The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening
Abstract
:1. Introduction
2. Lactococcus garvieae
3. Streptococcus uberis and Streptococcus parauberis
4. The Genus Weissella
5. Mammalicoccus sciuri (Formerly Known as Staphylococcus sciuri)
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dapkevicius, M.d.L.E.; Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Malcata, F.X. Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021, 10, 821. [Google Scholar] [PubMed]
- Kleerebezem, M.; Bachmann, H.; van Pelt-KleinJan, E.; Douwenga, S.; Smid, E.J.; Teusink, B.; van Mastrigt, O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol. Rev. 2020, 44, 804–820. [Google Scholar] [CrossRef]
- Xing, Z.; Geng, W.; Li, C.; Sun, Y.; Wang, Y. Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments. Sci. Rep. 2017, 7, 12827. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front. Microbiol. 2018, 9, 01791. [Google Scholar] [CrossRef]
- Coppola, S.; Blaiotta, G.; Ercolini, D.; Moschetti, G. Molecular evaluation of microbial diversity occurring in different types of Mozzarella cheese. J. Appl. Microbiol. 2001, 90, 414–420. [Google Scholar] [CrossRef]
- Morea, M.; Baruzzi, F.; Cocconcelli, P.S. Molecular and physiological characterization of dominant bacterial populations in traditional Mozzarella cheese processing. J. Appl. Microbiol. 1999, 87, 574–582. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Acquati, A.; Zeppa, G.; Gandini, A.; Manachini, P.L. Genetic characterization of some lactic acid bacteria occurring in an artisanal protected denomination origin (PDO) Italian cheese, the Toma piemontese. Food Microbiol. 2003, 20, 397–404. [Google Scholar] [CrossRef]
- Alegría, Á.; Álvarez-Martín, P.; Sacristán, N.; Fernández, E.; Delgado, S.; Mayo, B. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow’s milk. Int. J. Food Microbiol. 2009, 136, 44–51. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Córdoba, J.J. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. LWT 2022, 168, 113873. [Google Scholar] [CrossRef]
- Pangallo, D.; Šaková, N.; Koreňová, J.; Puškárová, A.; Kraková, L.; Valík, L.; Kuchta, T. Microbial diversity and dynamics during the production of May bryndza cheese. Int. J. Food Microbiol. 2014, 170, 38–43. [Google Scholar] [CrossRef]
- Lactic, T.C.O. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal pico cheese. Ciências Agrárias Ramo Tecnol. Aliment. 2017, 102, 178–190. [Google Scholar]
- Martinovic, A.; Cabal, A.; Nisic, A.; Sucher, J.; Stöger, A.; Allerberger, F.; Ruppitsch, W. Genome Sequences of Lactococcus garvieae and Lactococcus petauri Strains Isolated from Traditional Montenegrin Brine Cheeses. Microbiol. Resour. Announc. 2021, 10, e0054621. [Google Scholar] [CrossRef]
- Dimov, S.G.; Posheva, V.; Georgieva-Miteva, D.; Peykov, S.; Kitanova, M.; Ilieva, R.; Dimitrov, T.; Iliev, M.; Gotcheva, V.; Strateva, T. Artisanal cheeses relying on spontaneous fermentation as sources of unusual microbiota—The example of the Bulgarian ‘mehovo sirene’ skin bag cheese. Int. J. Dairy Technol. 2023, 76, 1019–1024. [Google Scholar] [CrossRef]
- Gezginc, Y.; Karabekmez-Erdem, T.; Tatar, H.D.; Dağgeçen, E.C.; Ayman, S.; Akyol, İ. Metagenomics and volatile profile of Turkish artisanal Tulum cheese microbiota. Food Biosci. 2022, 45, 101497. [Google Scholar] [CrossRef]
- Dimov, S.G.; Gyurova, A.; Zagorchev, L.; Dimitrov, T.; Georgieva-Miteva, D.; Peykov, S. NGS-Based Metagenomic Study of Four Traditional Bulgarian Green Cheeses from Tcherni Vit. LWT 2021, 152, 112278. [Google Scholar] [CrossRef]
- Dimov, S.G. The unusual microbiota of the traditional Bulgarian dairy product Krokmach—A pilot metagenomics study. Int. J. Dairy Technol. 2022, 75, 139–149. [Google Scholar] [CrossRef]
