Detection and Characterization of Electrogenic Bacteria from Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Microbial Fuel Cell Assembly
2.3. Electricity and Electrogenic Bacteria Measurements
2.4. DNA Extraction and PCR Analysis of Bacterial 16S rRNA Genes in SMFC Samples
2.5. DNA Sequencing Analysis of 16S rRNA Genes in SMFC-B1
3. Results
3.1. Electricity Generation and Electrogenic Bacteria by SMFCs
3.2. 16S rRNA Analysis of SMFC-B1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacteria communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef]
- Wang, J.; Ren, K.; Zhu, Y.; Huang, J.; Liu, S. A review of recent advances in microbial fuel cells: Preparation, operation, and application. BioTech 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Boon, N.; Siciliano, S.D.; Verhaege, M.; Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70, 5373–5382. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.R.; Holmes, D.E.; Tender, L.M.; Lovley, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Dunaj, S.J.; Vallino, J.J.; Hines, M.E.; Gay, M.; Kobyljanec, C.; Rooney-Varga, J.N. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ. Sci. Technol. 2012, 46, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, Z.; Li, H.B.; Su, J.Q.; Zhao, F.; Zhu, Y.G. Bacterial community composition at anodes of microbial fuel cells for paddy soils: The effects of soil properties. J. Soils Sediments 2015, 15, 926–936. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X.; Ren, Y.; Wang, X.; Jian, C. Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. J. Chem. Technol. Biotechnol. 2012, 87, 1567–1573. [Google Scholar] [CrossRef]
- Kaur Dhillon, S.; Dziegielowski, J.; Patit Paban, P.; Di Lorenzo, M. Functionalized graphite felt anodes for enhanced power generation in membrane-less soil microbial fuel cells. R. Soc. Chem. Sustain. 2023, 1, 310–325. [Google Scholar] [CrossRef]
- Nandy, A.; Farkas, D.; Pepio-Tarrega, B.; Martinez-Crespiera, S.; Borras, E.; Avignone-Rossa, C.; Di Lorenzo, C. Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells. Environ. Sci. Ecotechnol. 2023, 16, 100276. [Google Scholar] [CrossRef]
- Uria-Molto, N.; Costa, R.D.; Nunziata, C.; Santiago, S.; Guirado, G.; Munoz-Berbel, X.; Kowalski, L. Self- contained and integral microbial fuel cells as portable and sustainable energy sources for low-power field devices. Electr. J. Biotechnol. 2022, 57, 44–51. [Google Scholar] [CrossRef]
- Garbini, G.L.; Barra Carraciolo, A.; Grenni, P. Electroactive bacteria in natural ecosystems and their applications in microbial fuel cells for bioremediation: A review. Microorganisms 2023, 11, 1255. [Google Scholar] [CrossRef]
- Dziegielowski, J.; Mascia, M.; Metcalfe, B.; Di Lorenzo, M. Voltage evolution and electrochemical behavior of soil microbial fuel cells operated in different quality soils. Sustain. Energy Technol. Assess. 2023, 56, 103071. [Google Scholar] [CrossRef]
- Hodgson, D.M.; Smith, A.; Dahale, S.; Stratford, J.P.; Li, J.V.; Gruning, A.; Bushell, M.E.; Marchesi, J.R.; Avignone Rossa, C. Segregation of the anodic microbial communities in a microbial fuel cell cascade. Front. Microbiol. 2016, 7, 699. [Google Scholar] [CrossRef]
- Jimenez, L.; Kulko, M.; Kim, R.; Jashari, T.; Choe, T. 16S rRNA analysis of electrogenic bacterial communities in microbial fuel cells developed from temperate soils. BIOS 2020, 91, 9–20. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electrigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Factories 2019, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Wikimedia Commons. Microbial Fuel Cells. 2010. Available online: http://wikepedia.org/wiki/Microbialfuel (accessed on 10 November 2023).
