Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste †
Abstract
:1. Introduction
- Limited range from 100 km to 250 km per charge can be overcome with fast charging or the exploitation of a more sophisticated energy storage
- Lack of a universal connector is addressed globally via the adoption of the International Combined Charging System (CSS) or CHAdeMO protocols
- Consumer Behavior and the lack of intention to purchase an EV requires more intensives and remains a complex challenge
2. Lithium Batteries: Application, Issues, and Hybridization
- Lithium Iron Phosphate (LFP), which is massively exploited for electronic devices and electric vehicles now due to low cost and degradation but are less powerful
- Lithium Nickel-Cobalt-Aluminum Oxide (NCA) that inherits greater energy density and a faster charging performance, but requires unsustainable raw materials and suffers from a high-thermal runaway risk
- Lithium Nickel-Manganese-Cobalt (NCM), which has a lower discharge range and lower life cycles but higher energy density
3. Mining, Recycling and Second Life Exploitation
3.1. Mining
3.2. Recycling
- Pyrometallurgy, using a high-temperature furnace to burn the polymers, leaving only pure metals
- Hydrometallurgy through dissolving with aqueous solutions, and
- Direct recycling, with hands-on removal of the components
3.3. Second-Life Batteries
4. Comparison of the Two Methods: Recycling and Second Use
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 1 May 2023).
- ICCT. Available online: https://theicct.org/publication/how-technology-recycling-and-policy-can-mitigate-supply-risks-to-the-long-term-transition-to-zero-emission-vehicles/ (accessed on 1 May 2023).
- Zhang, S.; Witlox, F. Analyzing the Impact of Different Transport Governance Strategies on Climate Change. Sustainability 2020, 12, 200. [Google Scholar] [CrossRef]
- Haas, T.; Sander, H. Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal. Sustainability 2020, 12, 8381. [Google Scholar] [CrossRef]
- Rietmann, N.; Hügler, B.; Lieven, T. Forecasting the Trajectory of Electric Vehicle Sales and the Consequences for Worldwide CO2 Emissions. J. Clean. Prod. 2020, 261, 121038. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Sunddararaj, S.P.; Sudhakar, A.; Shiva, C.K.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges. Clean Technol. 2022, 4, 908–930. [Google Scholar] [CrossRef]
- Xu, C.; Steubing, B.; Hu, M.; Harpprecht, C.; Van Der Meide, M.; Tukker, A. Future Greenhouse Gas Emissions of Automotive Lithium-Ion Battery Cell Production. Resour. Conserv. Recycl. 2022, 187, 106606. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef]
- Khalid, M. A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids. Energies 2019, 12, 4559. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Rimpas, D.; Kaminaris, S.D.; Piromalis, D.; Vokas, G. A Review on Electric Vehicle Hybrid Energy Storage Systems; AIP Publishing: Athens, Greece, 2022; p. 020091. [Google Scholar]
- Rimpas, D.; Kaminaris, S.D.; Piromalis, D.; Vokas, G.; Papageorgas, P. Design and Implementation of a Small-Scaled Hybrid Storage System for Optimal Sizing in Electric Vehicles; AIP Publishing: Metz, France, 2023; p. 020007. [Google Scholar]
- Philippot, M.; Alvarez, G.; Ayerbe, E.; Van Mierlo, J.; Messagie, M. Eco-Efficiency of a Lithium-Ion Battery for Electric Vehicles: Influence of Manufacturing Country and Commodity Prices on GHG Emissions and Costs. Batteries 2019, 5, 23. [Google Scholar] [CrossRef]
- Habib, K.; Hansdóttir, S.T.; Habib, H. Critical Metals for Electromobility: Global Demand Scenarios for Passenger Vehicles, 2015–2050. Resour. Conserv. Recycl. 2020, 154, 104603. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Tran, C.; Ton-That, D. A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries. Energies 2022, 15, 7997. [Google Scholar] [CrossRef]