- Mangia, N.P.; Fancello, F.; Deiana, P. Microbiological characterization using combined culture dependent and independent approaches of Casizolu pasta filata cheese. J. Appl. Microbiol. 2016, 120, 329–345. [Google Scholar] [CrossRef]
- Flórez, A.B.; Mayo, B. Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int. J. Food Microbiol. 2006, 110, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Edalatian, M.R.; Najafi, M.B.H.; Mortazavi, S.A.; Alegría, Á.; Nassiri, M.R.; Bassami, M.R.; Mayo, B. Microbial diversity of the traditional Iranian cheeses Lighvan and Koozeh, as revealed by polyphasic culturing and culture-independent approaches. Dairy Sci. Technol. 2012, 92, 75–90. [Google Scholar] [CrossRef]
- Fuka, M.M.; Wallisch, S.; Engel, M.; Welzl, G.; Havranek, J.; Schloter, M. Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe’s Milk Cheeses. PLoS ONE 2013, 8, e80734. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and Probiotic Lactic Acid Bacteria Employed for Production of “Advanced Traditional Cheeses”. Foods 2019, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Masoud, W.; Vogensen, F.K.; Lillevang, S.; Abu Al-Soud, W.; Sørensen, S.J.; Jakobsen, M. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int. J. Food Microbiol. 2012, 153, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.G.; Fusieger, A.; Martins, E.; Freitas, R.d.; Vakarelova, M.; Nero, L.A.; Carvalho, A.F.d. Biodiversity and technological features of Weissella isolates obtained from Brazilian artisanal cheese-producing regions. LWT 2021, 147, 111474. [Google Scholar] [CrossRef]
- Morea, M.; Baruzzi, F.; Cappa, F.; Cocconcelli, P.S. Molecular characterization of the Lactobacillus community in traditional processing of Mozzarella cheese. Int. J. Food Microbiol. 1998, 43, 53–60. [Google Scholar] [CrossRef]
- Ercan, D.; Korel, F.; Orşahin, H. Microbiological quality of artisanal Sepet cheese. Int. J. Dairy Technol. 2014, 67, 384–393. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the Lactic Acid Bacteria in Kazak Cheese and Their Contributions to Cheese Fermentation. Front. Microbiol. 2020, 11, 00228. [Google Scholar] [CrossRef]
- Malaka, R.; Laga, A.; Ako, A.; Zakariah, M.; Mauliah, F.U. Quality and storage time of traditional dangke cheese inoculated with indigenous lactic acid bacteria isolated from Enrekang District, South Sulawesi, Indonesia. Biodiversitas J. Biol. Divers. 2022, 23, d230656. [Google Scholar]
- Escobar-Zepeda, A.; Sanchez-Flores, A.; Quirasco Baruch, M. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiol. 2016, 57, 116–127. [Google Scholar] [CrossRef]
- Londoño-Zapata, A.F.; Durango-Zuleta, M.M.; Sepúlveda-Valencia, J.U.; Moreno Herrera, C.X. Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT Food Sci. Technol. 2017, 82, 39–48. [Google Scholar] [CrossRef]
- Gerasi, E.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological study of Manura, a hard cheese made from raw ovine milk in the Greek island Sifnos. Int. J. Dairy Technol. 2003, 56, 117–122. [Google Scholar] [CrossRef]
- Aboubacar, M.R.M.; Owino, W.; Mbogo, K. Characterization and antibiotic profiles of lactic acid bacteria isolated from “tchoukou” traditional milk cheeses produced in the zinder region of niger republic, west africa. Int. J. Food Sci. 2021, 4, 17–28. [Google Scholar] [CrossRef]
- Kumari, M.; Kumar, R.; Singh, D.; Bhatt, S.; Gupta, M. Physiological and genomic characterization of an exopolysaccharide-producing Weissella cibaria CH2 from cheese of the western Himalayas. Food Biosci. 2020, 35, 100570. [Google Scholar] [CrossRef]
- Irlinger, F.; Morvan, A.; El Solh, N.; Bergere, J.L. Taxonomic Characterization of Coagulase-Negative Staphylococci in Ripening Flora from Traditional French Cheeses. Syst. Appl. Microbiol. 1997, 20, 319–328. [Google Scholar] [CrossRef]
