Climate Change Impacts on the Prevalence of Tick-Borne Diseases in Europe †
Abstract
:1. Introduction
2. How Climate Affects the Prevalence of LB
3. How Climate Affects the Prevalence of TB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Chang. 2022, 12, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Ixodes Ricinus—Current Known Distribution: March 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/ixodes-ricinus-current-known-distribution-march-2022 (accessed on 2 May 2023).
- Remesar, S.; Fernández, P.D.; Venzal, J.M.; Pérez-Creo, A.; Prieto, A.; Estrada-Peña, A.; López, C.M.; Panadero, R.; Fernández, G.; Díez-Baños, P.; et al. Tick species diversity and population dynamics of Ixodes ricinus in Galicia (north-western Spain). Ticks Tick Borne Dis. 2019, 10, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Nolzen, H.; Brugger, K.; Reichold, A.; Brock, J.; Lange, M.; Thulkeid, H.-H. Model-based extrapolation of ecological systems under future climate scenarios: The example of Ixodes ricinus ticks. PLoS ONE 2022, 17, e0267196. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, R.; Siljander, M.; Lindén, A.; Sormunen, J.J.; Aalto, J.; Hendrickx, G.; Kallio, E.; Vajda, A.; Gregow, H.; Henttonen, H.; et al. Predicting habitat suitability for Ixodes ricinus and Ixodes persulcatus ticks in Finland. Parasites Vectors 2022, 15, 1–21. [Google Scholar] [CrossRef]
- Wongnak, P.; Bord, S.; Jacquot, M.; Agoulon, A.; Beugnet, F.; Bournez, L.; Cèbe, N.; Chevalier, A.; Cosson, J.-F.; Dambrine, N.; et al. Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity. Sci. Rep. 2022, 12, 7833. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R Soc. B Biol. Sci. 2015, 370, 1–11. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Vrijmoeth, H.D.; Van De Schoor, F.; Hovius, J.W. Lyme borreliosis: Diagnosis and management. BMJ 2020, 369, m1041. [Google Scholar] [CrossRef]
- Semenza, J.C.; Rocklöv, J.; Ebi, K.L. Climate Change and Cascading Risks from Infectious Disease. Infect. Dis. Ther. 2022, 11, 1371–1390. [Google Scholar] [CrossRef]
- Sykes, R.A.; Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe. J. Public Health 2017, 39, 74–81. [Google Scholar]
- Karageorgou, I.; Koutantou, M.; Papadogiannaki, I.; Voulgari-Kokota, A.; Makka, S.; Angelakis, E. Serological evidence of possible Borrelia afzelii lyme disease in Greece. New Microbes New Infect. 2022, 46, 100978. [Google Scholar] [CrossRef]
- Petrulionienė, A.; Radzišauskienė, D.; Ambrozaitis, A.; Čaplinskas, S.; Paulauskas, A.; Venalis, A. Epidemiology of lyme disease in a highly endemic European zone. Medicina 2020, 56, 115. [Google Scholar] [CrossRef] [PubMed]
- Voyiatzaki, C.; Papailia, S.I.; Venetikou, M.S.; Pouris, J.; Tsoumani, M.E.; Papageorgiou, E.G. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe—How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. Int. J. Env. Res. Public Health 2022, 19, 6516. [Google Scholar] [CrossRef] [PubMed]
- Enkelmann, J.; Böhmer, M.; Fingerle, V.; Siffczyk, C.; Werber, D.; Littmann, M.; Merbecks, S.-S.; Helmeke, C.; Schroeder, S.; Hell, S.; et al. Incidence of notified Lyme borreliosis in Germany, 2013–2017. Sci. Rep. 2018, 8, 14976. [Google Scholar] [CrossRef] [PubMed]
- Donša, D.; Grujić, V.J.; Pipenbaher, N.; Ivajnšič, D. The lyme borreliosis spatial footprint in the 21st century: A key study of slovenia. Int. J. Environ. Res. Public Health 2021, 18, 12061. [Google Scholar] [CrossRef]
- Riccardi, N.; Antonello, R.M.; Luzzati, R.; Zajkowska, J.; Di Bella, S.; Giacobbe, D.R. Tick-borne encephalitis in Europe: A brief update on epidemiology, diagnosis, prevention, and treatment. Eur. J. Intern. Med. 2019, 62, 1–6. [Google Scholar] [CrossRef]
- Kohlmaier, B.; Schweintzger, N.A.; Sagmeister, M.G.; Švendová, V.; Kohlfürst, D.S.; Sonnleitner, A.; Leitner, M.; Berghold, A.; Schmiedberger, E.; Fazekas, F.; et al. Clinical characteristics of patients with tick-borne encephalitis (Tbe): A european multicentre study from 2010 to 2017. Microorganisms 2021, 9, 1420. [Google Scholar] [CrossRef]
- Jenkins, V.A.; Silbernagl, G.; Baer, L.R.; Hoet, B. The epidemiology of infectious diseases in Europe in 2020 versus 2017–2019 and the rise of tick-borne encephalitis (1995–2020). Ticks Tick Borne Dis. 2022, 13, 101972. [Google Scholar] [CrossRef]
- Wondim, M.A.; Czupryna, P.; Pancewicz, S.; Kruszewska, E.; Groth, M.; Moniuszko-Malinowska, A. Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000–2019. Pathogens 2022, 11, 704. [Google Scholar] [CrossRef]
- Efstratiou, A.; Karanis, G.; Karanis, P. Tick-borne pathogens and diseases in Greece. Microorganisms 2021, 9, 1732. [Google Scholar] [CrossRef]
- Home—NPHO ΕOΔΥ [Internet]. Available online: https://eody.gov.gr/en/ (accessed on 22 July 2021).
- Nah, K.; Bede-Fazekas, Á.; Trájer, A.J.; Wu, J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect Dis. 2020, 20, 34. [Google Scholar] [CrossRef]
- Uusitalo, R.; Siljander, M.; Dub, T.; Sane, J.; Sormunen, J.J.; Pellikka, P.; Vapalahti, O. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick Borne Dis. 2020, 11, 101457. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoumani, M.E.; Papailia, S.I.; Papageorgiou, E.G.; Voyiatzaki, C. Climate Change Impacts on the Prevalence of Tick-Borne Diseases in Europe. Environ. Sci. Proc. 2023, 26, 18. https://doi.org/10.3390/environsciproc2023026018
Tsoumani ME, Papailia SI, Papageorgiou EG, Voyiatzaki C. Climate Change Impacts on the Prevalence of Tick-Borne Diseases in Europe. Environmental Sciences Proceedings. 2023; 26(1):18. https://doi.org/10.3390/environsciproc2023026018
Chicago/Turabian StyleTsoumani, Maria E., Sevastiani I. Papailia, Effie G. Papageorgiou, and Chrysa Voyiatzaki. 2023. "Climate Change Impacts on the Prevalence of Tick-Borne Diseases in Europe" Environmental Sciences Proceedings 26, no. 1: 18. https://doi.org/10.3390/environsciproc2023026018
APA StyleTsoumani, M. E., Papailia, S. I., Papageorgiou, E. G., & Voyiatzaki, C. (2023). Climate Change Impacts on the Prevalence of Tick-Borne Diseases in Europe. Environmental Sciences Proceedings, 26(1), 18. https://doi.org/10.3390/environsciproc2023026018