The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma
Abstract
1. Introduction
2. pHGG Diagnoses and Therapeutic Targets
2.1. Diffuse Midline Glioma (DMG), H3K27-Altered
2.2. Diffuse Hemispheric Glioma (DHG), H3G34-Mutant
2.3. Diffuse Pediatric Type HGG, H3-Wild Type and IDH-Wild Type (pHGG H3/IDH-WT)
2.4. Infant Type Hemispheric Glioma (iHGG)
2.5. NF1-Associated HGG and HGAP
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABL2 | ABL proto-oncogene |
ACVR1 | activin A receptor type 1 |
aHGG | adult high-grade glioma |
ALK | anaplastic lymphoma kinase’ |
ATRX | alpha-thalassemia/mental retardation, X-linked |
AURKA | Aurora kinase A |
BRAF | V-raf murine sarcoma viral oncogene homolog B |
CAR-T | chimeric antigen receptor T-cell therapy |
CML | chronic myeloid leukemia |
CNS | central nervous system |
DHG | diffuse hemispheric glioma |
DIPG | diffuse intrinsic pontine glioma |
DMG | diffuse midline glioma |
EGFR | epidermal growth factor receptor |
EZHIP | enhancer of zeste homologs inhibitory protein |
GAB1 | GRB2-associated binding protein 1 |
GFAP | glial fibrillary acidic protein |
H3K36me3 | trimethylated state of lysine 36 on histone 3 |
H3K27 | histone 3 mutation at lysine 27 |
H3G34 | histone 3 mutation at glycine 34 |
H3G34R/V | histone 3 mutation at glycine 34, replacement with arginine/valine |
H3/IDH-WT | histone 3, isocitrate dehydrogenase wild-type |
HDAC | histone deacetylase |
HGAP | high-grade astrocytoma with piloid features |
ID2 | inhibitor of DNA binding protein 2 |
iHGG | infant-type high-grade glioma |
MET | MET proto-oncogene |
MDM2 | murine double minute 2 |
MGMT | O6-methylguanine-DNA methyltransferase |
MRI | magnetic resonance imaging |
mTOR | mammalian target of rapamycin |
MYCN | myelocytomatosis-neuroblastoma gene |
NGS | next generation sequencing |
NF1 | neurofibromatosis type 1 |
NTRK | neurotrophic tyrosine receptor kinase |
OLIG2 | oligodendrocyte transcription factor 2 |
OS | overall survival |
PDGFR | platelet-derived growth factor receptor |
pHGG | pediatric high-grade glioma |
PIK3R1 | phosphoinositide-3-kinase regulatory subunit 1 |
pLGG | pediatric low-grade glioma |
ROS1 | ROS proto-oncogene 1 |
RTK | receptor tyrosine kinase |
SETD2 | SET domain containing 2 |
TERT promoter | telomerase reverse transcriptase promoter |
TP53 | tumor suppressor protein 53 |
WHO | World Health Organization |
References
- Graham, M.S.; Mellinghoff, I.K. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int. J. Mol. Sci. 2020, 21, 7193. [Google Scholar] [CrossRef]
- Diaz, A.K.; Baker, S.J. The Genetic Signatures of Pediatric High-Grade Glioma: No Longer a One-Act Play. Semin. Radiat. Oncol. 2014, 24, 240–247. [Google Scholar] [CrossRef]
- Park, Y.W.; Vollmuth, P.; Foltyn-Dumitru, M.; Sahm, F.; Ahn, S.S.; Chang, J.H.; Kim, S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 2—Summary of Imaging Findings on Pediatric-Type Diffuse High-Grade Gliomas, Pediatric-Type Diffuse Low-Grade Gliomas, and Circumscribed Astrocytic Gliomas. J. Magn. Reson. Imaging 2023, 58, 690–708. [Google Scholar] [CrossRef]
- Guerra-García, P.; Marshall, L.V.; Cockle, J.V.; Ramachandran, P.V.; Saran, F.H.; Jones, C.; Carceller, F. Challenging the Indiscriminate Use of Temozolomide in Pediatric High-Grade Gliomas: A Review of Past, Current, and Emerging Therapies. Pediatr. Blood Cancer 2020, 67, e28011. [Google Scholar] [CrossRef] [PubMed]
- Perwein, T.; Giese, B.; Nussbaumer, G.; von Bueren, A.O.; van Buiren, M.; Benesch, M.; Kramm, C.M. How I Treat Recurrent Pediatric High-Grade Glioma (pHGG): A Europe-Wide Survey Study. J. Neurooncol. 2023, 161, 525–538. [Google Scholar] [CrossRef]