- Klempt, M.; Franz, C.M.A.P.; Hammer, P. Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. J. Dairy Sci. 2022, 105, 7951–7958. [Google Scholar] [CrossRef] [PubMed]
- Endres, C.M.; Moreira, E.; de Freitas, A.B.; Castel, A.P.D.; Graciano, F.; Mann, M.B.; Frazzon, A.P.G.; Mayer, F.Q.; Frazzon, J. Evaluation of Enterotoxins and Antimicrobial Resistance in Microorganisms Isolated from Raw Sheep Milk and Cheese: Ensuring the Microbiological Safety of These Products in Southern Brazil. Microorganisms 2023, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Esen, Y.; Çetin, B. Bacterial and yeast microbial diversity of the ripened traditional middle east surk cheese. Int. Dairy J. 2021, 117, 105004. [Google Scholar] [CrossRef]
- Schleifer, K.H.; Kraus, J.; Dvorak, C.; Kilpper-Bälz, R.; Collins, M.D.; Fischer, W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst. Appl. Microbiol. 1985, 6, 183–195. [Google Scholar] [CrossRef]
- Collins, M.D.; Farrow, J.A.E.; Phillips, B.A.; Kandler, O. Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. Microbiology 1983, 129, 3427–3431. [Google Scholar] [CrossRef]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in fish: A review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.X.; Lima, S.F.; Higgins, C.H.; Canniatti-Brazaca, S.G.; Bicalho, R.C. The Lactococcus genus as a potential emerging mastitis pathogen group: A report on an outbreak investigation. J. Dairy Sci. 2016, 99, 9864–9874. [Google Scholar] [CrossRef]
- Fefer, J.J.; Ratzan, K.R.; Sharp, S.E.; Saiz, E. Lactococcus garvieae endocarditis: Report of a case and review of the literature. Diagn. Microbiol. Infect. Dis. 1998, 32, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; De la Hoz, A.; Gomez-Villegas, S.I.; Nowbakht, C.; Arias, C.A. Lactococcus garvieae, an unusual pathogen in infective endocarditis: Case report and review of the literature. BMC Infect. Dis. 2019, 19, 301. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, M.; Yoshida, T.; Kijima, M.; Yagyu, K.; Nakai, T.; Okada, S.; Endo, A.; Murakami, M.; Suzuki, S.; Morita, H. Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Lett. Appl. Microbiol. 2007, 44, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Urso, R.; Iacumin, L.; Cantoni, C.; Cattaneo, P.; Comi, G.; Cocolin, L. Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages. Appl. Environ. Microbiol. 2005, 71, 1977–1986. [Google Scholar] [CrossRef]
- King, J.S. Streptococcus Uberis: A Review of its Role as a Causative Organism of Bovine Mastitis I. Characteristics of the Organism. Br. Vet. J. 1981, 137, 36–52. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Toma, L.; Prignano, G.; Pelagalli, L.; Police, A.; Cavallotti, C.; Torelli, R.; Sanguinetti, M.; Ensoli, F. Misidentification of Streptococcus uberis as a Human Pathogen: A Case Report and Literature Review. Int. J. Infect. Dis. 2015, 33, 79–81. [Google Scholar] [CrossRef]
- Domeénech, A.; Derenaáandez-Garayzábal, J.F.; Pascual, C.; Garcia, J.A.; Cutuli, M.T.; Moreno, M.A.; Collins, M.D.; Dominguez, L. Streptococcosis in cultured turbot, Scopthalmus maximus (L.), associated with Streptococcus parauberis. J. Fish Dis. 1996, 19, 33–38. [Google Scholar] [CrossRef]
- Huan, S.J.K.W.; Tan, J.S.W.; Chin, A.Y.H. Streptococcus parauberis infection of the hand. J. Hand Surg. 2021, 46, 83–84. [Google Scholar] [CrossRef]
- Zaman, K.; Thakur, A.; Sree, V.; Kaushik, S.; Gautam, V.; Ray, P. Post-traumatic endophthalmitis caused by Streptococcus parauberis: First human. Indian J. Med. Microbiol. 2016, 34, 382–384. [Google Scholar] [CrossRef]
- Olano, A.; Chua, J.; Schroeder, S.; Minari, A.; Salvia, M.L.; Hall, G. Weissella confusa (Basonym: Lactobacillus confusus) Bacteremia: A Case Report. J. Clin. Microbiol. 2001, 39, 1604–1607. [Google Scholar] [CrossRef]
