Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling †
Abstract
:1. Introduction
2. Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.H.; Lam, J.C. Evaluation of lighting performance in office buildings with daylighting controls. Energy Build. 2001, 33, 793–803. [Google Scholar] [CrossRef]
- Plag, F.; Kröger, I.; Riechelmann, S.; Winter, S. Multidimensional model to correct PV device performance measurements taken under diffuse irradiation to reference conditions. Sol. Energy 2018, 174, 431–444. [Google Scholar] [CrossRef]
- Behrendt, T.; Kuehnert, J.; Hammer, A.; Lorenz, E.; Betcke, J.; Heinemann, D. Solar spectral irradiance derived from satellite data: A tool to improve thin film PV performance estimations? Sol. Energy 2013, 98, 100–110. [Google Scholar] [CrossRef]
- Li, D.H.; Lam, J.C. Predicting solar irradiance on inclined surfaces using sky radiance data. Energy Convers. Manag. 2004, 45, 1771–1783. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Kreuter, A.; Emde, C.; Blumthaler, M. Measuring the influence of aerosols and albedo on sky polarization. Atmos. Res. 2010, 98, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Aiyan, G.; Jingshuang, C.; Aosong, Z.; Shanbao, H. Attenuation and sky radiance effects induced by atmospheric aerosols on satellite-ground optical communication links. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 619–623. [Google Scholar] [CrossRef]
- Olmo, F.; Quirantes, A.; Lara, V.; Lyamani, H.; Alados-Arboledas, L. Aerosol optical properties assessed by an inversion method using the solar principal plane for non-spherical particles. J. Quant. Spectrosc. Radiat. Transf. 2007, 109, 1504–1516. [Google Scholar] [CrossRef]
- Deering, D.W.; Eck, T.F. Atmospheric optical depth effects on angular anisotropy of plant canopy reflectance. Int. J. Remote Sens. 1987, 8, 893–916. [Google Scholar] [CrossRef]
- Tohsing, K.; Klomkliang, W.; Masiri, I.; Janjai, S. An investigation of sky radiance from the measurement at a tropical site. AIP Conf. Proc. 2017, 1810, 080006. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Ricchiazzi, P.J.; Payton, A. The Effect of Surface Albedo Heterogeneity on Sky Radiance. In Proceedings of the Tenth ARM Science Team Meeting Proceedings, San Antonio, TX, USA, 13–17 March 2000; pp. 1–9. [Google Scholar]
- Kider, J.T.; Knowlton, D.; Newlin, J.; Li, Y.K.; Greenberg, D.P. A framework for the experimental comparison of solar and skydome illumination. ACM Trans. Graph. 2014, 33, 1–12. [Google Scholar] [CrossRef]
- Rossini, E.G.; Krenzinger, A. Maps of sky relative radiance and luminance distributions acquired with a monochromatic CCD camera. Sol. Energy 2007, 81, 1323–1332. [Google Scholar] [CrossRef]
- Román, R.; Antón, M.; Cazorla, A.; De Miguel, A.; Olmo, F.J.; Bilbao, J.; Alados-Arboledas, L. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths. Atmos. Meas. Tech. 2012, 5, 2013–2024. [Google Scholar] [CrossRef]
- Olmo, F.J.; Cazorla, A.; Alados-Arboledas, L.; López-Álvarez, M.A.; Hernández-Andrés, J.; Romero, J. Retrieval of the optical depth using an all-sky CCD camera. Appl. Opt. 2008, 47, H182–H189. [Google Scholar] [CrossRef] [PubMed]
- Kazantzidis, A.; Tzoumanikas, P.; Nikitidou, E.; Salamalikis, V.; Wilbert, S.; Prahl, C. Application of simple all-sky imagers for the estimation of aerosol optical depth. AIP Conf. Proc. 2017, 1850, 140012. [Google Scholar] [CrossRef]
- Román, R.; Antuña-Sánchez, J.C.; Cachorro, V.E.; Toledano, C.; Torres, B.; Mateos, D.; Fuertes, D.; López, C.; González, R.; Lapionok, T.; et al. Retrieval of aerosol properties using relative radiance measurements from an all-sky camera. Atmos. Meas. Tech. 2022, 15, 407–433. [Google Scholar] [CrossRef]