- Jimenez, L.; Jashari, T.; Vasquez, J.; Zapata, S.; Bochis, J.; Kulko, M.; Ellman, V.; Gardner, M.; Choe, T. Real-Time PCR detection of Burkholderia cepacia in pharmaceutical products contaminated with low levels of bacterial contamination. PDA J. Pharm. Sci. Technol. 2018, 72, 73–80. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operations taxonomic units in marke-gene analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Simeon, M.I.; Freitag, R. Influence of electrode spacing and fed-batch operation on the maximum performance trend of a soil microbial fuel cell. Int. J. Hydrogen Energy 2022, 47, 12304–12316. [Google Scholar] [CrossRef]
- Simeon, M.I.; Weig, A.; Freitag, R. Optimization of soil microbial fuel cell for sustainable bio-electricity production: Combined effects of electrode material, electrode spacing, and substrate feeding frequency on power generation and microbial community diversity. Biotechnol. Biofuels Bioprod. 2022, 15, 124. [Google Scholar] [CrossRef]
- Wang, Y.; Gallagher, L.A.; Andrade, P.A.; Liu, A.; Humphreys, I.R.; Tukarslan, S.; Cutler, K.J.; Arrieta-Ortiz, M.L.; Li, Y.; Radey, M.C.; et al. Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell 2023, 186, 4803–4817. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Zhong, W.H.; Han, C.; Deng, H. Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front. Microbiol. 2016, 7, 1776. [Google Scholar] [CrossRef] [PubMed]
- Xiao Min, L.; Cheng, K.Y.; Selvam, A.; Wong, J.W.C. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of inocula. Process Biochem. 2013, 48, 283–288. [Google Scholar]
- Guerrero-Cruz, S.; Vaksmaa, A.; Horn, M.A.; Niemann, H.; Pijuan, M.; Ho, A. Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications. Front. Microbiol. 2021, 12, 678057. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, R.; Maeda, T.; Wood, T.K. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnol. Biofuels 2018, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- MacAnulty, M.J.; Poosarla, V.G.; Kim, K.Y.; Jasso-Chavez, R.; Logan, B.E.; Wood, T.K. Electricity from methane by reversing methanogenesis. Nat. Commun. 2017, 8, 15419. [Google Scholar] [CrossRef] [PubMed]
- Barbato, R.A.; Foley, K.L.; Toro-Zapata, J.A.; Jines, R.M.; Reynolds, C.M. The power of soil microbes: Sustained power production in terrestrial microbial fuel cells under various temperature regimes. Appl. Soil Ecol. 2017, 109, 14–22. [Google Scholar] [CrossRef]
- Yee, O.Y.; Deutzmann, J.; Sporman, A.; Rotaru, A.E. Cultivating electroactive microbes-from field to bench. Nanotechnology 2020, 31, 174003. [Google Scholar] [CrossRef]
- Badalamenti, J.P.; Summers, Z.M.; Chan, C.H.; Gralnick, J.A.; Bond, D.R. Isolation and genomic characterization of Desulfuromonas soudanensis WTL, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front. Microbiol. 2016, 7, 913. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhuang, L.; Zhou, S.G.; Yang, G.Q.; Yuan, Y.; Xu, R.X. Alkaline extracellular reduction: Isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. J. Appl. Microbiol. 2012, 112, 883–891. [Google Scholar] [CrossRef] [PubMed]
