A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds
Abstract
:1. Introduction
Data Analysis
2. Classification and Distribution of Marine Algae
2.1. Classification of Marine Algae
2.2. Bioactive Compounds and Industrial Applications
2.3. Ecological Importance and Environmental Factors
2.4. Geographical Distribution and Environmental Impact
3. Bioactive Compounds in Marine Algae
3.1. Polysaccharides
- Fucoidan: Sulphated polysaccharides found in brown algae, with structural variations including U-fucoidan (contains glucuronic acid), F-fucoidan (sulfated fucose), and G-fucoidan (contains galactose). They have been shown to have anticoagulant, antiviral, and anticancer activities [55].
- Carrageenan: A sulfated polysaccharide classified into kappa, iota, and lambda types. It is extracted from red algae (Rhodophyceae) and is used as a gelling and thickening agent in the food industry [56].
- Porphyran: A sulfated polysaccharide from Rhodophyta, with a linear backbone of alternating β-D-galactose and α-L-galactose-6-sulfate units [56].
3.2. Proteins and Amino Acids:
- Glycoproteins: Found in various marine algae, these are bound to carbohydrates, with approximately 36.24% composed of rhamnose, galactose, glucose, and mannose [12].
- Phycobiliproteins: Found in red algae and cyanobacteria, these are water-soluble proteins linked to chromophores like phycocyanin (PC) and phycoerythrin (PE), which demonstrate antioxidant and potential anticancer properties [12].
3.3. Lipids
- Omega-3 fatty acids: Found in microalgae and some macroalgae, omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have well-documented health benefits, including cardiovascular protection and anti-inflammatory effects [57].
- Fucosterol: Found in brown algae, fucosterol is a sterol with potential antioxidant, anti-inflammatory, and anticancer activities [58].
3.4. Secondary Metabolites
4. Antiviral Compounds from Marine Algae
5. Anticancer Compounds from Marine Algae
6. Sustainability and Environmental Considerations
7. Economic and Commercial Aspects
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, N.; Sheikh, M.A.; Ubaid, M.; Chauhan, P.; Kumar, K.; Choudhary, S. Comprehensive exploration of marine algae diversity, bioactive compounds, health benefits, regulatory issues, and food and drug applications. Meas. Food 2024, 14, 100163. [Google Scholar] [CrossRef]
- Wang, H.-M.D.; Li, X.-C.; Lee, D.-J.; Chang, J.-S. Potential biomedical applications of marine algae. Bioresour. Technol. 2017, 244, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Wada, S.; Ishida, K.-I.; Noda, M.; Abe, H. Marine algae and plants. In Japanese Marine Life: A Practical Training Guide in Marine Biology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 49–64. [Google Scholar] [CrossRef]
- Rashad, S.; El-Chaghaby, G.A. Marine Algae in Egypt: Distribution, phytochemical composition and biological uses as bioactive resources (a review). Egypt. J. Aquat. Biol. Fish. 2020, 24, 147–160. [Google Scholar] [CrossRef]
- Anbuchezhian, R.; Karuppiah, V.; Li, Z. Prospect of marine algae for production of industrially important chemicals. In Algal Biorefinery: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2015; pp. 195–217. [Google Scholar] [CrossRef]
- Nagarajan, S.; Mathaiyan, M. Emerging Novel Anti HIV biomolecules from marine Algae: An overview. J. Appl. Pharm. Sci. 2015, 5, 153–158. [Google Scholar] [CrossRef]
- Veluchamy, C.; Palaniswamy, R. A review on marine algae and its applications. Asian J. Pharm. Clin. Res. 2020, 13, 21–27. [Google Scholar] [CrossRef]
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From Marine origin to therapeutics: The antitumor potential of Marine Algae-Derived compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef]
- Boopathy, N.S.; Kathiresan, K. Anticancer agents derived from marine algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 307–337. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Hamdy, A.A.; Alshehri, B.M. Bioprospection of Antiviral and Antitumor Compounds from Some Marine Algae from Egyptian Shores. Anti-Cancer Agents Med. Chem. 2021, 22, 1813–1825. [Google Scholar] [CrossRef]
- Selvam, J.; Mal, J.; Singh, S.; Yadav, A.; Giri, B.S.; Pandey, A.; Sinha, R. Bioprospecting marine microalgae as sustainable bio-factories for value-added compounds. Algal Res. 2024, 79, 103444. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A new wave of nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef]
