Concentrations of Manganese in Tufted Titmouse Feathers near Metal Processing Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Site Descriptions
2.3. Feather Sampling and Morphometrics
2.4. Feather Preprocessing
2.5. Microwave Plasma-Atomic Emission Spectrometry
2.6. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhawenimana, F. Essential and Non-Essential Elements in Feathers of Snow Bunting Nestlings of Longyearbyen and Adventdalen—Svalbard 2016. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Carson, R. Silent Spring; Penguin: London, UK, 2002. [Google Scholar]
- Pollock, C. The canary in the coal mine. J. Avian Med. Surg. 2016, 30, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in Bald Eagle (Haliaeetus leucocephalus), and comparison with Common Eider (Somateria mollissima), Glaucous-Winged Gull (Larus glaucescens), Pigeon Guillemot (Cepphus columba), and Tufted Puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Environ. Monit. Assess. 2009, 152, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.M.; Jerrett, M. A study of the relationships between Parkinson’s Disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ. Res. 2007, 104, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Fasola, M.; Muhammad, A.; Malik, S.A.; Bostan, N.; Bokhari, H.; Kamran, M.A.; Shafqat, M.N.; Alamdar, A.; Khan, M.; et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: A case study from severely contaminated areas. Chemosphere 2015, 119, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Hagelstein, K. Globally sustainable manganese metal production and use. J. Environ. Manag. 2009, 90, 3736–3740. [Google Scholar] [CrossRef] [PubMed]
- Fitsanakis, V.A.; Garcia, S.J.; Aschner, M. Manganese dynamics, distribution, and neurotoxicity. In The Role of Glia in Neurotoxicity; Aschner, M., Costa, L.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 395–416. [Google Scholar]
- Colledge, M.A.; Julian, J.R.; Gocheva, V.V.; Beseler, C.L.; Roles, H.A.; Lobdell, D.T.; Bowler, R.M. Characterization of air manganese exposure estimates for residents in two Ohio towns. J. Air Waste Manag. Assoc. 2015, 65, 948–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, E.N.; Heckel, P.; Ryan, P.; Roda, S.; Leung, Y.-K.; Sebastian, K.; Succop, P. Environmental manganese exposure in residents living near a ferromanganese refinery in Southeast Ohio: A pilot study. NeuroToxicology 2010, 31, 468–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalisinska, E.; Budis, H. Manganese, Mn: An Ecotoxicological Assessment of the Northern Hemisphere. In Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments; Kalisinska, E., Ed.; Springer: Cham, Switzerland, 2019; pp. 213–246. [Google Scholar] [CrossRef]
- Hui, C.A. Concentrations of chromium, manganese, and lead in air and in avian eggs. Environ. Pollut. 2002, 120, 201–206. [Google Scholar] [CrossRef]
- Röllin, H.B.; Nogueira, C.M.C.A. Manganese: Environmental pollution and health effects. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J.O., Ed.; Elsevier Science: San Diego, CA, USA, 2011; pp. 617–629. ISBN 978-0-444-52272-6. [Google Scholar]
- Jankowski, J.; Ognik, K.; Stępniowska, A.; Zduńczyk, Z.; Kozłowski, K. The effect of the source and dose of manganese on the performance, digestibility and distribution of selected minerals, redox, and immune status of turkeys. Poult. Sci. 2019, 98, 1379–1389. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Growth and behavioral effects of early postnatal chromium and manganese exposure in herring gull (Larus argentatus) chicks. Pharmacol. Biochem. Behav. 1995, 50, 607–612. [Google Scholar] [CrossRef]
- Moreno-Rueda, G. Body-Mass-Dependent Trade-off between Immune Response and Uropygial Gland Size in House Sparrows Passer domesticus. J. Avian Biol. 2015, 46, 40–45. [Google Scholar] [CrossRef]