- Shields, J.E.; Karr, M.E.; Johnson, R.W.; Burden, A.R. Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview. Appl. Opt. 2013, 52, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, Z.; Zhou, Q.; Xu, Z. A Cloud Detection Algorithm with Reduction of Sunlight Interference in Ground-Based Sky Images. Atmosphere 2019, 10, 640. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Yang, J.; Wang, J.Z. Thin Cloud Detection of All-Sky Images Using Markov Random Fields. IEEE Geosci. Remote Sens. Lett. 2011, 9, 417–421. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Yang, J. A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. J. Atmos. Ocean. Technol. 2011, 28, 1286–1296. [Google Scholar] [CrossRef]
- Ghonima, M.S.; Urquhart, B.; Chow, C.W.; Shields, J.E.; Cazorla, A.; Kleissl, J. A method for cloud detection and opacity classification based on ground based sky imagery. Atmos. Meas. Tech. 2012, 5, 2881–2892. [Google Scholar] [CrossRef]
- Dev, S.; Lee, Y.H.; Winkler, S. Color-Based Segmentation of Sky/Cloud Images From Ground-Based Cameras. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 10, 231–242. [Google Scholar] [CrossRef]
- Kazantzidis, A.; Tzoumanikas, P.; Bais, A.; Fotopoulos, S.; Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res. 2012, 113, 80–88. [Google Scholar] [CrossRef]
- Long, C.N.; Sabburg, J.M.; Calbó, J.; Pagès, D. Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images. J. Atmos. Ocean. Technol. 2006, 23, 633–652. [Google Scholar] [CrossRef]
- Kamadinata, J.O.; Ken, T.L.; Suwa, T. Sky image-based solar irradiance prediction methodologies using artificial neural networks. Renew. Energy 2018, 134, 837–845. [Google Scholar] [CrossRef]
- Jiang, J.; Lv, Q.; Gao, X. The Ultra-Short-Term Forecasting of Global Horizonal Irradiance Based on Total Sky Images. Remote Sens. 2020, 12, 3671. [Google Scholar] [CrossRef]
- Pawar, P.; Cortés, C.; Murray, K.; Kleissl, J. Detecting clear sky images. Sol. Energy 2019, 183, 50–56. [Google Scholar] [CrossRef]
- Schade, N.H.; Macke, A.; Sandmann, H.; Stick, C. Enhanced solar global irradiance during cloudy sky conditions. Meteorol. Z. 2007, 16, 295–303. [Google Scholar] [CrossRef]
- Frisch-Niggemeyer, A.; Weihs, P.; Revesz, M.; Schreier, S.F.; Richter, A. Relating atmospheric aerosol amounts to blue to red ratio and grayscale contrast fluctuations using digitalization of routine webcam photographs taken in the urban environment of Vienna. Atmos. Environ. 2022, 290, 119345. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.; Istvan, L. DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: Documentation of methodology. DISORT Rep. 2000, v1.1., 112. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannaklis, C.-P.; Logothetis, S.-A.; Salamalikis, V.; Tzoumanikas, P.; Katsidimas, K.; Kazantzidis, A. Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling. Environ. Sci. Proc. 2023, 26, 89. https://doi.org/10.3390/environsciproc2023026089
Giannaklis C-P, Logothetis S-A, Salamalikis V, Tzoumanikas P, Katsidimas K, Kazantzidis A. Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling. Environmental Sciences Proceedings. 2023; 26(1):89. https://doi.org/10.3390/environsciproc2023026089
Chicago/Turabian StyleGiannaklis, Christos-Panagiotis, Stavros-Andreas Logothetis, Vasileios Salamalikis, Panayiotis Tzoumanikas, Konstantinos Katsidimas, and Andreas Kazantzidis. 2023. "Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling" Environmental Sciences Proceedings 26, no. 1: 89. https://doi.org/10.3390/environsciproc2023026089
APA StyleGiannaklis, C. -P., Logothetis, S. -A., Salamalikis, V., Tzoumanikas, P., Katsidimas, K., & Kazantzidis, A. (2023). Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling. Environmental Sciences Proceedings, 26(1), 89. https://doi.org/10.3390/environsciproc2023026089