- Liao, W.; Chen, Y.; Shan, S.; Chen, Z.; Wen, Y.; Chen, W.; Zhao, C. Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytother. Res. 2024, 38, 4053–4080. [Google Scholar] [CrossRef]
- Basha, A.N.; Akhir, F.N.; Hara, H. Anticancer Potential of Bioactive Compounds from Microalgae. A Review. J. Adv. Res. Micro Nano Engieering 2024, 20, 1–9. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, A.G.; Juárez-Portilla, C.; Olivares-Bañuelos, T.; Zepeda, R.C. Anticancer activity of seaweeds. Drug Discov. Today 2017, 23, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Andrade, K.M.; Lauritano, C.; Romano, G.; Ianora, A. Marine Microalgae with Anti-Cancer Properties. Mar. Drugs 2018, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2010, 84, 14–21. [Google Scholar] [CrossRef]
- Behzadnia, A.; Moosavi-Nasab, M.; Oliyaei, N. Anti-biofilm activity of marine algae-derived bioactive compounds. Front. Microbiol. 2024, 15, 1270174. [Google Scholar] [CrossRef]
- Ghaliaoui, N.; Hazzit, M.; Mokrane, H. Seaweeds as a potential source of bioactive compounds. Res. Biotechnol. Environ. Sci. 2024, 3, 1–8. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Kim, S.-K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013, 62, 70–75. [Google Scholar] [CrossRef]
- Bajpai, P. Characteristics of algae. In Third Generation Biofuels; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–15. [Google Scholar] [CrossRef]
- Titlyanov, E.A.; Titlyanova, T.V.; Li, X.; Huang, H. Marine plants of coral reefs. In Coral Reef Marine Plants of Hainan Island; Elsevier: Amsterdam, The Netherlands, 2017; pp. 5–39. [Google Scholar] [CrossRef]
- Gamal, E.L.; Ali, A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef]
- Aumeerun, S.; Soulange-Govinden, J.; Driver, M.F.; Ranga, R.A.; Ravishankar, G.A.; Hudaa, N. Macroalgae and microalgae. In Handbook of Algal Technologies and Phytochemicals; CRC Press: Boca Raton, FL, USA, 2019; pp. 207–219. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol. 1999, 70, 313–321. [Google Scholar] [CrossRef]
- Soyocak, H.; Kızılkaya, D.; Üstün, N.Ş. A Review about A Significant Source of Bioactive Compounds: Microalgae. Int. J. Innov. Approaches Agric. Res. 2023, 7, 371–387. [Google Scholar] [CrossRef]
- Kızılkaya, D.; Üstün, N.Ş.; Soyocak, H. A Review about Using Bioactive Compounds-Rich Microalgae as Pigments. Int. J. Innov. Approaches Agric. Res. 2023, 7, 569–581. [Google Scholar] [CrossRef]
- Eladl, S.N.; Elnabawy, A.M.; Eltanahy, E.G. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. Bot. Stud. 2024, 65, 28. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, C.S.G.P.; Silva, A.; Barciela, P.; Jorge, A.O.S.; Perez-Vazquez, A.; Pereira, A.G.; Barreira, J.C.M.; Oliveira, M.B.P.P.; Prieto, M.A. Metabolite profiling of macroalgae: Biosynthesis and beneficial biological properties of active compounds. Mar. Drugs 2024, 22, 478. [Google Scholar] [CrossRef]
- Meiyasa, F.; Taringan, N.; Henggu, K.U.; Tega, Y.R.; Ndahawali, S.; Zulfamy, K.E.; Saputro, M.N.B.; Priyastiti, I. Biological activities of macroalgae in the Moudulung waters: Bioactive compounds and antioxidant activity. Food Res. 2024, 8, 82–91. [Google Scholar] [CrossRef]
- Villarruel-López, A.; Ascencio, F.; Nuño, K. Microalgae, a potential natural functional food source—A review. Pol. J. Food Nutr. Sci. 2017, 67, 251–263. [Google Scholar] [CrossRef]
- Handayani, T. Peranan Ekologi Makroalga Bagi Ekosistem Laut. Oseana 2019, 44, 1–14. [Google Scholar] [CrossRef]
- Zaki, B.Y.; Elsaeed, I.; Youssef, H. Two shades of marine life. Med. Updates 2024, 17, 24–36. [Google Scholar] [CrossRef]
- Sharifian, S.; Mortazavi, M.S.; Nozar, S.L.M. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Environ. Sci. Pollut. Res. 2023, 30, 75300–75313. [Google Scholar] [CrossRef]
- Hu, W.; Su, S.; Mohamed, H.F.; Xiao, J.; Kang, J.; Krock, B.; Xie, B.; Luo, Z.; Chen, B. Assessing the global distribution and risk of harmful microalgae: A focus on three toxic Alexandrium dinoflagellates. Sci. Total Environ. 2024, 948, 174767. [Google Scholar] [CrossRef]
- Fragkopoulou, E.; Serrão, E.A.; De Clerck, O.; Costello, M.J.; Araújo, M.B.; Duarte, C.M.; Krause-Jensen, D.; Assis, J. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 2022, 31, 636–648. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Cheung, W.W.L.; Sumaila, U.R. Global estimates of suitable areas for marine algae farming. Environ. Res. Lett. 2023, 18, 064028. [Google Scholar] [CrossRef]
