Mechanism of Sepsis
Abstract
1. Introduction
2. From Infection to Sepsis Leading to Organ Dysfunction
2.1. Inflammatory and Immune Response
2.1.1. Pathogen Recognition and Immune Activation
2.1.2. Neutrophils and NETs: A Double-Edged Sword in Host Defense
2.1.3. Cellular Mechanisms in Inflammatory Signaling Pathways
2.1.4. Endothelial Activation and Leukocyte Migration
2.1.5. Cross-Talk and Integration
2.2. Development into Sepsis
2.2.1. Transition from Localized Infection to Systemic Response
2.2.2. Proinflammatory Cytokines
2.2.3. Complement System Activation
2.2.4. From Immune Hyperactivation to Exhaustion: Apoptosis and Immune Collapse
2.2.5. Key Signaling Pathways in Inflammatory Activation and Modulation
- NF-κB Pathway
- JAK/STAT Pathway
- MAPK Pathway
- PI3K/Akt Pathway
- Notch and mTOR Pathways
- Endocannabinoid System
- Wnt Signaling Pathway
- VEGFR-3/VEGF-C Axis
- Cell Death Pathway
2.3. Systemic Inflammation and Multiorgan Consequences
2.3.1. Endothelial Dysfunction and Immunothrombosis: A Central Nexus in Sepsis Progression
2.3.2. Bioenergetic Collapse and Mitochondrial Injury in Sepsis
3. Cell Death Mechanisms
Apoptosis and Immune Response Modulation
4. From Cellular Injury to Organ Failure: The Final Cascade
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caraballo, C.; Jaimes, F. Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death. Yale J. Biol. Med. 2019, 92, 629–640. [Google Scholar]
- Almalki, W.H. The Sepsis Induced Defective Aggravation of Immune Cells: A Translational Science Underling Chemico-Biological Interactions from Altered Bioenergetics and/or Cellular Metabolism to Organ Dysfunction. Mol. Cell. Biochem. 2021, 476, 2337–2344. [Google Scholar] [CrossRef]
- Cárdenas-Calderón, C.; Veloso-Giménez, V.; González, T.; Wozniak, A.; García, P.; Martín, S.S.; Varas, J.F.; Carrasco-Wong, I.; Vera, M.; Egaña, J.T. Development of an Implantable Three-Dimensional Model of a Functional Pathogenic Multispecies Biofilm to Study Infected Wounds. Sci. Rep. 2022, 12, 21846. [Google Scholar] [CrossRef]
- Dempfle, C.-E. Disseminated Intravascular Coagulation and Coagulation Disorders. Curr. Opin. Anaesthesiol. 2004, 17, 125–129. [Google Scholar] [CrossRef]
- McKernan, D.P. Pattern Recognition Receptors as Potential Drug Targets in Inflammatory Disorders. Adv. Protein Chem. Struct. Biol. 2020, 119, 65–109. [Google Scholar] [CrossRef]
- Mahla, R.S. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front. Immunol. 2013, 4, 248. [Google Scholar] [CrossRef]
- Qian, C.; Liu, J.; Cao, X. Innate Signaling in the Inflammatory Immune Disorders. Cytokine Growth Factor Rev. 2014, 25, 731–738. [Google Scholar] [CrossRef]
- Vénéreau, E.; Ceriotti, C.; Bianchi, M.E. DAMPs from Cell Death to New Life. Front. Immunol. 2015, 6, 422. [Google Scholar] [CrossRef]
- Bleharski, J.R.; Kiessler, V.; Buonsanti, C.; Sieling, P.A.; Stenger, S.; Colonna, M.; Modlin, R.L. A Role for Triggering Receptor Expressed on Myeloid Cells-1 in Host Defense During the Early-Induced and Adaptive Phases of the Immune Response. J. Immunol. 2003, 170, 3812–3818. [Google Scholar] [CrossRef]
- Murao, A.; Jha, A.; Aziz, M.; Wang, P. Transcriptomic Profiling of Immune Cells in Murine Polymicrobial Sepsis. Front. Immunol. 2024, 15, 1347453. [Google Scholar] [CrossRef]