- Graham, J.D.; Rupp, J.A.; Brungard, E. Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security. Sustainability 2021, 13, 11274. [Google Scholar] [CrossRef]
- Garcia, L.V.; Ho, Y.-C.; Myo Thant, M.M.; Han, D.S.; Lim, J.W. Lithium in a Sustainable Circular Economy: A Comprehensive Review. Processes 2023, 11, 418. [Google Scholar] [CrossRef]
- Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Perrotta, M.; Roda-Robles, E. Detecting Lithium (Li) Mineralizations from Space: Current Research and Future Perspectives. Appl. Sci. 2020, 10, 1785. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Kavanagh, L.; Keohane, J.; Garcia Cabellos, G.; Lloyd, A.; Cleary, J. Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources 2018, 7, 57. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Tao, Y.; Rahn, C.D.; Archer, L.A.; You, F. Second Life and Recycling: Energy and Environmental Sustainability Perspectives for High-Performance Lithium-Ion Batteries. Sci. Adv. 2021, 7, eabi7633. [Google Scholar] [CrossRef]
- Impram, S.; Varbak Nese, S.; Oral, B. Challenges of Renewable Energy Penetration on Power System Flexibility: A Survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Kapustin, N.O.; Grushevenko, D.A. Long-Term Electric Vehicles Outlook and Their Potential Impact on Electric Grid. Energy Policy 2020, 137, 111103. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019, 8, 729. [Google Scholar] [CrossRef]
- Canals Casals, L.; Barbero, M.; Corchero, C. Reused Second Life Batteries for Aggregated Demand Response Services. J. Clean. Prod. 2019, 212, 99–108. [Google Scholar] [CrossRef]
- Haram, M.H.S.M.; Lee, J.W.; Ramasamy, G.; Ngu, E.E.; Thiagarajah, S.P.; Lee, Y.H. Feasibility of Utilising Second Life EV Batteries: Applications, Lifespan, Economics, Environmental Impact, Assessment, and Challenges. Alex. Eng. J. 2021, 60, 4517–4536. [Google Scholar] [CrossRef]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Villarreal Sarria, I.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.-M.; Goutam, S.; Omar, N.; Rodriguez, P. Technical Viability of Battery Second Life: A Study From the Ageing Perspective. IEEE Trans. Ind. Applicat. 2018, 54, 2703–2713. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A Cascaded Life Cycle: Reuse of Electric Vehicle Lithium-Ion Battery Packs in Energy Storage Systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Kosai, S.; Takata, U.; Yamasue, E. Global Resource Circularity for Lithium-Ion Batteries up to 2050: Traction and Stationary Use. Mining 2022, 2, 449–462. [Google Scholar] [CrossRef]
Parameters | Pyrometallurgy | Hydrometallurgy | Direct Recycling |
---|---|---|---|
Simplicity Energy efficient Production Cost | Very High | Medium | Low |
Low | Medium | Medium | |
Very High | Medium | Low | |
Rare earth materials recovery | Adequate | Very High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimpas, D.; Kaminaris, S.D.; Piromalis, D.D.; Vokas, G.; Orfanos, V.A. Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste. Environ. Sci. Proc. 2023, 26, 41. https://doi.org/10.3390/environsciproc2023026041
Rimpas D, Kaminaris SD, Piromalis DD, Vokas G, Orfanos VA. Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste. Environmental Sciences Proceedings. 2023; 26(1):41. https://doi.org/10.3390/environsciproc2023026041
Chicago/Turabian StyleRimpas, Dimitrios, Stavros D. Kaminaris, Dimitrios D. Piromalis, Georgios Vokas, and Vasilios A. Orfanos. 2023. "Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste" Environmental Sciences Proceedings 26, no. 1: 41. https://doi.org/10.3390/environsciproc2023026041
APA StyleRimpas, D., Kaminaris, S. D., Piromalis, D. D., Vokas, G., & Orfanos, V. A. (2023). Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste. Environmental Sciences Proceedings, 26(1), 41. https://doi.org/10.3390/environsciproc2023026041