- Ren, C.; Liu, Z.; Wang, X.; Qin, S. The seaweed holobiont: From microecology to biotechnological applications. Microb. Biotechnol. 2022, 15, 738–754. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, C.T.; Planavsky, N.J.; Ward, B.A.; Love, G.D.; Hir, G.L.; Ridgwell, A. The impact of marine nutrient abundance on early eukaryotic ecosystems. Geobiology 2020, 18, 139–151. [Google Scholar] [CrossRef]
- Matin, M.; Koszarska, M.; Atanasov, A.G.; Król-Szmajda, K.; Jóźwik, A.; Stelmasiak, A.; Hejna, M. Bioactive potential of algae and Algae-Derived compounds: Focus on Anti-Inflammatory, antimicrobial, and antioxidant effects. Molecules 2024, 29, 4695. [Google Scholar] [CrossRef]
- Dw, A.-K.S.M. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 1, 106. [Google Scholar] [CrossRef]
- Bharathi, M.J. Bioactive Compounds from Algae. In Phycobiotechnology; Apple Academic Press: Waretown, NJ, USA, 2020; pp. 47–62. [Google Scholar] [CrossRef]
- Han, Y.-S.; Lee, J.H.; Lee, S.H. Antitumor effects of fucoidan on human colon cancer cells via activation of AKT signaling. Biomol. Ther. 2015, 23, 225–232. [Google Scholar] [CrossRef]
- Wei, J.; Gou, Z.; Wen, Y.; Luo, Q.; Huang, Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed. Pharmacother. 2020, 129, 110484. [Google Scholar] [CrossRef]
- Basha, A.N.; Akhir, F.N.M.; Othman, N.; Hara, H. Antioxidant And Anticancer Potential of Bioactive Compounds from Locally Isolated Microalgae. J. Health Qual. Life 2024, 3, 40–54. [Google Scholar] [CrossRef]
- Kelman, D.; Posner, E.K.; McDermid, K.J.; Tabandera, N.K.; Wright, P.R.; Wright, A.D. Antioxidant activity of Hawaiian marine algae. Mar. Drugs 2012, 10, 403–416. [Google Scholar] [CrossRef]
- Tringali, C. Bioactive metabolites from marine algae: Recent results. Curr. Org. Chem. 1997, 1, 375–394. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Hossain, A.; Shahidi, F. Marine bioactives and their application in the food industry: A review. Appl. Sci. 2023, 13, 12088. [Google Scholar] [CrossRef]
- Rengasamy, K.R.; Mahomoodally, M.F.; Aumeeruddy, M.Z.; Zengin, G.; Xiao, J.; Kim, D.H. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem. Toxicol. 2019, 135, 111013. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hassan, S.H.A.; Awasthi, M.K.; Gajendran, B.; Sharma, M.; Ji, M.-K.; Salama, E.-S. The recent progress on the bioactive compounds from algal biomass for human health applications. Food Biosci. 2022, 51, 102267. [Google Scholar] [CrossRef]
- Kiuru, P.; D′Auria, M.; Muller, C.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds. Planta Medica 2014, 80, 1234–1246. [Google Scholar] [CrossRef]
- Tiwari, A.; Melchor-Martínez, E.M.; Saxena, A.; Kapoor, N.; Singh, K.J.; Saldarriaga-Hernández, S.; Parra-Saldívar, R.; Iqbal, H.M.N. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—A review. Int. J. Biol. Macromol. 2021, 171, 398–413. [Google Scholar] [CrossRef]
- Ismail, M.M.; Diab, M.H.; Elkomy, R.G. Algal Bioactive Compounds and Their biological activities. Int. J. Pharm. Res. 2021, 13, 09752366. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.-S.; Negreanu-Pirjol, T.; Popoviciu, D.R.; Anton, R.-E.; Prelipcean, A.-M. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022, 14, 1781. [Google Scholar] [CrossRef]
- Pereira, L.; Valado, A. Harnessing the power of seaweed: Unveiling the potential of marine algae in drug discovery. Explorationpub 2023, 1, 475–496. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: A review of the state-of-the-art. Expert Rev. Clin. Pharmacol. 2020, 14, 79–93. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Harwanto, D.; Tirtawijaya, G.; Negara, B.F.S.P.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Fucosterol of marine macroalgae: Bioactivity, safety and toxicity on organism. Mar. Drugs 2021, 19, 545. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021, 60, 102484. [Google Scholar] [CrossRef]
- Mohibbullah; Haque, N.; Sohag, A.A.M.; Hossain, T.; Zahan, S.; Uddin, J.; Hannan, A.; Moon, I.S.; Choi, J.-S. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar. Drugs 2022, 20, 279. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Ferrandis-Montesinos, M.; Wang, R. Antiviral Properties of Alginate-Based Biomaterials: Promising Antiviral Agents against SARS-CoV-2. ACS Appl. Bio Mater. 2021, 4, 5897–5907. [Google Scholar] [CrossRef]