- Matsumoto, H.; Yamakawa, K.; Ogura, H.; Koh, T.; Matsumoto, N.; Shimazu, T. Enhanced Expression of Cell-Specific Surface Antigens on Endothelial Microparticles in Sepsis-Induced Disseminated Intravascular Coagulation. Shock 2015, 43, 443–449. [Google Scholar] [CrossRef]
- Rosales, C.; Demaurex, N.; Lowell, C.A.; Uribe-Querol, E. Neutrophils: Their Role in Innate and Adaptive Immunity. J. Immunol. Res. 2016, 2016, 1–2. [Google Scholar] [CrossRef]
- McDonald, B.; Davis, R.; Jenne, C.N. Neutrophil Extracellular Traps (NETs) Promote Disseminated Intravascular Coagulation in Sepsis. J. Immunol. 2016, 196, 60.8. [Google Scholar] [CrossRef]
- Gabarin, R.S.; Li, M.; Zimmel, P.A.; Marshall, J.C.; Li, Y.; Zhang, H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J. Innate Immun. 2021, 13, 323–332. [Google Scholar] [CrossRef]
- Tripathi, P.; Aggarwal, A. NF-kB Transcription Factor: A Key Player in the Generation of Immune Response. Curr. Sci. 2006, 90, 519–531. [Google Scholar]
- Khakpour, S.; Wilhelmsen, K.; Hellman, J. Vascular Endothelial Cell Toll-like Receptor Pathways in Sepsis. 2015. Available online: https://journals.sagepub.com/doi/10.1177/1753425915606525 (accessed on 7 July 2025).
- Hopps, E.; Presti, R.L.; Caimi, G. Pathophysiology of Polymorphonuclear Leukocyte in Arterial Hypertension. Clin. Hemorheol. Microcirc. 2009, 41, 209–218. [Google Scholar] [CrossRef]
- Meyer, O. Role of TNF-alpha and cytokines in the physiopathology of rheumatoid arthritis. Therapeutic perspectives. Bull. L’academie Natl. Med. 2003, 187, 935–954, discussion 954–955. [Google Scholar]
- Morales-Primo, A.U.; Becker, I.; Zamora-Chimal, J. Neutrophil Extracellular Trap-Associated Molecules: A Review on Their Immunophysiological and Inflammatory Roles. Int. Rev. Immunol. 2022, 41, 253–274. [Google Scholar] [CrossRef]
- Nowak, J.Z. Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids. Postep. Hig. I Med. Dosw. (Online) 2010, 64, 115–132. [Google Scholar]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Oikonomopoulou, K.; Ricklin, D.; Ward, P.A.; Lambris, J.D. Interactions between Coagulation and Complement—Their Role in Inflammation. Semin. Immunopathol. 2012, 34, 151–165. [Google Scholar] [CrossRef]
- Kulkarni, O.P.; Lichtnekert, J.; Anders, H.-J.; Mulay, S.R. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation? Mediat. Inflamm. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Zimbler, N.; Campbell, A. Sepsis, SIRS and MODS. Surg.—Oxf. Int. Ed. 2004, 22, 73–76. [Google Scholar] [CrossRef]
- Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediat. Inflamm. 2013, 2013, 165974. [Google Scholar] [CrossRef]
- Cristofaro, P.; Opal, S.M. The Toll-like Receptors and Their Role in Septic Shock. Expert Opin. Ther. Targets 2003, 7, 603–612. [Google Scholar] [CrossRef]
- Yang, J.; Yang, L.; Wang, Y.; Huai, L.; Shi, B.; Zhang, D.; Xu, W.; Cui, D. Interleukin-6 Related Signaling Pathways as the Intersection between Chronic Diseases and Sepsis. Mol. Med. 2025, 31, 34. [Google Scholar] [CrossRef]
