Forest Management Criteria for Manilkara huberi (Ducke) A. Chev. (Sapotaceae) in Upland Forests of Central Amazon Based on Dendrochronological Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation
2.3. Sample Preparation and Measurement
- V: Volume
- D: Diameter
- H: Height.
3. Results and Discussion
4. Conclusions
References
- Mattos, P.P.; Braz, E.M.; Hess, A.F.; Salis, S.M. A Dendrocronologia e o Manejo Florestal Sustentável em Florestas Tropicais. Available online: http://www.infoteca.cnptia.embrapa.br/bitstream/doc/899166/1/DOC112.pdf (accessed on 22 August 2011).
- Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente, 2º Grupo de Trabalho sobre Planos de Manejo Florestal Sustentável; Ministério do Meio Ambiente: Brasília, Brasil, 2008.
- Brienen, R.J.W.; Zuidema, P.A. Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 2005, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bullock, S.H. Effects of seasonal rainfall on radial growth in two tropical tree species. Int. J. Biometeorol. 1997, 41, 13–16. [Google Scholar] [CrossRef]
- Enquist, B.J.; Leffler, A.J. Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation. J. Trop. Ecol. 2001, 17. [Google Scholar] [CrossRef]
- Schöngart, J.; Orthmann, B.; Hennenberg, K.J.; Porembski, S.; Worbes, M. Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob. Chang. Biol. 2006, 12, 1139–1150. [Google Scholar] [CrossRef]
- Stahle, D.S.; D’Arrigo, R.D.; Krusic, P.J.; Cleaveland, M.K.; Cook, E.R.; Allan, R.J.; Cole, J.E.; Dunbar, R.B.; Therrell, M.D.; Gay, D.A.; et al. Experimental Dendroclimatic Reconstruction of the Southern Oscillation. Bull. Am. Meteorol. Soc. 1998, 79, 2137–2152. [Google Scholar] [CrossRef]
- Worbes, M. Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J. Ecol. 1999, 87, 391–403. [Google Scholar] [CrossRef]
- Schöngart, J.; Piedade, M.T.F.; Ludwigshausen, S.; Horna, V.; Worbes, M. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J. Trop. Ecol. 2002. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Lebrija-Trejos, E.; Zuidema, P.A.; Martínez-Ramos, M. Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob. Chang. Biol. 2010. [Google Scholar] [CrossRef]
- Spiecker, H.; Hansen, N.; Schinker, M.G. High-Frequency Densitometry—A New Method for the Rapid Evaluation of Wood Density Variations. IAWA J. 2003, 24, 231–239. [Google Scholar] [CrossRef]
- Therrell, M.D.; Stahle, D.W.; Diaz, J.V.; Oviedo, E.H.C.; Cleaveland, M.K. Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Clim. Chang. 2006. [Google Scholar] [CrossRef]
- Buckley, B.M.; Palakit, K.; Duangsathaporn, K.; Sanguantham, P.; Prasomsin, P. Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Clim. Dyn. 2007. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Allan, R.; Wilson, R.; Palmer, J.; Sakulich, J.; Smerdon, J.E.; Bijaksana, S.; Ngkoimani, L.O. Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought. Int. J. Climatol. 2008. [Google Scholar] [CrossRef]
- Fichtler, E.; Clark, D.A.; Worbes, M. Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C1. Biotropica 2003. [Google Scholar] [CrossRef]
- Heinrich, I.; Weidner, K.; Helle, G.; Vos, H.; Lindesay, J.; Banks, J.C.G. Interdecadal modulation of the relationship between ENSO, IPO and precipitation: Insights from tree rings in Australia. Clim. Dyn. 2009. [Google Scholar] [CrossRef]