- Blasco-Santana, L.; Colmenero, I. Molecular and Pathological Features of Paediatric High-Grade Gliomas. Int. J. Mol. Sci. 2024, 25, 8498. [Google Scholar] [CrossRef]
- Gianno, F.; Giovannoni, I.; Cafferata, B.; Diomedi-Camassei, F.; Minasi, S.; Barresi, S.; Buttarelli, F.R.; Alesi, V.; Cardoni, A.; Antonelli, M.; et al. Paediatric-Type Diffuse High-Grade Gliomas in the 5th CNS WHO Classification. Pathologica 2022, 114, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.; Diaz, A.K.; Makepeace, L.; Li, X.; Han, Y.; Li, Y.; Klimo, P.; Boop, F.A.; Baker, S.J.; Gajjar, A.; et al. Clinical, Imaging, and Molecular Analysis of Pediatric Pontine Tumors Lacking Characteristic Imaging Features of DIPG. Acta Neuropathol. Commun. 2020, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ahlawat, S.; Panda, A.K.; Sarangi, J.; Jain, P.; Gupta, R.K.; Vaishya, S.; Patir, R. Pediatric High Grade Gliomas: A Comprehensive Histopathological, Immunohistochemical and Molecular Integrated Approach in Routine Practice. Pathol. Res. Pract. 2024, 258, 155347. [Google Scholar] [CrossRef]
- Tang, K.; Cesaire, M.; McDonald, T.; Cimino, P.J.; Castro, M.G.; Jackson, S. A Scoping Review of Diffuse Hemispheric Glioma, H3 G34-Mutant: Epigenetic and Molecular Profiles, Clinicopathology, and Treatment Avenues. Neurooncol. Adv. 2024, 6, vdae208. [Google Scholar] [CrossRef]
- Weinberg, D.N.; Allis, C.D.; Lu, C. Oncogenic Mechanisms of Histone H3 Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026443. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Sahay, A.; Epari, S. Paediatric Type Diffuse High Grade Gliomas in the WHO CNS5 Classification: What the Pathologist Needs to Know? Indian J. Pathol. Microbiol. 2022, 65, S50. [Google Scholar] [CrossRef]
- MacDonald, T.J.; Aguilera, D.; Kramm, C.M. Treatment of High-Grade Glioma in Children and Adolescents. Neuro-Oncol. 2011, 13, 1049–1058. [Google Scholar] [CrossRef]
- Miklja, Z.; Pasternak, A.; Stallard, S.; Nicolaides, T.; Kline-Nunnally, C.; Cole, B.; Beroukhim, R.; Bandopadhayay, P.; Chi, S.; Ramkissoon, S.H.; et al. Molecular Profiling and Targeted Therapy in Pediatric Gliomas: Review and Consensus Recommendations. Neuro-Oncol. 2019, 21, 968–980. [Google Scholar] [CrossRef]
- Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.-A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; et al. Functionally-Defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Nat. Med. 2015, 21, 555–559. [Google Scholar] [CrossRef]
- Marini, B.L.; Benitez, L.L.; Zureick, A.H.; Salloum, R.; Gauthier, A.C.; Brown, J.; Wu, Y.-M.; Robinson, D.R.; Kumar, C.; Lonigro, R.; et al. Blood-Brain Barrier-Adapted Precision Medicine Therapy for Pediatric Brain Tumors. Transl. Res. 2017, 188, 27.e1–27.e14. [Google Scholar] [CrossRef]
- Monje, M.; Mahdi, J.; Majzner, R.; Yeom, K.W.; Schultz, L.M.; Richards, R.M.; Barsan, V.; Song, K.-W.; Kamens, J.; Baggott, C.; et al. Intravenous and Intracranial GD2-CAR T Cells for H3K27M+ Diffuse Midline Gliomas. Nature 2025, 637, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Vitanza, N.A.; Ronsley, R.; Choe, M.; Seidel, K.; Huang, W.; Rawlings-Rhea, S.D.; Beam, M.; Steinmetzer, L.; Wilson, A.L.; et al. Intracerebroventricular B7-H3-Targeting CAR T Cells for Diffuse Intrinsic Pontine Glioma: A Phase 1 Trial. Nat. Med. 2025, 31, 861–868. Available online: https://www.nature.com/articles/s41591-024-03451-3 (accessed on 17 April 2025).