- Ballantine, D.L.; Gerwick, W.H.; Velez, S.M.; Alexander, E.; Guevara, P. Antibiotic activity of lipid-soluble extracts from Caribbean marine algae. Hydrobiologia 1987, 151, 463–469. [Google Scholar] [CrossRef]
- Oliyaei, N.; Moosavi-Nasab, M.; Mazloomi, S.M. Therapeutic activity of fucoidan and carrageenan as marine algal polysaccharides against viruses. 3 Biotech 2022, 12, 154. [Google Scholar] [CrossRef]
- Kang, N.; Kim, E.-A.; Park, A.; Heo, S.-Y.; Heo, J.-H.; Lee, W.-K.; Ryu, Y.-K.; Heo, S.-J. Antiviral Activity of Chlorophyll Extracts from Tetraselmis sp., a Marine Microalga, Against Zika Virus Infection. Mar. Drugs 2024, 22, 397. [Google Scholar] [CrossRef]
- Hassen, B.M.; Rashedy, S.H.; Mostafa, A.; Mahrous, N.; Nafie, M.S.; Elebeedy, D.; Azeiz, A.Z.A. Identification of potential antiviral compounds from Egyptian marine algae against influenza A virus. Nat. Prod. Res. 2023, 38, 4411–4418. [Google Scholar] [CrossRef]
- Pardee, K.I.; Ellis, P.; Bouthillier, M.; Towers, G.H.; French, C.J. Plant virus inhibitors from marine algae. Can. J. Bot. 2004, 82, 304–309. [Google Scholar] [CrossRef]
- Macena, L.d.G.P.d.; Amorim, L.d.S.C.; Souza, K.F.C.d.S.e.; Pereira, L.D.; dos Santos, C.C.C.; Barros, C.d.S.; Ramos, C.J.B.; Santana, M.V.; Castro, H.C.; Teixeira, V.L.; et al. Antiviral activity of terpenes isolated from marine brown seaweeds against herpes simplex virus type 2. Nat. Prod. Res. 2023, 39, 712–717. [Google Scholar] [CrossRef]
- Alvarez, C.; Félix, C.; Lemos, M. The antiviral potential of algal lectins. Mar. Drugs 2023, 21, 515. [Google Scholar] [CrossRef] [PubMed]
- Krylova, N.V.; Kravchenko, A.O.; Iunikhina, O.V.; Pott, A.B.; Likhatskaya, G.N.; Volod’ko, A.V.; Zaporozhets, T.S.; Shchelkanov, M.Y.; Yermak, I.M. Influence of the Structural Features of Carrageenans from Red Algae of the Far Eastern Seas on Their Antiviral Properties. Mar. Drugs 2022, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, J.; Zhang, X.; Hao, C.; Zhao, X.; Jiao, G.; Shan, X.; Tai, W.; Yu, G. Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci. Rep. 2017, 7, 40760. [Google Scholar] [CrossRef] [PubMed]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Fedyanina, L.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Shchelkanov, M.Y. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021, 9, 200. [Google Scholar] [CrossRef]
- Lomartire, S.; Gonçalves, A.M.M. Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses—A Review. Mar. Drugs 2022, 20, 385. [Google Scholar] [CrossRef]
- Bai, R.G.; Tuvikene, R. Potential antiviral properties of industrially important marine algal polysaccharides and their significance in fighting a future viral pandemic. Viruses 2021, 13, 1817. [Google Scholar] [CrossRef]
- Venmathi Maran, B.A.; Iqbal, M.; Gangadaran, P.; Ahn, B.-C.; Rao, P.V.; Shah, M.D. Hepatoprotective potential of Malaysian medicinal plants: A review on phytochemicals, oxidative stress, and antioxidant mechanisms. Molecules 2022, 27, 1533. [Google Scholar] [CrossRef]
- Alam, A.; Parra-Saldivar, R.; Bilal, M.; Afroze, C.A.; Ahmed, N.; Iqbal, H.M.; Xu, J. Algae-Derived bioactive molecules for the potential treatment of SARS-CoV-2. Molecules 2021, 26, 2134. [Google Scholar] [CrossRef]
- Grice, I.D.; Mariottini, G.L. Glycans with Antiviral Activity from Marine Organisms. In Marine Organisms as Model Systems in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2018; pp. 439–475. [Google Scholar] [CrossRef]
- Niccolai, A. Antiviral products derived from microalgae. In Sustainable Industrial Processes Based on Microalgae; Elsevier: Amsterdam, The Netherlands, 2024; pp. 265–295. [Google Scholar] [CrossRef]
- Besednova, N.N.; Andryukov, B.G.; Kuznetsova, T.A.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Ermakova, S.P.; Shchelkanov, M.Y. Antiviral effects and mechanisms of action of water extracts and polysaccharides of microalgae and cyanobacteria. J. Pharm. Nutr. Sci. 2022, 12, 54–73. [Google Scholar] [CrossRef]
- Islam, S.I.; Ahmed, S.S.; Habib, N.; Ferdous, M.A.; Sanjida, S.; Mou, M.J. High-throughput virtual screening of marine algae metabolites as high-affinity inhibitors of ISKNV major capsid protein: An analysis of in-silico models and DFT calculation to find novel drug molecules for fighting infectious spleen and kidney necrosis virus (ISKNV). Heliyon 2023, 9, e16383. [Google Scholar] [CrossRef]