- Herrera, D.A.; del Valle, J.I. Reconstrucción de los niveles del río Atrato con anillos de crecimiento de Prioria copaifera. DYNA 2011, 169, 121–130. [Google Scholar]
- Junk, W.J.; Piedade, M.T.F.; Schöngart, J.; Cohn-Haft, M.; Adeney, J.M.; Wittmann, F. A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 2011, 31, 623–640. [Google Scholar] [CrossRef]
- Schöngart, J. Growth-Oriented Logging (GOL): The Use of Species-Specific Growth Information for Forest Management in Central Amazonian Floodplains. In Amazonian Floodplain Forests; Springer: Dordrecht, The Netherlands, 2010; pp. 437–462. [Google Scholar]
- Schöngart, J.; Junk, W.J.; Piedade, M.T.F.; Ayres, J.M.; Hüttermann, A.; Worbes, M. Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob. Chang. Biol. 2004. [Google Scholar] [CrossRef]
- Schöngart, J. Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains. For. Ecol. Manag. 2008, 256, 46–58. [Google Scholar] [CrossRef]
- Lorenzi, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil; Instituto Plantarum: Nova Odessa, Brazil, 2002; Volume 2, ISBN 85-86714-07-0. [Google Scholar]
- Rodrigues, L.T.B.; Mendonza, Z.M. dos S.H.; Finger, Z. Norman Barros Logsdon Descrição Dendrológica, Caracterização Física e Química da Madeira de Maçaranduba, Manilkara Huberi (Ducke) Cheval. In Proceedings of the Anais do 10o Encontro Brasileiro em Madeiras e em Estruturas de Madeira EMBRAMEM, São Pedro, Brazil, October 2006. [Google Scholar]
- Costa, A.D.C. Anatomia da madeira em Sapotaceae. Ph.D. Thesis, Universidade de São Paulo, São Pedro, Brazil, 2006. [Google Scholar]
- Ministério das Minas e Energia. Projeto RADAMBRASIL: Levantamento dos Recursos Naturais; Ministério das Minas e Energia: Rio de Janeiro, Brazil, 1978; Volume 8.
- Worbes, M. How to measure growth dynamics in tropical trees. A review. IAWA J. 1995, 16, 337–351. [Google Scholar] [CrossRef]
- Vetter, R.C. Growth periodicity and age for Amazonian tree species, method for their determination. In Dendrocronología en América Latina; Roig, F.A., Ed.; Universidad Nacional de Cuyo: Mendoza, Argentina, 2000; pp. 135–155. [Google Scholar]
- Tomazello Filho, M.; Lisi, C.S.; Hansen, N.; Cury, G. Anatomical features of increment zones in different treecies in the State of São Paulo, Brazil spe. Sci. For. 2004, 66, 46–55. [Google Scholar]
- Rinn, F. Time Series Analysis and Presentation for Dendrochronology and Related Applications—User Reference. Available online: www.rinntech.com/Products (accessed on 10 January 2012).
- Spiecker, H.; Schinker, M.G.; Hansen, J.; Park, Y.I.; Ebding, T.; Doll, W. Cell structure in tree rings: Novel methods for preparation and image analysis of large cross sections. IAWA J. 2000, 21, 361–373. [Google Scholar] [CrossRef]
- Schöngart, J.; Junk, W.J. Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J. Hydrol. 2007, 335, 124–132. [Google Scholar] [CrossRef]
- Stahle, D.W.; Mushove, P.T.; Cleaveland, M.K.; Roig, F.; Haynes, G.A. Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. For. Ecol. Manag. 1999. [Google Scholar] [CrossRef]
- Alder, D.; Silva, J.N.M. An empirical cohort model for management of Terra Firme forests in the Brazilian Amazon. For. Ecol. Manag. 2000. [Google Scholar] [CrossRef]