- Vafidis, J.O.; Vaughan, I.P.; Jones, T.H.; Facey, R.J.; Parry, R.; Thomas, R.J. Habitat Use and Body Mass Regulation among Warblers in the Sahel Region during the Non-Breeding Season. PLoS ONE 2014, 9, e113665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, J.; Senar, J.C. Resident but not transient Eurasian Siskins reduce body mass in response to increasing predation risk: A natural experiment. J. Ornithol. 2015, 156, 451–456. [Google Scholar] [CrossRef]
- Liker, A.; Papp, Z.; Bókony, V.; Lendvai, Á.Z. Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 2008, 77, 789–795. [Google Scholar] [CrossRef]
- Theuerkauf, J.; Haneda, T.; Okahisa, Y.; Sato, N.J.; Rouys, S.; Bloc, H.; Ueda, K.; Watanabe, I.; Kuehn, R.; Gula, R. Elevated concentrations of naturally occurring heavy metals inversely correlate with reproductive output and body mass of the Kagu Rhynochetos jubatus. IBIS 2017, 159, 580–587. [Google Scholar] [CrossRef]
- Bouabid, S.; Delaville, C.; De Deurwaerdère, P.; Lakhdar Ghazal, N.; Benazzouz, A. Manganese-Induced Atypical Parkinsonism Is Associated with Altered Basal Ganglia Activity and Changes in Tissue Levels of Monoamines in the Rat. PLoS ONE 2014, 9, e98952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajibade, A.J.; Fakunle, P.B.; Fatoba, O.; Olayemi, O.T. Some effects of manganese dichloride administration on the body weight, Purkinje cell population, brain, and cerebellar weights of adult Wistar rats. J. Neurosci. Behav. Health 2011, 3, 87–90. [Google Scholar]
- Rutkowska, M.; Plotka-Wasylka, J.; Lubinska-Szczygel, M.; Rozanska, A.; Mozejko-Ciesielska, J.; Namiesnik, J. Birds’ feathers—Suitable samples for determination of environmental pollutants. TrAC Trends Anal. Chem. 2018, 109, 97–115. [Google Scholar] [CrossRef]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Veerle, J.; Dauwe, T.; Pinxten, R.; Bervoets, L.; Blust, R.; Eens, M. The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living Great Tits, Parus major. J. Environ. Monit. 2004, 6, 356–360. [Google Scholar] [CrossRef]
- Adout, A.; Hawlena, D.; Maman, R.; Paz-Tal, O.; Karpas, Z. Determination of trace elements in pigeon and raven feathers by ICPMS. Int. J. Mass Spectrom. 2007, 267, 109–116. [Google Scholar] [CrossRef]
- Terres, J.K. The Audubon Society Encyclopedia of North American Birds; Knopf: New York, NY, USA, 1980; pp. 616–617. [Google Scholar]
- Monteiro, L.R.; Furness, R.W. Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut. 1995, 80, 851–870. [Google Scholar] [CrossRef]
- Pedro, S.; Xavier, J.C.; Tavares, S.; Trathan, P.N.; Ratcliffe, N.; Paiva, V.H.; Medeiros, R.; Pereira, E.; Pardal, M.A. Feathers as a tool to assess mercury contamination in Gentoo Penguins: Variations at the individual level. PLoS ONE 2015, 10, e0137622. [Google Scholar] [CrossRef] [PubMed]
- Borghesi, F.; Migani, F.; Andreotti, A.; Baccetti, N.; Bianchi, N.; Birke, M.; Dinelli, E. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses. Sci. Total Environ. 2016, 544, 476–494. [Google Scholar] [CrossRef] [PubMed]
- Dauwe, T.; Bervoets, L.; Blust, R.; Eens, M. Tissue levels of lead in experimentally exposed Zebra Finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch. Environ. Contam. Toxicol. 2001, 42, 88–92. [Google Scholar] [CrossRef]
- Ritchison, G.; Grubb, T.C., Jr.; Pravosudov, V.V. Tufted Titmouse (Baeolophus bicolor), Version 2.0. In The Birds of North America; Rodewald, P.G., Ed.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2015. [Google Scholar]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration. NOAA Online Weather Data. Available online: https://www.weather.gov/wrh/Climate?wfo=pbz (accessed on 16 March 2023).
