Physical, Chemical and Mechanical Properties of Two-Age Bambusa tuldoides Briquettes †
Abstract
:1. Introduction
2. Material and Methods
2.1. Material Collection and Preparation Action
2.2. Physical, Chemical, and Mechanical Properties
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazzetto, S.E.; Costa Júnior, A.E.; Lomonaco, D. Fibras de bambu como carga de reforço em materiais compósitos: Fonte alternativa, econômica e sustentável. In Bambus No Brasil, 1st ed.; Drumond, P.M., Wiedman, G., Eds.; Embrapa: Rio de Janeiro, Brazil, 2017; pp. 526–527. [Google Scholar]
- Filgueiras, T.S.; Viana, P.L. Bambus brasileiros: Morfologia, taxonomia, distribuição e conservação. In Bambus no Brasil, 1st ed.; Drumond, P.M., Wiedman, G., Eds.; Embrapa: Rio de Janeiro, Brazil, 2017; pp. 10–28. [Google Scholar]
- Balduino Junior, A.L.; Balduino, T.Y.; Friederichs, G.; Da Cunha, A.B.; Brand, M.A. Potencial energético de colmos de bambu para uso industrial e doméstico na região sul do Brasil. Cienc. Rural 2016, 46, 1963–1968. [Google Scholar] [CrossRef]
- Afonso, D.G. Bambu Nativo (Guadua spp.): Alternativa de Desenvolvimento Econômico e Sustentável Para o Estado do Acre; UFPR: Curitiba, Brazil, 2011. [Google Scholar]
- Singh, R.; Sanjay Kalia, S.; Dalal, S.; Dhawan, A.K.; Kalia, R.K. Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—A plant with extraordinary qualities. Physiol. Mol. Biol. Plants 2013, 19, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Carmo, L.F.Z.; Amaral, E.F.; Bardales, N.G. Ocorrência, biomassa, perdas e explroação de bambu em florestas da Amazônia no Acre, Brasil. In Bambus No Brasil, 1st ed.; Drumond, P.M., Wiedman, G., Eds.; Embrapa: Rio de Janeiro, Brazil, 2017; pp. 10–28. [Google Scholar]
- Santi, T. Bambu para toda obra. O Papel 2015, 76, 22–33. [Google Scholar]
- Brito, A.S.; Silva, J.G.M.; Vidaurre, G.B.; Trugilho, P.F. Influência da idade nas propriedades da madeira de eucalipto. In Qualidade da Madeira de Eucalipto Proveniente de Plantações No Brasil, 1st ed.; Silva, G.B., Moulin, J.G.M., Carneiro, J.C., Eds.; Edufes: Vitória, Brazil, 2020; Volume 1, pp. 154–196. [Google Scholar]
- Eufrade-Junior, H.J.; Nakashima, G.T.; Yamaji, F.M.; Guerra, S.P.S.; Ballarin, A.W. Eucalyptus short-rotation coppice for solid fuel production. Ind. Crops Prod. 2017, 108, 636–640. [Google Scholar] [CrossRef]
- Vamvuka, D.; Trikouvertis, M.; Pentari, D.; Alevizos, G. Evaluation of ashes produced from fluidized bed combustion of residues from oranges plantations and processing. Renew. Energy 2014, 72, 336–343. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- ABNT NBR 14660; Madeira-Amostragem e Preparação para Anális. Assoc. Bras. Normas Técnicas: Rio de Janeiro, Brasil, 2004.
- ASTM 1757-01; Standard Practice for Preparation of Biomass for Compositional Analysis. Am. Soc. Test Mater: West Conshohocken, PA, USA, 2011.
- ASTM E1755-01; Standard Test Method for Ash in Biomass. Am. Soc. Test Mater: West Conshohocken, PA, USA, 2015.
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. Am. Soc. Test Mater: West Conshohocken, PA, USA, 2006.
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Evaluation of Plant Nutrient Status: Principles and Their Application, 2nd ed.; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1997; p. 319. [Google Scholar]
- ASTM E711-87; Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter. Am Soc Test Mater: West Conshohocken, PA, USA, 2004.
- 15210-1 CEN/TS; Solid Biofuels-Determination of Mechanical Durability of Pellets and Briquettes—Part 1. Pellets. Eur. Comm. Stand.: Brussels, Belgium, 2009.