- Korshunov, A.; Capper, D.; Reuss, D.; Schrimpf, D.; Ryzhova, M.; Hovestadt, V.; Sturm, D.; Meyer, J.; Jones, C.; Zheludkova, O.; et al. Histologically Distinct Neuroepithelial Tumors with Histone 3 G34 Mutation Are Molecularly Similar and Comprise a Single Nosologic Entity. Acta Neuropathol. 2016, 131, 137–146. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Soto, J.M.; Gonzalez, S.-M.; Murillo, J.; Trumble, E.R.; Shan, F.Y.; Huang, J.H. H3G34-Mutant Gliomas—A Review of Molecular Pathogenesis and Therapeutic Options. Biomedicines 2023, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Haase, S.; Nuñez, F.M.; Gauss, J.C.; Thompson, S.; Brumley, E.; Lowenstein, P.; Castro, M.G. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int. J. Mol. Sci. 2020, 21, 9654. [Google Scholar] [CrossRef]
- Bonada, M.; Pittarello, M.; De Fazio, E.; Gans, A.; Alimonti, P.; Slika, H.; Legnani, F.; Di Meco, F.; Tyler, B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes 2024, 15, 1038. [Google Scholar] [CrossRef]
- Hong, L.; Shi, Z.-F.; Li, K.K.-W.; Wang, W.-W.; Yang, R.R.; Kwan, J.S.-H.; Chen, H.; Li, F.-C.; Liu, X.-Z.; Chan, D.T.-M.; et al. Molecular Landscape of Pediatric Type IDH Wildtype, H3 Wildtype Hemispheric Glioblastomas. Lab. Investig. 2022, 102, 731–740. [Google Scholar] [CrossRef]
- Korshunov, A.; Schrimpf, D.; Ryzhova, M.; Sturm, D.; Chavez, L.; Hovestadt, V.; Sharma, T.; Habel, A.; Burford, A.; Jones, C.; et al. H3-/IDH-Wild Type Pediatric Glioblastoma Is Comprised of Molecularly and Prognostically Distinct Subtypes with Associated Oncogenic Drivers. Acta Neuropathol. 2017, 134, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Buccoliero, A.M.; Giunti, L.; Moscardi, S.; Castiglione, F.; Provenzano, A.; Sardi, I.; Scagnet, M.; Genitori, L.; Caporalini, C. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes 2022, 13, 624. [Google Scholar] [CrossRef]
- Bender, K.; Kahn, J.; Perez, E.; Ehret, F.; Roohani, S.; Capper, D.; Schmid, S.; Kaul, D. Diffuse Paediatric-Type High-Grade Glioma, H3-Wildtype and IDH-Wildtype: Case Series of a New Entity. Brain Tumor Pathol. 2023, 40, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, G.; Vinci, M.; Carai, A.; Rossi, S.; Colafati, G.S.; Cacchione, A.; Tornesello, A.; Miele, E.; Locatelli, F.; Mastronuzzi, A. Infantile/Congenital High-Grade Gliomas: Molecular Features and Therapeutic Perspectives. Diagnostics 2020, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Stucklin, A.S.G.; Ryall, S.; Fukuoka, K.; Zapotocky, M.; Lassaletta, A.; Li, C.; Bridge, T.; Kim, B.; Arnoldo, A.; Kowalski, P.E.; et al. Alterations in ALK/ROS1/NTRK/MET Drive a Group of Infantile Hemispheric Gliomas. Nat. Commun. 2019, 10, 4343. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6761184/ (accessed on 8 May 2025).
