Next Issue
Volume 6, June
Previous Issue
Volume 5, December
 
 

Solids, Volume 6, Issue 1 (March 2025) – 14 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 5916 KiB  
Article
The Influence of Endogenous Derivatives on the Self-Assembly of Carbonized Polymer Dots
by Yingxi Qin, Wenkai Zhang, Ziwei Liu, Mingyan Jia, Jie Chi, Yujia Liu, Yue Wang, Aimiao Qin, Yu Wang and Liang Feng
Solids 2025, 6(1), 14; https://doi.org/10.3390/solids6010014 - 20 Mar 2025
Viewed by 184
Abstract
Carbonized polymer dots (CPDs) have emerged as a fascinating class of functional nanomaterials with unique physicochemical properties. However, the mechanisms governing their formation and photoluminescence remain a subject of intense debate. In this study, we conducted a systematic comparison of the structural, morphological, [...] Read more.
Carbonized polymer dots (CPDs) have emerged as a fascinating class of functional nanomaterials with unique physicochemical properties. However, the mechanisms governing their formation and photoluminescence remain a subject of intense debate. In this study, we conducted a systematic comparison of the structural, morphological, and optical properties of CPDs synthesized using various methods, revealing the self-assembly characteristics of low-molecular-weight CPDs with relatively complex structures. Through comprehensive structural, morphological, and optical analyses, we found that CPDs with fewer endogenous derivatives exhibited pronounced concentration-dependent self-assembly, leading to larger particle sizes and enhanced fluorescence emission at higher concentrations. In contrast, CPDs with higher proportions of endogenous derivatives showed limited self-assembly due to complex supramolecular interactions between the derivatives and polymer chains. Remarkably, the removal of endogenous derivatives using a ternary solvent extraction method significantly enhanced the self-assembly and fluorescence of the CPDs. These findings highlight the critical role of endogenous derivatives in modulating the self-assembly and photophysical properties of CPDs, paving the way for future advancements in this field. Full article
Show Figures

Figure 1

18 pages, 5152 KiB  
Article
Liquid Phase Preparation of Organic Thin Films Consisting of Complex Molecules—The Example of the Metallacrown CuCu4
by Frederik Pütz, Richard Blättner, Yves Kurek, Lukas Bolz, Swen Ehnert, Robert Wendels, Dominic Stephan, Philip Schreyer, Robert Ranecki, Ellen Brennfleck, Anne Lüpke, Dominik Laible, Benedikt Baumann, Stefan Lach, Eva Rentschler and Christiane Ziegler
Solids 2025, 6(1), 13; https://doi.org/10.3390/solids6010013 - 10 Mar 2025
Viewed by 747
Abstract
Large organic molecules and metal complexes are promising candidates for organic electronics, optoelectronics, and spintronics, with interfaces to metals being critical. Clean preparation in ultra-high vacuum (UHV) is ideal, but many systems are fragile and cannot be thermally sublimed. This study details the [...] Read more.
Large organic molecules and metal complexes are promising candidates for organic electronics, optoelectronics, and spintronics, with interfaces to metals being critical. Clean preparation in ultra-high vacuum (UHV) is ideal, but many systems are fragile and cannot be thermally sublimed. This study details the preparation of thin films of the metallacrown Cu(II)[12-MCCu(II)N(Shi)-4] (short: CuCu4) from the liquid phase using electrospray injection (ESI) and, in particular, liquid injection (LI). Both methods produce films with intact CuCu4 complexes, but they differ in the amount of co-adsorbed solvent molecules. Enhancements using an argon stream perpendicular to the molecular beam significantly reduce these contaminants. An additional effect occurs due to the counterions (HNEt3)2 of CuCu4. They are co-deposited by LI, but not by ESI. The advantages and limitations of the LI method are discussed in detail. The CuCu4 films prepared by different methods were analyzed with infrared (IR) spectroscopy, ultraviolet and X-ray photoelectron spectroscopy (UPS, XPS), and scanning tunneling microscopy (STM). For thicker films, ex situ and in situ prepared CuCu4 films to exhibit similar properties, but for studying interface effects or ultrathin films, in situ preparation is necessary. Full article
Show Figures

