Analysis of Selected Methods Use for Calculation of the Coefficients of Adsorption Isotherms and Simplified Equations of Adsorption Dynamics with the Use of IZO Application. Materials 2021, 14, 4192. [Google Scholar] [CrossRef] [PubMed]
- Lenort, R.; Stas, D.; Wicher, P.; Holman, D.; Ignatowicz, K. Comparative Study of Sustainable Key Performance Indicators in Metallurgical Industry. Rocz. Ochr. Srodowiska 2017, 19, 36–51. [Google Scholar]
- Ignatowicz, K.; Piekarski, J.; Skoczko, I.; Piekutin, J. Analysis of Simplified Equations of Adsorption Dynamics of HCH. Desalination Water Treat. 2016, 57, 1420–1428. [Google Scholar] [CrossRef]
Activated Carbon | Iodine Number [mg/g] | Mechanical Strength [%] | Bulk Density [g/L] | Ash Content [%] | Volatile Parts Content [%] |
---|---|---|---|---|---|
Sample 1 | 757 | 95.8 | 501 | 12.3 | 19.7 |
Sample 2 | 732 | 94.7 | 498 | 10.1 | 22.3 |
AC [Sample] | Process Temperature [°C] | Iodine Number [mg/g] | Mechanical Strength [%] | Bulk Density [g/L] | Ash Content [%] | Volatile Parts Content [%] |
---|---|---|---|---|---|---|
1 | 600 | 798 | 95.6 | 488 | 13.2 | 17.2 |
1 | 650 | 823 | 95.2 | 485 | 13.6 | 15.7 |
1 | 700 | 849 | 94.1 | 480 | 15.4 | 13.2 |
1 | 750 | 884 | 93.8 | 445 | 15.9 | 10.5 |
1 | 800 | 871 | 93.8 | 429 | 16.8 | 10.3 |
1 | 850 | 834 | 92.8 | 422 | 17.2 | 9.8 |
2 | 600 | 739 | 94.2 | 486 | 11.8 | 20.1 |
2 | 650 | 749 | 94.1 | 469 | 13.2 | 16.3 |
2 | 700 | 778 | 93.4 | 452 | 14.4 | 15.7 |
2 | 750 | 814 | 93.2 | 444 | 14.9 | 10.9 |
2 | 800 | 822 | 92.9 | 426 | 16.2 | 10.1 |
2 | 850 | 801 | 91.3 | 424 | 17.9 | 9.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winconek, Ł.; Ignatowicz, K. Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons. Environ. Sci. Proc. 2022, 18, 6. https://doi.org/10.3390/environsciproc2022018006
Winconek Ł, Ignatowicz K. Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons. Environmental Sciences Proceedings. 2022; 18(1):6. https://doi.org/10.3390/environsciproc2022018006
Chicago/Turabian StyleWinconek, Łukasz, and Katarzyna Ignatowicz. 2022. "Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons" Environmental Sciences Proceedings 18, no. 1: 6. https://doi.org/10.3390/environsciproc2022018006
APA StyleWinconek, Ł., & Ignatowicz, K. (2022). Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons. Environmental Sciences Proceedings, 18(1), 6. https://doi.org/10.3390/environsciproc2022018006