- Nosik, M.N.; Krylova, N.V.; Usoltseva, R.V.; Surits, V.V.; Kireev, D.E.; Shchelkanov, M.Y.; Svitich, O.A.; Ermakova, S.P. In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae. Mar. Drugs 2024, 22, 355. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, D.J.; Krylov, V.S. Anti-HIV Activity of Extracts and Compounds from Algae and Cyanobacteria. Ecotoxicol. Environ. Saf. 2000, 45, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Healy, L.; Zhang, Z.; Maguire, J.; Sun, D.; Tiwari, B.K. Novel postharvest processing strategies for value-added applications of marine algae. J. Sci. Food Agric. 2021, 101, 4444–4455. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Huang, X.; Cheong, K.-L. Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef]
- Macedo, M.W.F.S.; da Cunha, N.B.; Carneiro, J.A.; da Costa, R.A.; de Alencar, S.A.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine organisms as a rich source of biologically active peptides. Front. Mar. Sci. 2021, 8, 667764. [Google Scholar] [CrossRef]
- Augusto, A.; Lemos, M.F.L.; Silva, S.F.J. Exploring Marine-Based Food Production: The challenges for a sustainable and fast Biotechnology-Based Development. Appl. Sci. 2024, 14, 8255. [Google Scholar] [CrossRef]
- Bizzaro, G.; Vatland, A.K.; Pampanin, D.M. The One-Health approach in seaweed food production. Environ. Int. 2021, 158, 106948. [Google Scholar] [CrossRef]
- Khotimchenko, M.; Tiasto, V.; Kalitnik, A.; Begun, M.; Khotimchenko, R.; Leonteva, E.; Bryukhovetskiy, I.; Khotimchenko, Y. Antitumor potential of carrageenans from marine red algae. Carbohydr. Polym. 2020, 246, 116568. [Google Scholar] [CrossRef]
- Choi, H.; Pereira, A.R.; Gerwick, W.H. The chemistry of marine algae and cyanobacteria. In Handbook of Marine Natural Products; Springer: Berlin/Heidelberg, Germany, 2012; pp. 55–152. [Google Scholar] [CrossRef]
- Gomaa, M. Algal polysaccharides as promising anticancer agents. In Frontiers in Clinical Drug Research-Anti-Cancer Agents: Volume 9; Bentham Science Publishers: Oak Park, IL, USA, 2024; pp. 78–115. [Google Scholar] [CrossRef]
- Sadik, D.M.; Mohammed, I.H. Evaluation of anticancer effect of Cladophora glomerata algae extract. J. Appl. Nat. Sci. 2024, 16, 133–139. [Google Scholar] [CrossRef]
- Gopeechund, A.; Bhagooli, R.; Neergheen, V.S.; Bolton, J.J.; Bahorun, T. Anticancer activities of marine macroalgae: Status and future perspectives. In Biodiversity and Biomedicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–275. [Google Scholar] [CrossRef]
- Visuddho, V.; Halim, P.; Helen, H.; Muhar, A.M.; Iqhrammullah, M.; Mayulu, N.; Surya, R.; Tjandrawinata, R.R.; Ribeiro, R.I.M.A.; Tallei, T.E.; et al. Modulation of apoptotic, cell cycle, DNA repair, and senescence pathways by marine algae peptides in cancer therapy. Mar. Drugs 2024, 22, 338. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.-E.; Kim, K.H.; Kang, N.J. Beneficial effects of Marine Algae-Derived carbohydrates for skin health. Mar. Drugs 2018, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- Minhas, L.A.; Kaleem, M.; Farooqi, H.M.U.; Kausar, F.; Waqar, R.; Bhatti, T.; Aziz, S.; Jung, D.W.; Mumtaz, A.S. Algae-derived bioactive compounds as potential pharmaceuticals for cancer therapy: A comprehensive review. Algal Res. 2024, 78, 103396. [Google Scholar] [CrossRef]
- Sakthivel, R.; Devi, K.P. Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–160. [Google Scholar] [CrossRef]
- Karuppusamy, S.; Rajauria, G.; Fitzpatrick, S.; Lyons, H.; McMahon, H.; Curtin, J.; Tiwari, B.K.; O’Donnell, C. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of preclinical and Clinical studies. Mar. Drugs 2022, 20, 772. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.A.; Barqawi, A.A.; Mansour, A.T. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef]
- Macias, D.; Guillen, J.; Duteil, O.; Garcia-Gorriz, E.; Ferreira-Cordeiro, N.; Miladinova, S.; Parn, O.; Piroddi, C.; Polimene, L.; Serpetti, N.; et al. Assessing the potential for seaweed cultivation in EU seas through an integrated modelling approach. Aquaculture 2024, 594, 741353. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Q.; Shen, H.; Yang, Y.; Liu, P.; Dong, Y. Environmental benefits of macroalgae products: A case study of agar based on life cycle assessment. Algal Res. 2024, 78, 103384. [Google Scholar] [CrossRef]