- Clarke, M.; Mackay, A.; Ismer, B.; Pickles, J.C.; Tatevossian, R.G.; Newman, S.; Bale, T.A.; Stoler, I.; Izquierdo, E.; Temelso, S.; et al. Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov. 2020, 10, 942–963. [Google Scholar] [CrossRef]
- Chiang, J.; Bagchi, A.; Li, X.; Dhanda, S.K.; Huang, J.; Pinto, S.N.; Sioson, E.; Dalton, J.; Tatevossian, R.G.; Jia, S.; et al. High-Grade Glioma in Infants and Young Children Is Histologically, Molecularly, and Clinically Diverse: Results from the SJYC07 Trial and Institutional Experience. Neuro-Oncol. 2023, 26, 178–190. [Google Scholar] [CrossRef]
- Di Ruscio, V.; Carai, A.; Del Baldo, G.; Vinci, M.; Cacchione, A.; Miele, E.; Rossi, S.; Antonelli, M.; Barresi, S.; Caulo, M.; et al. Molecular Landscape in Infant High-Grade Gliomas: A Single Center Experience. Diagnostics 2022, 12, 372. [Google Scholar] [CrossRef]
- Lassaletta, A.; Guerreiro Stucklin, A.; Ramaswamy, V.; Zapotocky, M.; McKeown, T.; Hawkins, C.; Bouffet, E.; Tabori, U. Profound Clinical and Radiological Response to BRAF Inhibition in a 2-Month-Old Diencephalic Child with Hypothalamic/Chiasmatic Glioma. Pediatr. Blood Cancer 2016, 63, 2038–2041. [Google Scholar] [CrossRef] [PubMed]
- Buckner-Wolfson, E.; Jung, G.; Kim, T.; Fatemi, R.; Liriano, G.; Dalvi, N.; Behbahani, M.; Chin, S.; Martin, A.; Kobets, A. A Case Report of Infant-Type Hemispheric Glioma with a Novel GAB1-ABL2 Kinase Fusion Treated with Dasatinib. Pediatr. Neurosurg. 2024, 59, 27–34. [Google Scholar] [CrossRef]
- Peduto, C.; Zanobio, M.; Nigro, V.; Perrotta, S.; Piluso, G.; Santoro, C. Neurofibromatosis Type 1: Pediatric Aspects and Review of Genotype–Phenotype Correlations. Cancers 2023, 15, 1217. [Google Scholar] [CrossRef]
- D’Angelo, F.; Ceccarelli, M.; Tala; Garofano, L.; Zhang, J.; Frattini, V.; Caruso, F.P.; Lewis, G.; Alfaro, K.D.; Bauchet, L.; et al. The Molecular Landscape of Glioma in Patients with Neurofibromatosis 1. Nat. Med. 2019, 25, 176–187. [Google Scholar] [CrossRef]
- Packer, R.J.; Iavarone, A.; Jones, D.T.W.; Blakeley, J.O.; Bouffet, E.; Fisher, M.J.; Hwang, E.; Hawkins, C.; Kilburn, L.; MacDonald, T.; et al. Implications of New Understandings of Gliomas in Children and Adults with NF1: Report of a Consensus Conference. Neuro-Oncol. 2020, 22, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Cimino, P.J.; Ketchum, C.; Turakulov, R.; Singh, O.; Abdullaev, Z.; Giannini, C.; Pytel, P.; Lopez, G.Y.; Colman, H.; Nasrallah, M.P.; et al. Expanded Analysis of High-Grade Astrocytoma with Piloid Features Identifies an Epigenetically and Clinically Distinct Subtype Associated with Neurofibromatosis Type 1. Acta Neuropathol. 2023, 145, 71–82. [Google Scholar] [CrossRef]
- Lucas, C.-H.G.; Sloan, E.A.; Gupta, R.; Wu, J.; Pratt, D.; Vasudevan, H.N.; Ravindranathan, A.; Barreto, J.; Williams, E.A.; Shai, A.; et al. Multiplatform Molecular Analyses Refine Classification of Gliomas Arising in Patients with Neurofibromatosis Type 1. Acta Neuropathol. 2022, 144, 747–765. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Simoneau, J.; Robertson, P.; Muraszko, K.; Maher, C.O.; Garton, H.; Calvert, R.; Koschmann, C.; Upadhyaya, S.A.; Mody, R.; Brown, N.; et al. Long-Term Tumor Stability After First-Line Treatment with Larotrectinib in an Infant with NTRK2 Fusion–Positive High-Grade Glioma. JNCCN 2024, 22. [Google Scholar] [CrossRef]