- Ghosh, S.; Byahut, S.; Masilela, C. Metropolitan Regional Scale Smart City Approaches in a Shrinking City in the American Rust Belt—Case of Pittsburgh, Pennsylvania. In Smart Metropolitan Regional Development; Advances in 21st Century Human Settlements; Vinod Kumar, T., Ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Ecoregions of North America. Available online: https://www.epa.gov/eco-research/ecoregions-north-america (accessed on 16 March 2023).
- U.S. Environmental Protection Agency. My Environment. Available online: https://geopub.epa.gov/myem/envmap/find.html (accessed on 30 December 2021).
- U.S. Environmental Protection Agency. Enforcement and Compliance History Online. Detailed Facility Reports for Universal Stainless and Alloy Products, Inc. Available online: https://echo.epa.gov/detailed-facility-report?fid=110000328743 (accessed on 8 March 2023).
- Windfinder.com GmbH & Co. KG, Windfinder app. Wind and Weather Statistics for Allegheny County Airport. Available online: https://www.windfinder.com/windstatistics/allegheny_county_airport (accessed on 8 March 2023).
- U.S. Environmental Protection Agency. Enforcement and Compliance History Online. Detailed Facility Report for Latrobe Specialty Steel Co. Available online: https://echo.epa.gov/detailed-facility-report?fid=110000330188 (accessed on 8 March 2023).
- U.S. Environmental Protection Agency. Enforcement and Compliance History Online. Detailed Facility Report for Lehigh Specialty Melting Co. Available online: https://echo.epa.gov/detailed-facility-report?fid=110000330204 (accessed on 8 March 2023).
- U.S. Environmental Protection Agency. Enforcement and Compliance History Online. Detailed Facility Report for Allegheny Ludlum Latrobe Plant. Available online: https://echo.epa.gov/detailed-facility-report?fid=110056954381 (accessed on 8 March 2023).
- Windfinder.com GmbH & Co. KG, Windfinder app. Wind and Weather Statistics for Arnold Palmer Regional Airport. Available online: https://www.windfinder.com/windstatistics/latrobe_arnold-palmer-airport (accessed on 7 March 2023).
- Pravosudov, V.V.; Grubb, T.C., Jr.; Doherty, P.F., Jr.; Bronson, C.L.; Pravosudova, E.V.; Dolby, A.S. Social dominance and energy reserves in wintering woodland birds. Condor 1999, 101, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Durkalec, M.; Martínez-Haro, M.; Nawrocka, A.; Pareja-Carrera, J.; Smits, J.E.G.; Mateo, R. Factors influencing lead, mercury and other trace element exposure in birds from metal mining areas. Environ. Res. 2022, 212, 113575. [Google Scholar] [CrossRef]
- Tittler, R.; Villard, M.-A.; Fahrig, L. How far do songbirds disperse? Ecography 2009, 32, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Fossi, M.C. Nondestructive biomarkers in ecotoxicology. Environ. Health Perspect. 1994, 102, 49–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarnowski, R.; Kellam, J.S. Concentrations of Manganese in Tufted Titmouse Feathers near Metal Processing Plants. Birds 2023, 4, 148-158. https://doi.org/10.3390/birds4010012
Sarnowski R, Kellam JS. Concentrations of Manganese in Tufted Titmouse Feathers near Metal Processing Plants. Birds. 2023; 4(1):148-158. https://doi.org/10.3390/birds4010012
Chicago/Turabian StyleSarnowski, Rachael, and James S. Kellam. 2023. "Concentrations of Manganese in Tufted Titmouse Feathers near Metal Processing Plants" Birds 4, no. 1: 148-158. https://doi.org/10.3390/birds4010012
APA StyleSarnowski, R., & Kellam, J. S. (2023). Concentrations of Manganese in Tufted Titmouse Feathers near Metal Processing Plants. Birds, 4(1), 148-158. https://doi.org/10.3390/birds4010012