- Spillias, S.; Cottrell, R.S.; Kelly, R.; O’Brien, K.R.; Adams, J.; Bellgrove, A.; Kelly, B.; Kilpatrick, C.; Layton, C.; Macleod, C.; et al. Expert perceptions of seaweed farming for sustainable development. J. Clean. Prod. 2022, 368, 133052. [Google Scholar] [CrossRef]
- García-Poza, S.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Marine macroalgae as a feasible and complete resource to address and promote Sustainable Development Goals (SDGs). Integr. Environ. Assess. Manag. 2022, 18, 1148–1161. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Luque, R.; Zhao, M. Sustainability Analysis of Microalgae Production Systems: A Review on Resource with Unexploited High-Value Reserves. Environ. Sci. Technol. 2018, 52, 14031–14049. [Google Scholar] [CrossRef]
- Cheng, P.; Li, Y.; Wang, C.; Guo, J.; Zhou, C.; Zhang, R.; Ma, Y.; Ma, X.; Wang, L.; Cheng, Y.; et al. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. Sci. Total Environ. 2022, 817, 152895. [Google Scholar] [CrossRef]
- Zaat, L.M.; Burg, S.W.K.v.D.; Ketelaar, T.; Koppenberg, M.; Möhring, N.; Meuwissen, M.P.M. Prospective seaweed systems for North-West European waters. ICES J. Mar. Sci. 2025, 82, fsaf010. [Google Scholar] [CrossRef]
- Arias, A.; Entrena-Barbero, E.; Ilmjärv, T.; Paoli, R.; Romagnoli, F.; Feijoo, G.; Moreira, M.T. Conceptual design and environmental evaluation of the Biorefinery approach for R-phycoerythrin extraction and purification. New Biotechnol. 2025, 86, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Sundarraj, D.K.; Majumder, A.; Suhail Haq, R.; Eswar, I.; Shek, M.I.S. Spore-Based seaweed propagation for germplasm selection and cultivation. In Biotechnological Interventions to Aid Commercial Seaweed Farming; Springer: Berlin/Heidelberg, Germany, 2025; pp. 257–293. [Google Scholar] [CrossRef]
- Zhu, J.; Wakisaka, M.; Omura, T.; Yang, Z.; Yin, Y.; Fang, W. Advances in industrial harvesting techniques for edible microalgae: Recent insights into sustainable, efficient methods and future directions. J. Clean. Prod. 2024, 436, 140626. [Google Scholar] [CrossRef]
- Pechsiri, J.S. Sustainability of microalgae-based industrial processes. In Sustainable Industrial Processes Based on Microalgae; Elsevier: Amsterdam, The Netherlands, 2024; pp. 323–333. [Google Scholar] [CrossRef]
- Lotze, H.K.; Milewski, I.; Fast, J.; Kay, L.; Worm, B. Ecosystem-based management of seaweed harvesting. Bot. Mar. 2019, 62, 395–409. [Google Scholar] [CrossRef]
- Pereira, R.; Yarish, C. Mass production of marine macroalgae. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2236–2247. [Google Scholar] [CrossRef]
- Margal, P.B.; Thakare, R.S.; Kamble, B.M.; Patil, V.S.; Patil, K.B.; Titirmare, N.S. Effect of seaweed extracts on crop growth and soil: A review. J. Exp. Agric. Int. 2023, 45, 9–19. [Google Scholar] [CrossRef]
- Sebök, S.; Herppich, W.B.; Hanelt, D. Development of an innovative ring-shaped cultivation system for a land-based cultivation of marine macroalgae. Aquac. Eng. 2017, 77, 33–41. [Google Scholar] [CrossRef]
- Eluvathingal; Aleena, B.; Amitha, T.V.; Rosario, J.; Carolin, J. A review on Potentiality of marine algae in environmental sustainability. Int. J. Pharm. Bio-Med. Sci. 2023, 3, 501–505. [Google Scholar] [CrossRef]
- Luo, H.; Yang, Y.; Xie, S. The ecological effect of large-scale coastal natural and cultivated seaweed litter decay processes: An overview and perspective. J. Environ. Manag. 2023, 341, 118091. [Google Scholar] [CrossRef]
- Brodie, J.; Andersen, R.A.; Kawachi, M.; Millar, A.J.K. Endangered algal species and how to protect them. Phycologia 2009, 48, 423–438. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Nelson, W.A.; Aguirre, J.D.; Blain, C.O.; Coyle, L.; D’Archino, R.; Desmond, M.J.; Hepburn, C.D.; Liggins, L.; Shears, N.T.; et al. Predicting the impacts of climate change on New Zealand’s seaweed-based ecosystems. N. Z. J. Bot. 2023, 63, 1–27. [Google Scholar] [CrossRef]
- Samoraj, M.; Çalış, D.; Trzaska, K.; Mironiuk, M.; Chojnacka, K. Advancements in algal biorefineries for sustainable agriculture: Biofuels, high-value products, and environmental solutions. Biocatal. Agric. Biotechnol. 2024, 58, 103224. [Google Scholar] [CrossRef]
