Analysis and Modeling of Innovations in the Global Microalgae Lipids Market
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Table of Scope and Analysis of International Codes
3.2. Technological Domains and Main Products
3.3. Temporal Evolution of Documents and Mathematical Modeling of the Technological Life Cycle
3.4. Geographic Coverage, Main Investors, and Cooperation Networks
3.5. Microalgae and Keyword Clusters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050|Global Perspectives Studies|Food and Agriculture Organization of the United Nations; Food and Agriculture Organization: Rome, Italy, 2018; ISBN 978-92-5-130158-6. [Google Scholar]
- de Jesus, C.S.; Uebel, L.D.S.; Costa, S.S.; Miranda, A.L.; Morais, E.; de Morais, M.G.; Costa, J.A.V.; Nunes, I.L.; Ferreira, E.S.; Druzian, J.I. Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour. Technol. 2018, 256, 86–94. [Google Scholar] [CrossRef]
- Zhu, X.; Qi, J.; Cheng, L.; Zhen, G.; Lu, X.; Zhang, X. Depolymerization and conversion of waste-activated sludge to value-added bioproducts by fungi. Fuel 2022, 320, 123890. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E.; Stachowicz, P. Energy consumption and heating costs for a detached house over a 12-year period—Renewable fuels versus fossil fuels. Energy 2020, 204, 117952. [Google Scholar] [CrossRef]
- Chintagunta, A.D.; Zuccaro, G.; Kumar, M.; Kumar, S.P.J.; Garlapati, V.K.; Postemsky, P.D.; Kumar, N.S.S.; Chandel, A.K.; Simal-Gandara, J. Biodiesel Production from Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front. Microbiol. 2021, 12, 658284. [Google Scholar] [CrossRef]
- Xue, Z.; Li, S.; Yu, W.; Gao, X.; Zheng, X.; Yu, Y.; Kou, X. Research advancement and commercialization of microalgae edible oil: A review. J. Sci. Food Agric. 2021, 101, 5763–5774. [Google Scholar] [CrossRef]
- Kumar, S.P.J.; Banerjee, R. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process. Ultrason. Sonochem. 2019, 52, 25–32. [Google Scholar] [CrossRef]
- Jones, A.D.; Boundy-Mills, K.L.; Barla, G.F.; Kumar, S.; Ubanwa, B.; Balan, V. Microbial lipid alternatives to plant lipids. In Microbial Lipid Production; Balan, V., Ed.; Humana Press Inc.: New York, NY, USA, 2019; Volume 1995, pp. 1–32. [Google Scholar] [CrossRef]
- Pessôa, L.C.; Deamici, K.M.; Pontes, L.A.M.; Druzian, J.I.; Assis, D.D.J. Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Res. 2021, 60, 102504. [Google Scholar] [CrossRef]
- Rumin, J.; Nicolau, E.; de Oliveira, R.G.; Fuentes-Grünewald, C.; Picot, L. Analysis of scientific research driving microalgae market opportunities in Europe. Mar. Drugs 2020, 18, 264. [Google Scholar] [CrossRef]
- Shokravi, Z.; Shokravi, H.; Chyuan, O.H.; Lau, W.J.; Koloor, S.S.R.; Petrů, M.; Ismail, A.F. Improving ‘lipid productivity’ in microalgae by bilateral enhancement of biomass and lipid contents: A review. Sustainability 2020, 12, 9083. [Google Scholar] [CrossRef]
- Banerjee, A.; Kumar, N.; Varjani, S.J.; Guria, C.; Bandopadhyay, R.; Shukla, P.; Banerjee, C. Computational Modelling and Prediction of Microalgae Growth Focused Towards Improved Lipid Production. In Biosynthetic Technology and Environmental Challenges, Varjani, S.; Parameswaran, B., Kumar, S., Khare, S., Eds.; Springer: Singapore, 2018; pp. 223–232. [Google Scholar] [CrossRef]
- Barten, R.; Chin-On, R.; de Vree, J.; van Beersum, E.; Wijffels, R.H.; Barbosa, M.J.; Janssen, M. Growth parameter estimation and model simulation for three industrially relevant microalgae: Picochlorum, Nannochloropsis, and Neochloris. Biotechnol. Bioeng. 2022, 119, 1416–1425. [Google Scholar] [CrossRef]
- Aferni, A.; Guettari, M.; Tajouri, T. Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves. Environ. Sci. Pollut. Res. 2021, 28, 40400–40408. [Google Scholar] [CrossRef]