Sample | Date | Electricity (S) | Microwatts | Electricity (H) | Microwatts |
---|---|---|---|---|---|
SMFC1 | 10 February 2023 | 0 | 0 | 0 | 0 |
SMFC2 | 10 February 2023 | 5 | 6 | 7 | 20 |
SMFC3 | 10 February 2023 | 3 | 13 | 12 | 80 |
SMFC-B1 | 1 June 2023 | 1 | 7 | 15 | 143 |
SMFC-B2B | 1 June 2023 | 11 | 24 | 21 | 31 |
SMFC-CT | 21 June 2023 | 1 | 15 | 1 | 15 |
SMFC-AT | 21 June 2023 | 0 | 0 | 0 | 0 |
Sample | Date | EBS | EB | EBH | EB |
---|---|---|---|---|---|
SMFC1 | 10 February 2023 | 0 | 0 | 0 | 0 |
SMFC2 | 10 February 2023 | 5 | 1.37 × 108 | 7 | 4.33 × 108 |
SMFC3 | 10 February 2023 | 3 | 2.71 × 108 | 12 | 1.67 × 109 |
SMFC-B1 | 1 June 2023 | 1 | 1.51 × 108 | 15 | 2.99 × 109 |
SMFC-B2B | 1 June 2023 | 11 | 5.08 × 108 | 21 | 6.53 × 108 |
SMFC-CT | 21 June 2023 | 1 | 3.19 × 108 | 1 | 3.19 × 108 |
SMFC-AT | 21 June 2023 | 0 | 0 | 0 | 0 |
Accession Number | Identification | Phylum | %Homology | Absolute Abundance N = 63,317 |
---|---|---|---|---|
KC853576.1 | Uncultured bacterium | U | 98.83 | 1970 |
AB517723.1 | Uncultured bacterium | U | 93.84 | 1599 |
KX6722654.1 | Uncultured Clostridia | B | 98.51 | 829 |
JN540262.1 | Uncultured Clostridiales | B | 100 | 533 |
JN540220.1 | Uncultured Clostridiales | B | 97.53 | 416 |
HE804616.1 | Uncultured bacterium | U | 95.70 | 290 |
OQ678253.1 | Methylocaldum gracile | P | 100 | 258 |
JQ731734.1 | Uncultured Magnetospirillum | P | 100 | 256 |
MH686102.1 | Magnetospirillum | P | 98.76 | 250 |
NR_151894.1 | Anaerotaenia torta | B | 98.01 | 228 |
Accession Number | Identification | Phylum | %Homology | Absolute Abundance N = 52,502 |
---|---|---|---|---|
AB517723.1 | Uncultured bacterium | U | 93.00 | 454 |
KX672654.1 | Uncultured Clostridia | B | 98.51 | 368 |
EU887985.1 | Uncultured Clostridia | B | 100 | 326 |
MH045958.1 | Uncultured Clostridia | B | 98.01 | 253 |
KF630866.1 | Uncultured bacterium | U | 100 | 238 |
NR_151894.1 | Anaerotaenia torta | B | 98.01 | 214 |
EU097334.1 | Uncultured Clostridium sp. | B | 99.50 | 192 |
JN540220.1 | Uncultured Clostridiales | B | 97.53 | 184 |
MN209875.1 | Uncultured bacterium | U | 94.58 | 178 |
MN209875.1 | Uncultured bacterium | U | 95.05 | 128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumora, A.; Hopkins, L.; Yim, K.; Baykus, M.F.; Martinez, L.; Jimenez, L. Detection and Characterization of Electrogenic Bacteria from Soils. BioTech 2023, 12, 65. https://doi.org/10.3390/biotech12040065
Rumora A, Hopkins L, Yim K, Baykus MF, Martinez L, Jimenez L. Detection and Characterization of Electrogenic Bacteria from Soils. BioTech. 2023; 12(4):65. https://doi.org/10.3390/biotech12040065
Chicago/Turabian StyleRumora, Ana, Liliana Hopkins, Kayla Yim, Melissa F. Baykus, Luisa Martinez, and Luis Jimenez. 2023. "Detection and Characterization of Electrogenic Bacteria from Soils" BioTech 12, no. 4: 65. https://doi.org/10.3390/biotech12040065
APA StyleRumora, A., Hopkins, L., Yim, K., Baykus, M. F., Martinez, L., & Jimenez, L. (2023). Detection and Characterization of Electrogenic Bacteria from Soils. BioTech, 12(4), 65. https://doi.org/10.3390/biotech12040065