- Flaherty, J.D.; Levett, P.N.; Dewhirst, F.E.; Troe, T.E.; Warren, J.R.; Johnson, S. Fatal Case of Endocarditis Due to Weissella confusa. J. Clin. Microbiol. 2003, 41, 2237–2239. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.I.; Porrero, C.; Goyache, J.; Nieto, A.; Sánchez, B.; Briones, V.; Moreno, M.A.; Domínguez, L.; Fernández-Garayzábal, J.F. Weissella confusa infection in primate (Cercopithecus mona). Emerg. Infect. Dis 2003, 9, 1307–1309. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Quero, G.M.; Cho, G.-S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M.A.P. The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 2015, 6, 00155. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, K.J.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.H.; Korkeala, H.J.; Vandamme, P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 2002, 52, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Shittu, A.; Lin, J.; Morrison, D.; Kolawole, D. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J. Med. Microbiol. 2004, 53, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Dakić, I.; Morrison, D.; Hauschild, T.; Ježek, P.; Petráš, P.; Martel, A.; Vuković, D.; Shittu, A.; Devriese, L.A. Identification and Characterization of Clinical Isolates of Members of the Staphylococcus sciuri Group. J. Clin. Microbiol. 2005, 43, 956–958. [Google Scholar] [CrossRef] [PubMed]
- Hedin, G.; Widerström, M. Endocarditis due toStaphylococcus sciuri. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.; Carvalho, M.J.; Spiller, O.B.; Portal, E.A.R.; Thomson, K.; Watkins, W.J.; Mathias, J.; Dyer, C.; Akpulu, C.; Andrews, R.; et al. Characterisation of Staphylococci species from neonatal blood cultures in low- and middle-income countries. BMC Infect. Dis. 2022, 22, 593. [Google Scholar] [CrossRef]
- Horii, T.; Suzuki, Y.; Kimura, T.; Kanno, T.; Maekawa, M. Intravenous Catheter-related Septic Shock Caused by Staphylococcus sciuri and Escherichia vulneris. Scand. J. Infect. Dis. 2001, 33, 930–932. [Google Scholar] [CrossRef]
- Benz, M.S.; Scott, I.U.; Flynn, H.W.; Unonius, N.; Miller, D. Endophthalmitis isolates and antibiotic sensitivities: A 6-year review of culture-proven cases. Am. J. Ophthalmol. 2004, 137, 38–42. [Google Scholar] [CrossRef]
- Wallet, F.; Stuit, L.; Boulanger, E.; Roussel-Delvallez, M.; Dequiedt, P.; Courcol, R.J. Peritonitis Due to Staphylococcus sciuri in a Patient on Continuous Ambulatory Peritoneal Dialysis. Scand. J. Infect. Dis. 2000, 32, 697–698. [Google Scholar] [CrossRef]
- Stepanović, S.; Ježek, P.; Dakić, I.; Vuković, D.; Seifert, L. Staphylococcus sciuri: An unusual cause of pelvic inflammatory disease. Int. J. STD AIDS 2005, 16, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A. Staphylococci in healthy and diseased animals. J. Appl. Bacteriol. 1990, 69, 71S–80S. [Google Scholar] [CrossRef]
- Rahman, M.T.; Kobayashi, N.; Alam, M.M.; Ishino, M. Genetic analysis of mecA homologues in Staphylococcus sciuri strains derived from mastitis in dairy cattle. Microb. Drug Resist. 2005, 11, 205–214. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Chen, F.; Yang, H.; Gan, M.; Zheng, S.J. A Highly Pathogenic Strain of Staphylococcus sciuri Caused Fatal Exudative Epidermitis in Piglets. PLoS ONE 2007, 2, e147. [Google Scholar] [CrossRef]
- Adegoke, G.O. Comparative characteristics of Staphylococcus sciuri, Staphylococcus lentus and Staphylococcus gallinarum isolated from healthy and sick hosts. Vet. Microbiol. 1986, 11, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, A.G.; Fuga, B.; Monte, D.F.M.; Cardoso, B.; Esposito, F.; Dolabella, S.S.; Barbosa, A.A.T.; Zanella, R.C.; Cortopassi, S.R.G.; da Silva, L.C.B.A.; et al. Genomic features of mecA-positive methicillin-resistant Mammaliicoccus sciuri causing fatal infections in pets admitted to a veterinary intensive care unit. Microb. Pathog. 2022, 171, 105733. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Alegría, Á.; Delgado, S.; Mayo, B. Phenotypic, genetic and technological characterization of Lactococcus garvieae strains isolated from a raw milk cheese. Int. Dairy J. 2010, 20, 142–148. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Foschino, R.; Picozzi, C.; Dolci, P.; Zeppa, G.; Cocolin, L.; Manachini, P.L. Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. J. Appl. Microbiol. 2007, 103, 445–453. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; García, C.; Córdoba, J.J. Evolution of Volatile Compounds during Ripening and Final Sensory Changes of Traditional Raw Ewe’s Milk Cheese “Torta del Casar” Maturated with Selected Protective Lactic Acid Bacteria. Foods 2022, 11, 2658. [Google Scholar] [PubMed]
- Abdelfatah, E.N.; Mahboub, H.H.H. Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). Int. J. Vet. Sci. Med. 2018, 6, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Björck, L.; Rosén, C.-G.; Marshall, V.; Reiter, B. Antibacterial Activity of the Lactoperoxidase System in Milk Against Pseudomonads and Other Gram-Negative Bacteria. Appl. Microbiol. 1975, 30, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Villani, F.; Aponte, M.; Blaiotta, G.; Mauriello, G.; Pepe, O.; Moschetti, G. Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow’s milk. J. Appl. Microbiol. 2001, 90, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, K.V.; Chi, H.; Mehmeti, I.; Holo, H.; Nes, I.F.; Diep, D.B. Novel Group of Leaderless Multipeptide Bacteriocins from Gram-Positive Bacteria. Appl. Environ. Microbiol. 2016, 82, 5216–5224. [Google Scholar] [CrossRef]
- France, T.C.; O’Mahony, J.A.; Kelly, A.L. The Plasmin System in Milk and Dairy Products. In Agents of Change: Enzymes in Milk and Dairy Products; Kelly, A.L., Larsen, L.B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 11–55. [Google Scholar] [CrossRef]
- Tulini, F.L.; Hymery, N.; Haertlé, T.; Le Blay, G.; De Martinis, E.C.P. Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil. J. Dairy Res. 2016, 83, 115–124. [Google Scholar] [CrossRef]
- Aminifar, M.; Hamedi, M.; Emam-Djomeh, Z.; Mehdinia, A. Investigation on proteolysis and formation of volatile compounds of Lighvan cheese during ripening. J. Food Sci. Technol. 2014, 51, 2454–2462. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, F.; Hou, Q.; Wang, J.; Li, M.; Sun, Z. PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions. J. Dairy Sci. 2020, 103, 1238–1249. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Silva, R.R.d.; Fusieger, A.; Martins, E.; Freitas, R.d.; Carvalho, A.F.d. The Weissella genus in the food industry: A review. Res. Soc. Dev. 2021, 10, e8310514557. [Google Scholar] [CrossRef]
- Lynch, K.M.; Lucid, A.; Arendt, E.K.; Sleator, R.D.; Lucey, B.; Coffey, A. Genomics of Weissella cibaria with an examination of its metabolic traits. Microbiology 2015, 161, 914–930. [Google Scholar] [CrossRef]
- Lynch, K.M.; McSweeney, P.L.H.; Arendt, E.K.; Uniacke-Lowe, T.; Galle, S.; Coffey, A. Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int. Dairy J. 2014, 34, 125–134. [Google Scholar] [CrossRef]
- Abriouel, H.; Lerma, L.L.; Casado Muñoz, M.d.C.; Montoro, B.P.; Kabisch, J.; Pichner, R.; Cho, G.-S.; Neve, H.; Fusco, V.; Franz, C.M.A.P.; et al. The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front. Microbiol. 2015, 6, 01197. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Fusieger, A.; Milião, G.L.; Martins, E.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob. Proteins 2021, 13, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Devi, P.B.; Shetty, P.H. Overview of exopolysaccharides produced by Weissella genus—A review. Int. J. Biol. Macromol. 2020, 164, 2964–2973. [Google Scholar] [CrossRef] [PubMed]