- Nakazawa, J.; Song, S. Mechanism and Clinical Significance of IL-6 Combined with TNF-α or IL-1 for the Induction of Acute Phase Proteins SAA and CRP in Chronic Inflammatory Diseases. J. Alcohol. Drug Depend. 2016, 4. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Dufhues, G.; Flohe, S.; Horn, F.; Krause, E.; Krüttgen, A.; Legres, L.; Lenz, D.; Lütticken, C.; Schooltink, H.; et al. Interleukin-6, Its Hepatic Receptor and the Acute Phase Response of the Liver. In Molecular Aspects of Inflammation; Springer: Berlin/Heidelberg, Germany, 1991; pp. 129–145. ISBN 978-3-642-76414-1. [Google Scholar]
- Das, U.N. Infection, Inflammation, and Immunity in Sepsis. Biomolecules 2023, 13, 1332. [Google Scholar] [CrossRef]
- Abe, T.; Saito, K.; Nagano, T.; Yamada, Y.; Ochiai, H. Complement System Activation through the Alternative Pathway Associates with Disseminated Intravascular Coagulation to Increase Mortality in Sepsis. Thromb. Res. 2025, 247, 109281. [Google Scholar] [CrossRef]
- Falguni, M.M.; Hunat, J.C.; Nunez, K.E.; Ngo, V.; Harberts, E.M. TLR4-Independent Mechanisms of Complement Activation During Endotoxemia. J. Immunol. 2023, 210, 160.28. [Google Scholar] [CrossRef]
- Charchaflieh, J.; Wei, J.; Labaze, G.; Hou, Y.J.; Babarsh, B.; Stutz, H.; Lee, H.; Worah, S.; Zhang, M. The Role of Complement System in Septic Shock. J. Immunol. Res. 2012, 2012, 407324. [Google Scholar] [CrossRef]
- Appasamy, P.M. Biological and Clinical Implications of Interleukin-7 and Lymphopoiesis. Cytokines Cell. Mol. Ther. 1999, 5, 25–39. [Google Scholar]
- Ghosh, S.; Huang, J.; Inkman, M.; Zhang, J.; Thotala, S.; Tikhonova, E.; Miheecheva, N.; Frenkel, F.; Ataullakhanov, R.; Wang, X.; et al. Radiation-Induced Circulating Myeloid-Derived Suppressor Cells Induce Systemic Lymphopenia after Chemoradiotherapy in Patients with Glioblastoma. Sci. Transl. Med. 2023, 15, eabn6758. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Li, Y.; Cao, Y.; Wang, M.; Deng, Z.; Kang, H. Immunotherapy in the Context of Sepsis-Induced Immunological Dysregulation. Front. Immunol. 2024, 15, 1391395. [Google Scholar] [CrossRef]
- Luperto, M.; Zafrani, L. T Cell Dysregulation in Inflammatory Diseases in ICU. Intensive Care Med. Exp. 2022, 10, 43. [Google Scholar] [CrossRef]
- Luan, Y.; Yao, Y.; Xiao, X.; Sheng, Z. Insights into the Apoptotic Death of Immune Cells in Sepsis. J. Interf. Cytokine Res. 2015, 35, 17–22. [Google Scholar] [CrossRef]
- Cao, C.; Yu, M.; Chai, Y. Pathological Alteration and Therapeutic Implications of Sepsis-Induced Immune Cell Apoptosis. Cell Death Dis. 2019, 10, 782. [Google Scholar] [CrossRef]
- Kong, C.; Song, W.; Fu, T. Systemic Inflammatory Response Syndrome Is Triggered by Mitochondrial Damage (Review). Mol. Med. Rep. 2022, 25, 147. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Y.; Zhu, W.; Bai, X.-G.; Qi, J. Advances in Molecular Agents Targeting Toll-like Receptor 4 Signaling Pathways for Potential Treatment of Sepsis. Eur. J. Med. Chem. 2024, 268, 116300. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Chen, Y.; Abudou, H.; Wang, H.; Cai, J.; Wang, Y.; Liu, Z.; Liu, Y.; Fan, H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. Dis. Markers. 2022, 2022, 6362344. [Google Scholar] [CrossRef]
- Matsukawa, A. STAT Proteins in Innate Immunity during Sepsis: Lessons from Gene Knockout Mice. Acta Med. Okayama 2007, 61, 239–245. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Wang, Y.; Thorlacius, H. Critical Role of P38 Mitogen-Activated Protein Kinase Signaling in Septic Lung Injury. Crit. Care Med. 2008, 36, 482–488. [Google Scholar] [CrossRef]