- Webb, P.; Somers, N.K.; Thilsted, S.H. Seaweed’s contribution to food security in low- and middle-income countries: Benefits from production, processing and trade. Glob. Food Secur. 2023, 37, 100686. [Google Scholar] [CrossRef]
- Johnston, K.G.; Abomohra, A.; French, C.E.; Zaky, A.S. Recent advances in seaweed biorefineries and assessment of their potential for carbon capture and storage. Sustainability 2023, 15, 13193. [Google Scholar] [CrossRef]
- Veeragurunathan, V.; Ramalingam, D.; Bhayani, A.; Grace, P.G. Constraints and Challenges on Large-Scale cultivation of economically important algae. In Algal Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; pp. 295–304. [Google Scholar] [CrossRef]
- Seth, A.; Shanmugam, M. Seaweeds as agricultural crops in India: New vistas. In Innovative Saline Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 441–473. [Google Scholar] [CrossRef]
- Van Den Burg, S.; Wakenge, C.; Berkhout, P. Economic Prospects for Large-scale Seaweed Cultivation in the North Sea. Wagening. Econ. Res. 2019. [Google Scholar] [CrossRef]
- Loureiro, R.; Gachon, C.M.M.; Rebours, C. Seaweed cultivation: Potential and challenges of crop domestication at an unprecedented pace. New Phytol. 2015, 206, 489–492. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef]
- Qin, S.; Lin, H.; Jiang, P. Advances in genetic engineering of marine algae. Biotechnol. Adv. 2012, 30, 1602–1613. [Google Scholar] [CrossRef]
- Vanegas, C.H.; Bartlett, J. Green energy from marine algae: Biogas production and composition from the anaerobic digestion of Irish seaweed species. Environ. Technol. 2013, 34, 2277–2283. [Google Scholar] [CrossRef]
- Zaki, M.; Hps, A.K.; Sabaruddin, F.A.; Bairwan, R.D.; Oyekanmi, A.A.; Alfatah, T.; Danish, M.; Mistar, E.M.; Abdullah, C.K. Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour. Technol. Rep. 2021, 16, 100811. [Google Scholar] [CrossRef]
- Greene, C.; Scott-Buechler, C.; Hausner, A.; Johnson, Z.; Lei, X.G.; Huntley, M. Transforming the Future of Marine Aquaculture: A Circular Economy approach. Oceanography 2022, 35, 26–34. [Google Scholar] [CrossRef]
- Clark, C.W. Bioeconomics of the ocean. Bioscience 1981, 31, 231–237. [Google Scholar] [CrossRef]
- Kumarasinghe, H.S.; Gunathilaka, T.L.; Jayasooriya, R.G.P.T.; Samarakoon, K.W. Impact of Algal Research and its Potential for Industrial Applications: A Review. Sri Lankan J. Biol. 2023, 8, 4–19. [Google Scholar] [CrossRef]
- Elhan, K.; Iffat, Z.A. Seaweed biotechnology: An answer to environmental issues and human health problems. In Seaweed Biotechnology; Apple Academic Press: Waretown, NJ, USA, 2022; pp. 311–333. [Google Scholar] [CrossRef]
- Nishshanka, G.K.S.H.; Anthonio, R.A.D.P.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Chang, J.-S. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem. Eng. J. 2022, 187, 108593. [Google Scholar] [CrossRef]
- Saha, M.; Goecke, F.; Bhadury, P. Minireview: Algal natural compounds and extracts as antifoulants. J. Appl. Phycol. 2017, 30, 1859–1874. [Google Scholar] [CrossRef]
- Hanley, M.E.; Firth, L.B.; Foggo, A. Victim of changes? Marine macroalgae in a changing world. Ann. Bot. 2023, 133, 1–16. [Google Scholar] [CrossRef]
- Renn, D. Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends Biotechnol. 1997, 15, 9–14. [Google Scholar] [CrossRef]
- Priya, K.S. Exploring the Bioactive Potential of Marine Algae: Insights from Phytochemical Analysis, GC-MS Profiling, and Antioxidant Evaluation. Pharmacogn. J. 2024, 16, 336–341. [Google Scholar] [CrossRef]
- Fal, S.; Smouni, A.; Arroussi, H.E. Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: A circular bioeconomy approach. Environ. Adv. 2023, 12, 100365. [Google Scholar] [CrossRef]
- Quiroz-González, N.; Aguilar-Estrada, L.G.; Acosta-Calderón, J.A.; Álvarez-Castillo, L.; Arriola-Álvarez, F. Biodiversity of epiphytic marine macroalgae in Mexico: Composition and current status. Bot. Mar. 2023, 66, 181–189. [Google Scholar] [CrossRef]
- Shah, M.; Venmathi Maran, B.A.; Shaleh, S.; Zuldin, W.; Gnanaraj, C.; Yong, Y. Therapeutic Potential and nutraceutical Profiling of North Bornean seaweeds: A review. Mar. Drugs 2022, 20, 101. [Google Scholar] [CrossRef]
- Fernández-García, C.; Riosmena-Rodríguez, R.; Wysor, B.; Tejada, O.L.; Cortés, J. Checklist of the Pacific marine macroalgae of Central America. Bot. Mar. 2011, 54, 53–73. [Google Scholar] [CrossRef]