- Benhouna, I.S.; Heumann, A.; Rieu, A.; Guzzo, J.; Kihal, M.; Bettache, G.; Champion, D.; Coelho, C.; Weidmann, S. Exopolysaccharide produced by Weissella confusa: Chemical characterisation, rheology and bioactivity. Int. Dairy J. 2019, 90, 88–94. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Rodrigues, R.d.S.; Yamatogi, R.S.; Lucau-Danila, A.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Genomic Analyses of Weissella cibaria W25, a Potential Bacteriocin-Producing Strain Isolated from Pasture in Campos das Vertentes, Minas Gerais, Brazil. Microorganisms 2022, 10, 314. [Google Scholar] [CrossRef]
- Apostolakos, I.; Paramithiotis, S.; Mataragas, M. Functional and Safety Characterization of Weissella paramesenteroides Strains Isolated from Dairy Products through Whole-Genome Sequencing and Comparative Genomics. Dairy 2022, 3, 799–813. [Google Scholar] [CrossRef]
- Jang, H.-J.; Kang, M.-S.; Yi, S.-H.; Hong, J.-Y.; Hong, S.-P. Comparative Study on the Characteristics of Weissella cibaria CMU and Probiotic Strains for Oral Care. Molecules 2016, 21, 1752. [Google Scholar] [CrossRef]
- Nam, H.; Ha, M.; Bae, O.; Lee, Y. Effect of Weissella confusa Strain PL9001 on the Adherence and Growth of Helicobacter pylori. Appl. Environ. Microbiol. 2002, 68, 4642–4645. [Google Scholar] [CrossRef]
- Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal Activity of 2 Lactic Acid Bacteria of the Weissella Genus Isolated from Food. J. Food Sci. 2011, 76, M305–M311. [Google Scholar] [CrossRef]
- Valerio, F.; Favilla, M.; De Bellis, P.; Sisto, A.; de Candia, S.; Lavermicocca, P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst. Appl. Microbiol. 2009, 32, 438–448. [Google Scholar] [CrossRef]
- Kwak, S.H.; Cho, Y.M.; Noh, G.M.; Om, A.S. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 2014, 19, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Su-Bin, A.; Ho-Eun, P.; Sang-Myeong, L.; So-Young, K.; Mi-Yae, S.; Wan-Kyu, L. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. J. Biomed. Res. 2013, 14, 206–211. [Google Scholar]
- Bockelmann, W. Development of defined surface starter cultures for the ripening of smear cheeses. Int. Dairy J. 2002, 12, 123–131. [Google Scholar] [CrossRef]
- Heo, S.; Lee, J.-H.; Jeong, D.-W. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Sci. Biotechnol. 2020, 29, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Van der Veken, D.; Leroy, F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Curr. Opin. Food Sci. 2022, 48, 100918. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Borgo, F. A Study of Lactose Metabolism in Lactococcus garvieae Reveals a Genetic Marker for Distinguishing between Dairy and Fish Biotypes. J. Food Prot. 2009, 72, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Foschino, R.; Nucera, D.; Volponi, G.; Picozzi, C.; Ortoffi, M.; Bottero, M.T. Comparison of Lactococcus garvieae strains isolated in northern Italy from dairy products and fishes through molecular typing. J. Appl. Microbiol. 2008, 105, 652–662. [Google Scholar] [CrossRef]
- Williams, A.M.; Collins, M.D. Molecular taxonomic studies on Streptococcus uberis types I and II. Description of Streptococcus parauberis sp. nov. J. Appl. Bacteriol. 1990, 68, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Al Bulushi, I.M.; Poole, S.E.; Barlow, R.; Deeth, H.C.; Dykes, G.A. Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. Int. J. Food Microbiol. 2010, 138, 32–38. [Google Scholar] [CrossRef]
- Currás, M.; Magariños, B.; Toranzo, A.E.; Romalde, J.L. Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment. Dis. Aquat. Org. 2002, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.A. Streptococcus uberis: A Permanent Barrier to the Control of Bovine Mastitis? Vet. J. 1999, 157, 225–238. [Google Scholar] [CrossRef]