- Marinakis, Y.D. Forecasting technology diffusion with the Richards model. Technol. Forecast. Soc. Chang. 2012, 79, 172–179. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, J.; Dong, W.; Zhang, X.; Tyagi, R.D.; Drogui, P.; Surampalli, R.Y. The potential of microalgae in biodiesel production. Renew. Sustain. Energy Rev. 2018, 90, 336–346. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Bwapwa, J.K.; Anandraj, A.; Trois, C. Possibilities for conversion of microalgae oil into aviation fuel: A review. Renew. Sustain. Energy Rev. 2017, 80, 1345–1354. [Google Scholar] [CrossRef]
- Datta, A.; Hossain, A.; Roy, S. An overview on biofuels and their advantages and disadvantages. Asian J. Chem. 2019, 31, 1851–1858. [Google Scholar] [CrossRef]
- Global Market Insights. Algae Oil Market Size, Regional Outlook, Application Growth Potential, COVID-19 Impact Analysis, Competitive Market Growth & Forecast, 2022–2028; Global Market Insights Inc.: Selbyville, DE, USA, 2022. [Google Scholar]
- Show, P.L. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Global Market Insights. EPA/DHA (Omega 3) Ingredients Market Size by Source (Anchovy/Sardine Oil, High Concentrates, Medium Concentrates, Low Concentrates, Algae Oil, Tuna Oil, Cod Liver Oil, Salmon Oil, Krill Oil, Menhaden Oil), By Application (Dietary supplements, Pharmaceuticals, Functional Foods, Pet & Animal Feed, Infant Formulas), Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trends, Competitive Market Share & Forecast, 2020–2026; Global Market Insights Inc.: Selbyville, DE, USA, 2020. [Google Scholar]
- Global Market Insights. Global DHA Algae Oil for Infant Formula Market Size by Content (30%-40%, 40%-50%), By End-Use (0-3 Years Old, 3-6 Years Old), Industry Analysis Report, Regional Outlook, End-use Development Potential, Price Trend, Competitive Market Share & Forecast, 2020–2026; Global Market Insights Inc.: Selbyville, DE, USA, 2020. [Google Scholar]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G.J. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Miyamoto, M.; Takeuchi, K. Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies. Energy Policy 2019, 129, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- Rosa, F.; Gouveia, L.; Reis, A. Microalgas: Um Futuro Mais Sustentável e Mais Verde. Available online: https://repositorio.lneg.pt/handle/10400.9/378 (accessed on 5 June 2022).
- Santos, M.A.; Luna, S.; Quintella, C.M. Prospecção tecnológica sobre o cenário brasileiro no que tange o petróleo e seus derivados com a substituição pelos biocombustíveis. Cad. De Prospecção 2013, 6, 337–346. [Google Scholar] [CrossRef]
- Defanti, L.S.; Siqueira, N.S.; Linhares, P.C. Produção de biocombustíveis a partir de algas fotossintetizantes. Bols. De Valor Rev. De Divulg. Do Proj. Univ. Petrobras E IF Flum. 2010, 1, 11–21. [Google Scholar]
- Almeida, L.M.R.; de Souza, C.O.; Ribeiro, P.L.L.; Druzian, J.I.; Miranda, M.S. Estudo prospectivo sobre produtos alimentares incorporados de biomassa de microalgas. Cad. De Prospecção 2017, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Soares, C.C.; Druzian, J.I.; Lobato, A.K.D.C.L. Estudo prospectivo de patentes relacionadas a utilização do Bacillus subtilis em bioprocessos. Cad. De Prospecção 2018, 11, 295. [Google Scholar] [CrossRef]
- de Vasconcelos, D.C.; Marquesan, F.F.S. A Expectativa Para a Conferência de Paris (COP-21). In Proceedings of the XVII ENGEMA, São Paulo, Brazil, 30 September–1 October 2015. [Google Scholar]
- Vieira, A.C.F. A polidez climática através das Conferências das Partes: Ensaio político. Rev. Bras. De Gestão Ambient. E Sustentabilidade 2018, 5, 75–87. [Google Scholar] [CrossRef]
- Brazil. Lei n. 9.279, de 14 de maio de 1996. Available online: http://www.planalto.gov.br/ccivil_03/leis/l9279.htm#:~:text=LEI%20N%C2%BA%209.279%2C%20DE%2014,obriga%C3%A7%C3%B5es%20relativos%20%C3%A0%20propriedade%20industrial.&text=Art.,obriga%C3%A7%C3%B5es%20relativos%20%C3%A0%20propriedade%20industrial.&text=V%20%2D%20repress%C3%A3o%20%C3%A0%20concorr%C3%AAncia%20desleal (accessed on 5 June 2022).