- Soratur, A.; Venmathi Maran, B.A.; Kamarudin, A.S.; Rodrigues, K.F. Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review. Microbiol. Res. 2024, 15, 806–822. [Google Scholar] [CrossRef]
- Kavitha, M.S.; Gangadaran, P.; Jackson, A.; Venmathi Maran, B.A.; Kurita, T.; Ahn, B.-C. Deep Neural Network Models for Colon Cancer Screening. Cancers 2022, 14, 3707. [Google Scholar] [CrossRef]
- Venmathi Maran, B.A.; Josmeh, D.; Tan, J.K.; Yong, Y.S.; Shah, M.D. Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules 2021, 26, 1908. [Google Scholar] [CrossRef]
Algae | Phylum | Family | Scientific Name |
---|---|---|---|
Green algae | Chlorophyta | Ulvaceae | Ulva lactuca |
Red algae | Rhodophyta | Gigartinaceae | Chondrus crispus |
Brown algae | Ochrophyta | Laminariaceae | Laminaria digitata |
Blue–green algae | Cyanobacteria | Nostocaceae | Nostoc commune |
Dinoflagellates | Dinoflagellata | Gonyaulacaceae | Gonyaulax polyedra |
Diatoms | Bacillariophyta | Thalassiosiraceae | Thalassiosira pseudonana |
Category | Compound | Source Algae Type | Biological Activity | Potential Applications | References |
---|---|---|---|---|---|
Polysaccharides | Fucoidan | Brown algae | Antiviral, anticoagulant, anticancer | Pharmaceuticals, nutraceuticals | [1,49] |
Carrageenan | Red algae | Antiviral, anti-inflammatory | Food industry, drug formulations | [50] | |
Alginate | Brown algae | Wound healing, antibacterial | Biomedicine, food Additives | [51,52] | |
Proteins and Peptides | Phycobiliproteins | Red algae | Antioxidant, immunomodulatory | Nutraceuticals, cosmetics | [1,53] |
Lectins | Red and green algae | Antiviral, antitumor | Drug development | [49,52] | |
Lipids | Omega-3 fatty acids | Microalgae | Cardioprotective, anti-inflammatory | Dietary supplements | [50,51] |
Phenolic Compounds | Phlorotannins | Brown algae | Antioxidant, antidiabetic | Cosmetics, pharmaceuticals | [1] |
Pigments | Chlorophyll | Green algae | Antioxidant, antimicrobial | Health supplements, dyes | [52,53] |
Fucoxanthin | Brown algae | Anticancer, anti-obesity | Nutraceuticals, cosmetics | [49,51] | |
Terpenes | Halimedatetraacetate | Green algae | Antimicrobial, cytotoxic | Drug development | [52] |
Sterols | Fucosterol | Brown algae | Antioxidant, antidiabetic | Pharmaceuticals, nutraceuticals | [50,53] |
Algae Species | Compound | Target Virus | Action | References |
---|---|---|---|---|
Gracilaria corticata | Sulfated polysaccharide | HIV, HSV-1 | Inhibits viral entry and replication | [73] |
Gigartina skottsbergii | Carrageenan | Influenza A, HPV | Blocks viral attachment | [74] |
Codium fragile | Lectin | Dengue, Hepatitis C | Prevents adsorption and replication | [75] |
Sargassum spp. | Fucoidan | HIV, Hepatitis B | Inhibits reverse transcriptase | [76] |
Kappaphycus alvarezii | Carrageenan | SARS-CoV-2 | Prevents viral attachment | [56] |
Ulva lactuca | Sulfated galactan | Herpes simplex virus (HSV-2) | Disrupts viral envelope | [71] |
Algae Species | Compound | Target Cancer Types | Mechanism of Action | References |
---|---|---|---|---|
Turbinaria spp. | Fucoidan | Various cancers | Induces apoptosis and inhibits tumor growth | [94] |
Eisenia bicyclis | Phlorotannins | Colon cancer | Antioxidant activity and inhibition of cell proliferation | [94] |
Gracilaria spp. | Sulfated polysaccharides | Breast cancer | Modulation of immune response and apoptosis induction | [95] |
Laminaria japonica | Laminarin | Leukemia | Induces apoptosis and cell cycle arrest | [96] |
Sargassum muticum | Fucoxanthin | Prostate cancer | Inhibits cell proliferation and induces apoptosis | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Soratur, A.; Kumar, S.; Venmathi Maran, B.A. A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds. Macromol 2025, 5, 11. https://doi.org/10.3390/macromol5010011
Kumar A, Soratur A, Kumar S, Venmathi Maran BA. A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds. Macromol. 2025; 5(1):11. https://doi.org/10.3390/macromol5010011
Chicago/Turabian StyleKumar, Ajit, Akshatha Soratur, Sumit Kumar, and Balu Alagar Venmathi Maran. 2025. "A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds" Macromol 5, no. 1: 11. https://doi.org/10.3390/macromol5010011
APA StyleKumar, A., Soratur, A., Kumar, S., & Venmathi Maran, B. A. (2025). A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds. Macromol, 5(1), 11. https://doi.org/10.3390/macromol5010011