- Klijn, N.; Weerkamp, A.H.; Vos, W.M.d. Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol. 1995, 61, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Dan, T.; Wang, D.; Wu, S.; Jin, R.; Ren, W.; Sun, T. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Molecules 2017, 22, 1633. [Google Scholar] [CrossRef] [PubMed]
- Muruzović, M.Ž.; Mladenović, K.G.; Žugić-Petrović, T.D.; Čomić, L.R. In vitro evaluation of the antimicrobial potential of Streptococcus uberis isolated from a local cheese from Southeastern Serbia. Vet. Arh. 2018, 88, 521–534. [Google Scholar] [CrossRef]
- Collins, M.D.; Samelis, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 1993, 75, 595–603. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Stea, G.; Morea, M.; Visconti, A. Novel PCR-based identification of Weissella confusa using an AFLP-derived marker. Int. J. Food Microbiol. 2011, 145, 437–443. [Google Scholar] [CrossRef]
- Krishnan, M.; Dey, D.K.; Sharma, C.; Kang, S.C. Antibacterial activity of Weissella confusa by disc diffusion method. Bangladesh J. Pharmacol. 2019, 14, 117–122. [Google Scholar] [CrossRef]
- Dey, D.K.; Koo, B.G.; Sharma, C.; Kang, S.C. Characterization of Weissella confusa DD_A7 isolated from kimchi. LWT 2019, 111, 663–672. [Google Scholar] [CrossRef]
- Yu, H.-S.; Lee, N.-K.; Choi, A.-J.; Choe, J.-S.; Bae, C.H.; Paik, H.-D. Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food Sci. Biotechnol. 2019, 28, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Cibik, R.; Lepage, E.; Tailliez, P. Molecular Diversity of Leuconostoc mesenteroides and Leuconostoc citreumIsolated from Traditional French Cheeses as Revealed by RAPD Fingerprinting, 16S rDNA Sequencing and 16S rDNA Fragment Amplification. Syst. Appl. Microbiol. 2000, 23, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, K.M.G.M.M.; Jeewanthi, R.K.C.; Lee, N.K.; Paik, H.D. Characterization of cottage cheese using Weissella cibaria D30: Physicochemical, antioxidant, and antilisterial properties. J. Dairy Sci. 2019, 102, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, M.; Korcari, D.; Ricci, G.; Fortina, M.G. A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. J. Appl. Microbiol. 2020, 128, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother. 2017, 93, 763–771. [Google Scholar] [CrossRef]
- Wang, L.; Si, W.; Xue, H.; Zhao, X. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell. Microbiol. 2017, 19, e12731. [Google Scholar] [CrossRef] [PubMed]
- Kloos, W.E.; Schleifer, K.H.; Smith, R.F. Characterization of Staphylococcus sciuri sp.nov. and Its Subspecies1. Int. J. Syst. Evol. Microbiol. 1976, 26, 22–37. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Argudín, M.A.; Feßler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Vanderhaeghen, W.; Argudín, M.A.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. J. Antimicrob. Chemother. 2014, 69, 2928–2934. [Google Scholar] [CrossRef] [PubMed]
- Charmpi, C.; Thamsborg, K.K.M.; Mikalsen, S.-O.; Magnussen, E.; Sosa Fajardo, A.; Van der Veken, D.; Leisner, J.J.; Leroy, F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Int. J. Food Microbiol. 2023, 386, 110023. [Google Scholar] [CrossRef]
- Naqqash, T.; Wazir, N.; Aslam, K.; Shabir, G.; Tahir, M.; Shaikh, R.S. First report on the probiotic potential of Mammaliicoccus sciuri isolated from raw goat milk. Biosci. Microbiota Food Health 2022, 41, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Veken, D.V.d.; Hollanders, C.; Verce, M.; Michiels, C.; Ballet, S.; Weckx, S.; Leroy, F. Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IMDO-S72. Appl. Environ. Microbiol. 2022, 88, e0208821. [Google Scholar] [CrossRef]
Genus | Species | Some Examples of Cheeses | References |
---|---|---|---|
Lactococcus | L. garvieae | Italian mozzarella cheeses Italian Toma Piemontese cheese Spanish Casín cheese Spanish “Torta del Casar” cheese Slovakian May bryndza cheese Azorean Pico cheese Montenegrian brine cheeses Bulgarian and Turkish Tulum cheeses Bulgarian “Green” cheese Bulgarian Krokmach cheese | [5,6] [7] [8] [9] [10] [11] [12] [13,14] [15] [16] |