- R.C. Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2016. [Google Scholar]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. 1937, 160, 268–282. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Zhu, Y. Ash fusion characteristics and transformation behaviors during bamboo combustion in comparison with straw and poplar. Energy Fuels 2018, 32, 5244–5251. [Google Scholar] [CrossRef]
- Marafon, A.C.; Santiago, A.D.; Amaral, A.F.C.; Bierhals, A.N.; Paiva, H.L.; Guimarães, V.S. Poder Calorífico do Capim- Elefante. Embrapa 2016, 1, 29. [Google Scholar]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Shanmughavel, P.; Francis, K. Biomass and nutrient cycling in bamboo (Bambusa bambos) plantations of tropical areas. Biol. Fertil. Soils 1996, 23, 431–434. [Google Scholar] [CrossRef]
- Pattanayak, S.; Loha, C.; Hauchhum, L.; Sailo, L. Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Convers. Biorefinery 2020, 1–10. [Google Scholar] [CrossRef]
- Brito, J.O.; Tomazello Filho, M.; Salgado, A.L.B. Produção e caracterização do carvão vegetal de espécies e variedades de bambu. Instituto de Pesquisas e Estudos Florestais IPEF 1987, 36, 13–17. [Google Scholar]
- Soares, V.C.; Bianchi, M.L.; Trugilho, P.F.; Höfler, J.; Pereira, A. Análise das propriedades da madeira e do carvão vegetal de híbridos de eucalipto em três idades. Cerne 2015, 21, 191–197. [Google Scholar] [CrossRef]
- Sonil, N.; Pravakar, M.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Res. 2013, 2, 663–677. [Google Scholar]
- Diniz, J.; Cardoso, A.L.; Stahl, J.A.; Villetti, M.A.; Martins, A.F. Poder Calorífico da Casca de Arroz, Caroço de Pêssego, Serragem de Eucalipto e de seus Produtos de Pirólise. Ciência Nat. 2004, 26, 25–32. [Google Scholar]
- Jenkins, B.M. Fuel properties for biomass materials. Appl. Manag. Energy Agric. Role Biomass Fuels 1990, 1, 21–23. [Google Scholar]
- Martinez, C.L.M.; Sermyagina, E.; Carneiro, A.C.O.; Vakkilainenb, E.; Cardoso, M. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy 2019, 123, 70–77. [Google Scholar] [CrossRef]
- Silva, D.A.; Yamaji, F.M.; Barros, J.L.; Róz, A.L.; Nakashima, G.T. Caracterização de biomassas para a briquetagem. Floresta 2005, 45, 713–722. [Google Scholar] [CrossRef]
- Al-Widyan, M.I. Physical durability and stability of olive cake briquettes. Can. Biosyst. Eng./Le Genie Des Biosyst. Au Can. 2002, 44, 1–41. [Google Scholar]
- EN 14961-2, 14961–14962: 2011-09; Solid Biofuels-Fuel Specif. Classes. Eur. Comm. Stand.: Brussels, Belgium, 2011.
Treatment | HHV * (M.J. kg−1) | Ash (%) | Volatile Matter (%) | Fixed Carbon (%) |
---|---|---|---|---|
A | 17.8 (0.2) | 1.42 (0.01) a | 81.56 (0.08) | 17.01 (0.08) |
B | 18.2 (0.3) | 1.56 (0.01) b | 81.24 (0.18) | 17.2 (0.18) |
Treatment | N (%) | C (%) | H (%) | O (%) |
---|---|---|---|---|
A | 0.22 (<0.01) | 48.13 (0.02) | 5.52 (0.01) | 43.76 (0.03) |
B | 0.22 (<0.01) | 47.93 (0.08) | 5.52 (0.01) | 43.88 (0.08) |
Treatment | Mechanical Durability (%) | Moisture (%) |
---|---|---|
A | 2.3 (1.9) | 9.3 (0.1) |
B | 3.1 (1.6) | 9.6 (0.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powroschnik, D.Z.; Spadim, E.R.; Eufrade-Junior, H.J.; Leonello, E.C.; Guerra, S.P.S. Physical, Chemical and Mechanical Properties of Two-Age Bambusa tuldoides Briquettes. Environ. Sci. Proc. 2021, 3, 85. https://doi.org/10.3390/IECF2020-07869
Powroschnik DZ, Spadim ER, Eufrade-Junior HJ, Leonello EC, Guerra SPS. Physical, Chemical and Mechanical Properties of Two-Age Bambusa tuldoides Briquettes. Environmental Sciences Proceedings. 2021; 3(1):85. https://doi.org/10.3390/IECF2020-07869
Chicago/Turabian StylePowroschnik, Dunja Zoe, Emanuel Rangel Spadim, Humberto Jesus Eufrade-Junior, Elaine Cristina Leonello, and Saulo Philipe Sebastião Guerra. 2021. "Physical, Chemical and Mechanical Properties of Two-Age Bambusa tuldoides Briquettes" Environmental Sciences Proceedings 3, no. 1: 85. https://doi.org/10.3390/IECF2020-07869
APA StylePowroschnik, D. Z., Spadim, E. R., Eufrade-Junior, H. J., Leonello, E. C., & Guerra, S. P. S. (2021). Physical, Chemical and Mechanical Properties of Two-Age Bambusa tuldoides Briquettes. Environmental Sciences Proceedings, 3(1), 85. https://doi.org/10.3390/IECF2020-07869