- Manukyan, M.C.; Weil, B.R.; Wang, Y.; Abarbanell, A.M.; Herrmann, J.L.; Poynter, J.A.; Meldrum, D.R. The Phosphoinositide-3 Kinase Survival Signaling Mechanism in Sepsis. Shock 2010, 34, 442–449. [Google Scholar] [CrossRef]
- Cobbold, S.P. The mTOR Pathway and Integrating Immune Regulation. Immunology 2013, 140, 391–398. [Google Scholar] [CrossRef]
- Leite-Avalca, M.C.G.; Zampronio, A.; Lehmann, C. Cannabinoid Receptor 1 and 2 Signaling Pathways Involved in Sepsis. Shock 2021, 56, 673–681. [Google Scholar] [CrossRef]
- Houschyar, K.S.; Chelliah, M.P.; Rein, S.; Maan, Z.N.; Weissenberg, K.; Duscher, D.; Branski, L.K.; Siemers, F. Role of Wnt Signaling during Inflammation and Sepsis: A Review of the Literature. Int. J. Artif. Organs 2018, 41, 247–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Ma, L.; Cao, X.; Xiao, J.; Chen, J.; Jiao, S.; Gao, Y.; Liu, C.; Duan, Z.; et al. Activation of Vascular Endothelial Growth Factor Receptor-3 in Macrophages Restrains TLR4-NF-κB Signaling and Protects against Endotoxin Shock. Immunity 2014, 40, 501–514. [Google Scholar] [CrossRef]
- Li, L.-L.; Dai, B.; Sun, Y.-H.; Zhang, T.-T. The Activation of IL-17 Signaling Pathway Promotes Pyroptosis in Pneumonia-Induced Sepsis. Ann. Transl. Med. 2020, 8, 674. [Google Scholar] [CrossRef]
- ten Cate, H. Pathophysiology of Disseminated Intravascular Coagulation in Sepsis. Crit. Care Med. 2000, 28, S9. [Google Scholar]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Shannon, O. The Role of Platelets in Sepsis. Res. Pract. Thromb. Haemost. 2021, 5, 27–37. [Google Scholar] [CrossRef]
- Assinger, A.; Schrottmaier, W.C.; Salzmann, M.; Rayes, J. Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Front. Immunol. 2019, 10, 1687. [Google Scholar] [CrossRef]
- Ngo, A.T.P.; Sarkar, A.; Levine, N.; Bochenek, V.; Zhao, G.; Rauova, L.; Kowalska, M.A.; Eckart, K.; Mangalmurti, N.S.; Rux, A.; et al. Neutrophil Extracellular Traps (NETs) Thrombogenicity and Endothelial Cell Toxicity Are Ameliorated By Platelet Factor 4 (PF4): Implications to the Treatment of Sepsis. Blood 2022, 140, 5529–5530. [Google Scholar] [CrossRef]
- Verhoef, J.J.F.; Barendrecht, A.D.; Nickel, K.F.; Dijkxhoorn, K.; Kenne, E.; Labberton, L.; McCarty, O.J.T.; Schiffelers, R.; Heijnen, H.F.; Hendrickx, A.P.; et al. Polyphosphate Nanoparticles on the Platelet Surface Trigger Contact System Activation. Blood 2017, 129, 1707–1717. [Google Scholar] [CrossRef]
- Iba, T.; Connors, J.M.; Nagaoka, I.; Levy, J.H. Recent Advances in the Research and Management of Sepsis-Associated DIC. Int. J. Hematol. 2021, 113, 24–33. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, V.K.; Kaushik, S.; Saxena, J.; Jyoti, A. Free Radicals, Mitochondrial Dysfunction and Sepsis-Induced Organ Dysfunction: A Mechanistic Insight. Curr. Pharm. Des. 2024, 30, 161–168. [Google Scholar] [CrossRef]
- Hu, D.; Sheeja Prabhakaran, H.; Zhang, Y.-Y.; Luo, G.; He, W.; Liou, Y.-C. Mitochondrial Dysfunction in Sepsis: Mechanisms and Therapeutic Perspectives. Crit. Care 2024, 28, 292. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Z. Sepsis-Induced Myocardial Dysfunction: The Role of Mitochondrial Dysfunction. Inflamm. Res. 2021, 70, 379–387. [Google Scholar] [CrossRef]