Streptococcus | S. uberis | Italian Mozzarella cheese Spanish Casín cheese Italian Casizolu cheese | [6] [8] [17] |
S. parauberis | Spanish Cabrales cheese Spanish Casín cheese Iranian Lighvan and Koozeh cheese Slovenian raw milk cheeses Slovakian May bryndza cheese Italian Casizolu cheese Italian Giuncata cheese Italian Caciotta Leccese cheese Bulgarian and Turkish Tulum cheeses | [18] [8] [19] [20] [10] [17] [21] [21] [13,14] | |
Weissella | W. hellenica | Danish raw milk cheeses a type of Croatian cheese Brazilian artisanal cheeses Italian Mozzarella cheese | [22] [20] [23] [24] |
W. confusa | Turkish Sepet cheese a type of Kazak cheese a type of Indonesian cheese | [25] [26] [27] | |
W. paramesenteroides | a type of Mexican ripened cheese some traditional French cheeses Columbian double cream cheese Greek Manura cheese Turkish Sepet cheese | [28] [29] [30] [25] [26] | |
W. cibaria | Afrikan Tchoukou cheese Western Himalayan cheese | [31] [32] | |
Mammalicoccus | M. sciuri | French smear cheeses some German cheeses some Brazilian cheeses Middle East Surk cheese | [33] [34] [35] [36] |
Species | Pathogenicity | References |
---|---|---|
L. garvieae | fish lactococcosis bovine mastitis endocarditis in immunocompromised and old persons | [39] [40] [41] |
patients with prosthetic valves | [42] | |
S. uberis | bovine mastitis occasional human infections | [45] [46] |
S. parauberis | bovine mastitis fish pathogen rare cases of infection in humans | [45] [47] [48,49] |
W. hellenica | no records | |
W. confusa | bacteremia endocarditis deadly infections in primates | [50] [51] [52] |
W. paramesenteroides | no records | |
W. cibaria | bacteremias in humans otitis in dogs | [53] [54] |
M. sciuri | human wound infections urinary tract infections endocarditis in humans sepsis in humans endophtalmitis in humans peroitonitis in humans plevric inflammatory disease in humans mastitis in cows and goats epidermitis in piglets presence in ovine rinderpest suffering animals respiratory distress syndrome in cats and dogs | [55] [56] [57] [58,59] [60] [61] [62] [63,64] [65] [66] [67] |
Species | Contribution to the Ripening | References | Health-Promoting and Probiotic Effects | References |
---|---|---|---|---|
L. garvieae | palatability sensorial characteristics lactose fermentation aroma | [68] [69] [69] [70] | inhibition of pathogens | [9,71,72,73,74] |
S. uberis | streptokinase induced proteolysis | [75] | inhibition of pathogens | [54,76] |
S. parauberis | streptokinase induced proteolysis organoleptic properties | [77] [78] | ||
Weissella spp. | contribution to the rheological properties by EPS production | [32,79] | synthesis of EPS bacteriocins production hydrogen peroxide production inhibition of H. pylori antifungal activities chemopreventive effects anti-obesity effects antiviral activity | [32,79, 80, 81, 82,83,84,85] [83,86,87] [82,88] [89] [90,91] [92] [93] [82] |
coagulation of the milk proteins | [53,80] | |||
organoleptic properties | [23,81] | |||
M. sciuri | organoleptic properties | [94,95,96] | no definitive data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimov, S.G. The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening. BioTech 2023, 12, 63. https://doi.org/10.3390/biotech12040063
Dimov SG. The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening. BioTech. 2023; 12(4):63. https://doi.org/10.3390/biotech12040063
Chicago/Turabian StyleDimov, Svetoslav G. 2023. "The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening" BioTech 12, no. 4: 63. https://doi.org/10.3390/biotech12040063
APA StyleDimov, S. G. (2023). The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening. BioTech, 12(4), 63. https://doi.org/10.3390/biotech12040063