Order | Age (years) | Average Thickness (mm) | Maximum Thickness (mm) | Minimum Thickness (mm) | DBH (cm) | Height (m) |
---|---|---|---|---|---|---|
1 | 174 | 1.19 | 2.84 | 0.51 | 43.3 | 28.50 |
2 | 184 | 1.03 | 3.37 | 0.42 | 41.0 | 27.50 |
3 | 186 | 1.12 | 2.31 | 0.45 | 44.7 | 29.00 |
4 | 192 | 1.06 | 2.73 | 0.48 | 43.8 | 28.70 |
5 | 197 | 1.11 | 2.81 | 0.48 | 44.3 | 28.80 |
6 | 204 | 1.02 | 2.48 | 0.45 | 47.2 | 30.00 |
7 | 215 | 1.09 | 3.21 | 0.23 | 50.5 | 31.00 |
8 | 221 | 1.08 | 2.95 | 0.08 | 50.4 | 31.00 |
9 | 233 | 1.14 | 3.57 | 0.45 | 54.3 | 32.00 |
10 | 239 | 1.06 | 2.81 | 0.48 | 51.4 | 31.00 |
11 | 241 | 1.03 | 2.73 | 0.28 | 51.0 | 31.00 |
12 | 245 | 1.09 | 2.90 | 0.03 | 53.8 | 31.00 |
13 | 252 | 1.04 | 2.42 | 0.34 | 53.3 | 32.00 |
14 | 287 | 1.09 | 3.16 | 0.48 | 64.2 | 35.00 |
15 | 289 | 1.02 | 2.55 | 0.45 | 61.0 | 34.00 |
16 | 325 | 1.03 | 3.72 | 0.17 | 67.4 | 35.00 |
Species | Wood Density (g/cm3) | MLD (cm) | Age at MLD (years) | Cutting Cycle (years) | |
---|---|---|---|---|---|
Low-density | Ficus insipida Willd. | 0.35 | 55 | 17.0 ± 3.6 | 3.3 (2.4–3.7) |
Pseudobombax munguba (Mart.) Dugand | 0.23 | 47 | 39.5 ± 2.4 | 8.2 (7.9–8.9) | |
Ilex inundata Poepp. ex Reissek | 0.38 | 59 | 61.0 ± 9.7 | 10.5 (8.7–12.0) | |
Macrolobium acaciifolium (Benth.) Benth. | 0.43 | 62 | 67.0 ± 5.6 | 10.5 (9.9–11.7) | |
Albizia subdimidiata (Splitg.) Barneby & J.W. Grimes | 0.57 | 49 | 53.5 ± 7.1 | 10.5 (9.5–12.4) | |
Luehea cymulosa Spruce ex Benth. | 0.39 | 61 | 68.5 ± 11.7 | 11.0 (9.3–13.1) | |
Sloanea terniflor (DC.) Standl. | 0.57 | 58 | 82.0 ± 9.1 | 13.9 (12.6–15.7) | |
High-density | Pouteria elegans (A. DC.) Baehni | 0.65 | 54 | 120.0 ± 21.8 | 21.5 (18.2–26.3) |
Chrysophyllum argenteum Jacq. | 0.73 | 58 | 144.0 ± 22.4 | 24.1 (21.0–28.7) | |
Eschweilera albiflora (DC.) Miers | 0.83 | 53 | 164.5 ± 44.6 | 30.9 (22.6–39.5) | |
Tabebuia barbata (E. Mey.) Sandwith | 0.87 | 54 | 168.5 ± 19.8 | 30.6 (27.5–34.9) | |
Piranhea trifoliata Baill. | 0.94 | 70 | 227 ± 23.5 | 32.1 (29.1–35.8) | |
Manilkara huberi (Ducke) A. Chev. | 0.83 | 63 | 297.0 ± 13.8 | 46.8 (44.7–49.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, L.A.d.A. Forest Management Criteria for Manilkara huberi (Ducke) A. Chev. (Sapotaceae) in Upland Forests of Central Amazon Based on Dendrochronological Study. Environ. Sci. Proc. 2021, 3, 105. https://doi.org/10.3390/IECF2020-07870
Pinto LAdA. Forest Management Criteria for Manilkara huberi (Ducke) A. Chev. (Sapotaceae) in Upland Forests of Central Amazon Based on Dendrochronological Study. Environmental Sciences Proceedings. 2021; 3(1):105. https://doi.org/10.3390/IECF2020-07870
Chicago/Turabian StylePinto, Luís Antônio de Araújo. 2021. "Forest Management Criteria for Manilkara huberi (Ducke) A. Chev. (Sapotaceae) in Upland Forests of Central Amazon Based on Dendrochronological Study" Environmental Sciences Proceedings 3, no. 1: 105. https://doi.org/10.3390/IECF2020-07870
APA StylePinto, L. A. d. A. (2021). Forest Management Criteria for Manilkara huberi (Ducke) A. Chev. (Sapotaceae) in Upland Forests of Central Amazon Based on Dendrochronological Study. Environmental Sciences Proceedings, 3(1), 105. https://doi.org/10.3390/IECF2020-07870