- Miklja, Z.; Yadav, V.N.; Cartaxo, R.T.; Siada, R.; Thomas, C.C.; Cummings, J.R.; Mullan, B.; Stallard, S.; Paul, A.; Bruzek, A.K.; et al. Everolimus Improves the Efficacy of Dasatinib in PDGFRα-Driven Glioma. J. Clin. Investig. 2020, 130, 5313–5325. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Liu, N.; Wang, Q.; Chu, Y.; Yin, Z.; Ding, Y.; Lu, Y. ACT001, a Novel PAI-1 Inhibitor, Exerts Synergistic Effects in Combination with Cisplatin by Inhibiting PI3K/AKT Pathway in Glioma. Cell Death Dis. 2019, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.B.; Wen, P.Y.; Polley, M.-Y.C. Molecular Profiling in Neuro-Oncology: Where We Are, Where We’re Heading, and How We Ensure Everyone Can Come Along. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389322. [Google Scholar] [CrossRef]
- McFaline-Figueroa, J.R.; Wen, P.Y. Negative Trials over and over Again: How Can We Do Better? Neuro-Oncol. 2022, 25, 1–3. [Google Scholar] [CrossRef]
- Malmström, A.; Łysiak, M.; Kristensen, B.W.; Hovey, E.; Henriksson, R.; Söderkvist, P. Do We Really Know Who Has an MGMT Methylated Glioma? Results of an International Survey Regarding Use of MGMT Analyses for Glioma. Neuro-Oncol. Pract. 2020, 7, 68–76. [Google Scholar] [CrossRef]
- Grigore, F.-N.; Yang, S.J.; Chen, C.C.; Koga, T. Pioneering Models of Pediatric Brain Tumors. Neoplasia 2023, 36, 100859. [Google Scholar] [CrossRef] [PubMed]
- Madhogarhia, R.; Haldar, D.; Bagheri, S.; Familiar, A.; Anderson, H.; Arif, S.; Vossough, A.; Storm, P.; Resnick, A.; Davatzikos, C.; et al. Radiomics and Radiogenomics in Pediatric Neuro-Oncology: A Review. Neuro-Oncol. Adv. 2022, 4, vdac083. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | Key Molecular and Genetic Changes |
---|---|
H3K27-altered glioma | TP53, ACVR1, PDGFRA, EGFR, EZHIP |
H3G34-altered glioma | TP53, ATRX, PDGFRA, MYCN |
H3/IDH-WT glioma | TP53, PDGFRA, EGFR, MYCN, ID2, IDH-WT, H3-WT |
iHGG | NTRK, ALK, ROS, MET |
NF1/HGAP | MAPK, ATRX, CDK2A, TP53 |
Clinicaltrials.gov ID | Brief Title | Phase/Status | pHGG Type | Drug Type Target |
---|---|---|---|---|
NCT06838676 | ACT001 for the Treatment of Diffuse Intrinsic Pontine Gliomas and H3K27-altered High Grade Gliomas | Phase II | H3K27-altered glioma | PAI-1 inhibitor, inhibits glioma cell proliferation [42] |
NCT06333899 | Lorlatinib for Newly Diagnosed High-Grade Glioma With ROS or ALK Fusion | Early Phase I | H3K27-altered glioma, iHGG | ALK inhibtor |
NCT06946680 | IL-8 Receptor-modified CD70 CAR T Cell Therapy in CD70+ Pediatric High-grade Glioma (HGG) | Phase I | New diagnosis pHGG | CD70+ HGG immunotherapy |
NCT06712875 | MAPK Inhibition Combined with Anti-PD1 Therapy for BRAF-altered Pediatric Gliomas | Phase I/Phase II | pLGG, pHGG | MEK1/2 inhibition, PD-1 inhibition, BRAF kinase inhibitor |
NCT05610891 | Novel Targeted Radiotherapy in Pediatric Patients With Inoperable Relapsed or Refractory HGG | Phase I | Relapsed, refractory pHGG | |
NCT04911621 | Adjuvant Dendritic Cell Immunotherapy for Pediatric Patients With High-grade Glioma or Diffuse Intrinsic Pontine Glioma | Phase 1/Phase 2 | pHGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallee, E.; Steller, A.; Childress, A.; Koch, A.; Raskin, S. The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma. J. Mol. Pathol. 2025, 6, 17. https://doi.org/10.3390/jmp6030017
Vallee E, Steller A, Childress A, Koch A, Raskin S. The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma. Journal of Molecular Pathology. 2025; 6(3):17. https://doi.org/10.3390/jmp6030017
Chicago/Turabian StyleVallee, Emma, Alyssa Steller, Ashley Childress, Alayna Koch, and Scott Raskin. 2025. "The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma" Journal of Molecular Pathology 6, no. 3: 17. https://doi.org/10.3390/jmp6030017
APA StyleVallee, E., Steller, A., Childress, A., Koch, A., & Raskin, S. (2025). The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma. Journal of Molecular Pathology, 6(3), 17. https://doi.org/10.3390/jmp6030017