Utilizing AEOLUS to Improve Dust Transport Modelling †
Abstract
:1. Introduction
2. Methods and Materials
2.1. AEOLUS
2.2. WRF-CHEM
2.3. Data Assimilation Research Testbed
Ensemble Adjustment Kalman Filter
2.4. Experiment Setup
3. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escribano, J.; Di Tomaso, E.; Jorba, O.; Klose, M.; Gonçalves Ageitos, M.; Macchia, F.; Amiridis, V.; Baars, H.; Marinou, E.; Proestakis, E.; et al. Assimilating spaceborne lidar dust extinction can improve dust forecasts. Atmos. Chem. Phys. 2022, 22, 535–560. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Xian, P.; Reid, J.S.; Hyer, E.J.; Sampson, C.R.; Rubin, J.I.; Ades, M.; Asencio, N.; Basart, S.; Benedetti, A.; Bhattacharjee, P.S.; et al. Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). Q. J. R. Meteorol. Soc. 2019, 145, 176–209. [Google Scholar] [CrossRef] [PubMed]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Benedetti, A.; Reid, J.S.; Knippertz, P.; Marsham, J.H.; Di Giuseppe, F.; Rémy, S.; Basart, S.; Boucher, O.; Brooks, I.M.; Menut, L.; et al. Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmos. Chem. Phys. 2018, 18, 10615–10643. [Google Scholar] [CrossRef]
- Rennie, M.P.; Isaksen, L.; Weiler, F.; de Kloe, J.; Kanitz, T.; Reitebuch, O. The impact of Aeolus wind retrievals on ECMWF global weather forecasts. Q. J. R. Meteorol. Soc. 2021, 147, 3555–3586. [Google Scholar] [CrossRef]
- Paschou, P.; Siomos, N.; Tsekeri, A.; Louridas, A.; Georgoussis, G.; Freudenthaler, V.; Binietoglou, I.; Tsaknakis, G.; Tavernarakis, A.; Evangelatos, C.; et al. The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product. Atmos. Meas. Tech. 2022, 15, 2299–2323. [Google Scholar] [CrossRef]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef]
- Anderson, J.L.; Hoar, T.; Raeder, K.; Collins, N. Data Assimilation Research Testbed. UCAR/NCAR—Computational and Information Systems Laboratory (CISL). Available online: https://doi.org/10.5065/D6WQ0202 (accessed on 5 September 2023).
- Zhang, S.; Rosati, A. An Inflated Ensemble Filter for Ocean Data Assimilation with a Biased Coupled GCM. Mon. Weather Rev. 2010, 138, 3905–3931. [Google Scholar] [CrossRef]
- Anderson, J.L. An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Weather Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Šavli, M.; Žagar, N.; Anderson, J.L. Assimilation of horizontal line-of-sight winds with a mesoscale EnKF data assimilation system. Q. J. R. Meteorol. Soc. 2018, 144, 2133–2155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiou, T.; Rizos, K.; Tsikerdekis, A.; Proestakis, E.; Gkikas, A.; Baars, H.; Floutsi, A.A.; Drakaki, E.; Kampouri, A.; Marinou, E.; et al. Utilizing AEOLUS to Improve Dust Transport Modelling. Environ. Sci. Proc. 2023, 26, 193. https://doi.org/10.3390/environsciproc2023026193
Georgiou T, Rizos K, Tsikerdekis A, Proestakis E, Gkikas A, Baars H, Floutsi AA, Drakaki E, Kampouri A, Marinou E, et al. Utilizing AEOLUS to Improve Dust Transport Modelling. Environmental Sciences Proceedings. 2023; 26(1):193. https://doi.org/10.3390/environsciproc2023026193
Chicago/Turabian StyleGeorgiou, Thanasis, Konstantinos Rizos, Athanasios Tsikerdekis, Emmanouil Proestakis, Antonis Gkikas, Holger Baars, Athena Augusta Floutsi, Eleni Drakaki, Anna Kampouri, Eleni Marinou, and et al. 2023. "Utilizing AEOLUS to Improve Dust Transport Modelling" Environmental Sciences Proceedings 26, no. 1: 193. https://doi.org/10.3390/environsciproc2023026193
APA StyleGeorgiou, T., Rizos, K., Tsikerdekis, A., Proestakis, E., Gkikas, A., Baars, H., Floutsi, A. A., Drakaki, E., Kampouri, A., Marinou, E., Donovan, D., Benedetti, A., McLean, W., Retscher, C., Melas, D., & Amiridis, V. (2023). Utilizing AEOLUS to Improve Dust Transport Modelling. Environmental Sciences Proceedings, 26(1), 193. https://doi.org/10.3390/environsciproc2023026193