- Cantú, S.O.; Pedroza, A. ¿Que es la Gestión de la Innovación y la Tecnología (GInnT)? J. Technol. Manag. Innov. 2006, 1, 64–82. [Google Scholar]
- Huo, J.-X.; Ma, F.-H.; Ji, X.-L. Porosity and permeability variations of a dam curtain during dissolution. Water Sci. Eng. 2019, 12, 155–161. [Google Scholar] [CrossRef]
- Taylor, M.; Taylor, A. The technology life cycle: Conceptualization and managerial implications. Int. J. Prod. Econ. 2012, 140, 541–553. [Google Scholar] [CrossRef]
- Gao, L.; Porter, A.L.; Wang, J.; Fang, S.; Zhang, X.; Ma, T.; Wang, W.; Huang, L. Technology life cycle analysis method based on patent documents. Technol. Forecast. Soc. Chang. 2013, 80, 398–407. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Silva, B.C.D.S.; Ferreira, C.V.; Sampaio, R.R.; Machado, B.A.S.; Coelho, R.S. Adding technology sustainability evaluation to product development: A proposed methodology and an assessment model. Sustainability 2021, 13, 2097. [Google Scholar] [CrossRef]
- Masiero, G. Developments of biofuels in Brazil and East Asia: Experiences and challenges. Rev. Bras. De Política Int. 2011, 54, 97–117. [Google Scholar] [CrossRef] [Green Version]
- Flourish.studio. Available online: https://flourish.studio (accessed on 4 June 2022).
- Yang, J.-W. Eeeforum. Algal Fuel Research in Korea. 2010. Available online: https://eeeforum.sec.tsukuba.ac.jp/3ef/3rd/pdf/IS5.pdf (accessed on 5 June 2022).
- Jaeger, J.; Joffe, P.; Song, R. WRI.org. China Is Leaving the US behind on Clean Energy Investment 2017. Available online: https://www.wri.org/insights/china-leaving-us-behind-clean-energy-investment (accessed on 6 July 2022).
- Kim, L. Technology Transfer and Intellectual Property Rights: Lessons from Korea’s Experience; International Centre for Trade and Sustainable Development (ICTSD): Seoul, Korea, 2002. [Google Scholar]
- Alves, S.C.M. Propriedade Intelectual e Desenvolvimento Econômico: Um estudo comparativo entre Brasil e Coréia do Sul. Bachelor’s Thesis, Centro Universitário de Brasília-UniCEUB, Brasília, Brazil, 2004. [Google Scholar]
- Chang, Y.K. Introducing Advanced Biomass R&D Center. Available online: https://cbe.kaist.ac.kr/webzine/1708/sub04_01.php (accessed on 6 June 2022).
- Corbion. AlgaPrimeTM DHA—Sustainable, Affordable, and at Scale. Available online: https://www.corbion.com/en/Products/Algae-ingredients-products/AlgaPrimeDHA#:~:text=AlgaPrime%E2%84%A2%20DHA%20%E2%80%93%20sustainable%2C%20affordable%2C%20and%20at%20scale&text=AlgaPrime%E2%84%A2%20DHA%20is%20the,without%20impacting%20the%20carbon%20footprint (accessed on 4 June 2022).