- Sygitowicz, G.; Sitkiewicz, D. Molecular Mechanisms of Organ Damage in Sepsis: An Overview. Braz. J. Infect. Dis. 2020, 24, 552–560. [Google Scholar] [CrossRef]
- Yang, C.S.; Coopersmith, C.M.; Lyons, J.D. Cell Death Proteins in Sepsis: Key Players and Modern Therapeutic Approaches. Front. Immunol. 2023, 14, 1347401. [Google Scholar] [CrossRef]
- Honardoost, M.; Soleimanjahi, H.; Rajaei, F. Apoptosis: Programmed Cell Death. J. Inflamm. Dis. 2013, 17, 48–57. [Google Scholar]
- Herring, S.E.; Mao, S.; Bhalla, M.; Tchalla, E.Y.I.; Kramer, J.M.; Bou Ghanem, E.N. Mitochondrial ROS Production by Neutrophils Is Required for Host Antimicrobial Function against Streptococcus Pneumoniae and Is Controlled by A2B Adenosine Receptor Signaling. PLoS Pathog. 2022, 18, e1010700. [Google Scholar] [CrossRef]
- Konecna, B.; Park, J.; Kwon, W.-Y.; Vlkova, B.; Zhang, Q.; Huang, W.; Kim, H.I.; Yaffe, M.B.; Otterbein, L.E.; Itagaki, K.; et al. Monocyte Exocytosis of Mitochondrial Danger-Associated Molecular Patterns in Sepsis Suppresses Neutrophil Chemotaxis. J. Trauma Acute Care Surg. 2021, 90, 46–53. [Google Scholar] [CrossRef]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Emini Veseli, B.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial Dysfunction and Immunothrombosis in Sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, H.; Lin, Q.; Yang, J.; Zeng, R.; Xu, Z.; Sun, W. Deciphering the Immune-Metabolic Nexus in Sepsis: A Single-Cell Sequencing Analysis of Neutrophil Heterogeneity and Risk Stratification. Front. Immunol. 2024, 15, 1398719. [Google Scholar] [CrossRef]
- Langston, J.C.; Rossi, M.T.; Yang, Q.; Ohley, W.; Perez, E.; Kilpatrick, L.E.; Prabhakarpandian, B.; Kiani, M.F. Omics of Endothelial Cell Dysfunction in Sepsis. Vasc. Biol. 2022, 4, R15–R34. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.-H.; Liu, Y.-P.; Zhang, T.-N.; Yang, N. Regulatory role of noncoding rna in sepsis and sepsis-associated organ dysfunction: An updated systematic review. Shock 2022, 58, 434–456. [Google Scholar] [CrossRef]
- Tao, Y.; Song, L.; Xiao, H.; Liu, C. Inference and Analysis of Cell-Cell Communication of Post-Sepsis Skeletal Muscle Based on Single-Cell RNA-Seq. Hum. Gene 2023, 38, 201236. [Google Scholar] [CrossRef]
- She, H.; Tan, L.; Wang, Y.; Du, Y.; Zhou, Y.; Zhang, J.; Du, Y.; Guo, N.; Wu, Z.; Li, Q.; et al. Corrigendum: Integrative Single-Cell RNA Sequencing and Metabolomics Decipher the Imbalanced Lipid-Metabolism in Maladaptive Immune Responses during Sepsis. Front. Immunol. 2024, 15, 1418495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, H.; Usman, M.; Koutrouvelis, A.; Yamamoto, S. Mechanism of Sepsis. J. Mol. Pathol. 2025, 6, 18. https://doi.org/10.3390/jmp6030018
Yamamoto H, Usman M, Koutrouvelis A, Yamamoto S. Mechanism of Sepsis. Journal of Molecular Pathology. 2025; 6(3):18. https://doi.org/10.3390/jmp6030018
Chicago/Turabian StyleYamamoto, Hideaki, Muhammad Usman, Aristides Koutrouvelis, and Satoshi Yamamoto. 2025. "Mechanism of Sepsis" Journal of Molecular Pathology 6, no. 3: 18. https://doi.org/10.3390/jmp6030018
APA StyleYamamoto, H., Usman, M., Koutrouvelis, A., & Yamamoto, S. (2025). Mechanism of Sepsis. Journal of Molecular Pathology, 6(3), 18. https://doi.org/10.3390/jmp6030018