- Fermentalg. DHA ORIGINS®, Sustainably-Produced Omega-3 for Natural Health. Available online: https://www.fermentalg.com/dha-origins/ (accessed on 6 June 2022).
- da Silva, J.P. Produção de Single Cell Protein (SCP) por Leveduras Utilizando o Glicerol Bruto Como Fonte de Carbono. Master’s Thesis, Federal University of Recôncavo Baiano-UFRB, Cruz das Almas, Brazil, 2018. [Google Scholar]
- Phaal, R.; Routley, M.; Athanassopoulou, N.; Probert, D. Charting exploitation strategies for emerging technology. Res. Technol. Manag. 2012, 55, 34–42. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- dos Santos, R.R. Estudo de diferentes condições de cultivo de Chlorella vulgaris visando o aumento da produtividade em biomassa e lipídios. Master’s Thesis, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Feng, Y.; Li, C.; Zhang, D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour. Technol. 2011, 102, 101–105. [Google Scholar] [CrossRef]
- Fan, J.; Zheng, L. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J. Biosci. Bioeng. 2017, 124, 302–308. [Google Scholar] [CrossRef]
Keywords | Codes | Total | ||
---|---|---|---|---|
Microalgae | Lipid * | C12 1 | C12R 2 | |
X | X | 4027 | ||
X | X | 1472 | ||
X | X | 347 | ||
X | X | X | 110 | |
X | X | X | 274 |
Model | F-Value | p-Value | R2 |
---|---|---|---|
BoltzIV | 11,042.05 | <0.01 | 0.9990 |
DoseResp | 14,390.94 | <0.01 | 0.9992 |
BiDoseResp | 15,665.72 | <0.01 | 0.9996 |
Logistic | 14,490.49 | <0.01 | 0.9992 |
Gompertz | 7888.21 | <0.01 | 0.9981 |
Richards | 42.11 | <0.01 | 0.7767 |
A1 | A2 | t1 | t2 | h1 | h2 | p | |
---|---|---|---|---|---|---|---|
Value | 2.873 | 287.162 | 2005.952 | 2013.171 | 0.389 | 0.193 | −0.062 |
Standard error | 0.617 | 3.201 | 0.187 | 0.138 | 0.205 | 0.01 | 0.035 |
R2 | 0.9996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, N.S.; Pessôa, L.C.; Deamici, K.M.; da Silva, J.B.A.; de Souza Parga, F.A.; de Souza, C.O.; Tavares, P.P.L.G.; de Jesus Assis, D. Analysis and Modeling of Innovations in the Global Microalgae Lipids Market. BioTech 2022, 11, 37. https://doi.org/10.3390/biotech11030037
Carvalho NS, Pessôa LC, Deamici KM, da Silva JBA, de Souza Parga FA, de Souza CO, Tavares PPLG, de Jesus Assis D. Analysis and Modeling of Innovations in the Global Microalgae Lipids Market. BioTech. 2022; 11(3):37. https://doi.org/10.3390/biotech11030037
Chicago/Turabian StyleCarvalho, Natália Santana, Luiggi Cavalcanti Pessôa, Kricelle Mosquera Deamici, Jania Betânia Alves da Silva, Fernanda Aleluia de Souza Parga, Carolina Oliveira de Souza, Pedro Paulo Lordelo Guimarães Tavares, and Denilson de Jesus Assis. 2022. "Analysis and Modeling of Innovations in the Global Microalgae Lipids Market" BioTech 11, no. 3: 37. https://doi.org/10.3390/biotech11030037
APA StyleCarvalho, N. S., Pessôa, L. C., Deamici, K. M., da Silva, J. B. A., de Souza Parga, F. A., de Souza, C. O., Tavares, P. P. L. G., & de Jesus Assis, D. (2022). Analysis and Modeling of Innovations in the Global Microalgae Lipids Market. BioTech, 11(3), 37. https://doi.org/10.3390/biotech11030037