Graphical abstract

18 pages, 5657 KiB  
Article
Orientation of Conjugated Polymers in Single Crystals: Is It Really Unusual for the Polydiacetylene Backbone to Be Aligned Almost Perpendicular to the Hydrogen Bond Network?
by Pierre Baillargeon, Mathieu Desnoyers-Barbeau, Marc-Olivier Pouliot, Émile Gaouette, Rose Champoux, Myriam Veillette, Félix-Antoine Lemieux, Valentina Rojas Riano, Simone Picard, Ophélie Théberge, Jakob Boulanger, Sabrina Cissé, Daniel Fortin and Tarik Rahem
Solids 2025, 6(1), 12; https://doi.org/10.3390/solids6010012 - 9 Mar 2025
Viewed by 1132
Abstract
We report the topochemical solid-state polymerization of different series of symmetrical diacetylenes (DAs) and asymmetrical chlorodiacetylenes (ClDAs), whose members differ in their alkyl spacing lengths of one to four methylene units (n = 1, 2, 3, 4) between the diyne and carbamate [...] Read more.
We report the topochemical solid-state polymerization of different series of symmetrical diacetylenes (DAs) and asymmetrical chlorodiacetylenes (ClDAs), whose members differ in their alkyl spacing lengths of one to four methylene units (n = 1, 2, 3, 4) between the diyne and carbamate functionalities. Structure determination by single-crystal X-Ray diffraction (SCXRD) confirms that in each of these series, at least 50% of the analyses show monomers with a particular stacking pattern presenting two potential directions of polymerization simultaneously. An organization of a crystalline polydiacetylene (PDA) with an oblique chain orientation with respect to the network of cooperatives hydrogen bonds is rather rare in the literature (only two cases), and here we have obtained two more examples of this type of structural motif (supported by SCXRD analysis of the polymer). Orientation control is essential to optimize the performance of conjugated polymers, and a spacer length modification strategy presents a potential way to achieve this in the case of PDA. Full article
(This article belongs to the Special Issue Young Talents in Solid-State Sciences)
Show Figures

Graphical abstract

23 pages, 10834 KiB  
Review
Research Progress on Texture Regulation of Rare-Earth Magnesium Alloys
by Weiyan Liu, Boxin Wei, Rengeng Li, Xin Wang, Hao Wu and Wenbin Fang
Solids 2025, 6(1), 11; https://doi.org/10.3390/solids6010011 - 7 Mar 2025
Viewed by 790
Abstract
Magnesium and its rare-earth alloys are extensively studied for their lightweight properties and high specific strength, making them attractive for aerospace, automotive, and biomedical applications. However, their hexagonal close-packed structure leads to a strong basal texture, limiting plasticity and formability at room temperature. [...] Read more.
Magnesium and its rare-earth alloys are extensively studied for their lightweight properties and high specific strength, making them attractive for aerospace, automotive, and biomedical applications. However, their hexagonal close-packed structure leads to a strong basal texture, limiting plasticity and formability at room temperature. Considerable research has been devoted to texture control strategies, including alloying, thermomechanical processing, and recrystallization mechanisms, yet a comprehensive understanding of their effects remains an ongoing research focus. This review summarizes recent advances in texture regulation of rare-earth magnesium alloys, focusing on the role of RE elements (Gd, Y, Nd, Ce) and non-RE elements (Zn, Ca) in modifying basal texture and enhancing mechanical properties. The influence of key processing techniques, such as extrusion, rolling, equal channel angular pressing, and rotary shear extrusion, is discussed in relation to their effects on recrystallization behavior. Additionally, the mechanisms governing texture evolution, including continuous dynamic recrystallization, discontinuous dynamic recrystallization (DDRX), and particle-stimulated nucleation, are critically examined. By integrating recent findings, this review provides a systematic perspective on alloying strategies, processing conditions, and recrystallization pathways, offering valuable insights for the development of high-performance magnesium alloys with improved formability and mechanical properties. Full article
Show Figures

Figure 1

18 pages, 4684 KiB  
Article
Taguchi Robust Design of Phase Transfer Catalytic Hydrolysis of Polyethylene Terephthalate (PET) Waste in Mild Conditions: Application for the Preparation of Metal–Organic Frameworks
by Asma Nouira, Imene Bekri-Abbes, Isabel Pestana Paixão Cansado and Paulo Alexandre Mira Mourão
Solids 2025, 6(1), 10; https://doi.org/10.3390/solids6010010 - 6 Mar 2025
Viewed by 584
Abstract
With the rapid increase in polyethylene terephthalate (PET) usage in recent years, recycling has become indispensable in mitigating environmental damage and safeguarding natural resources. In this context, this study presents a methodology for valorizing PET waste through phase transfer catalytic hydrolysis conducted at [...] Read more.
With the rapid increase in polyethylene terephthalate (PET) usage in recent years, recycling has become indispensable in mitigating environmental damage and safeguarding natural resources. In this context, this study presents a methodology for valorizing PET waste through phase transfer catalytic hydrolysis conducted at a low temperature (80 °C) and atmospheric pressure, with the goal of recovering the terephthalic acid (TPA) monomer. The recovered TPA monomer was subsequently utilized as a precursor for the synthesis of metal–organic frameworks (MOFs). Tributylhexadecyl phosphonium bromide (3Bu6DPB) was selected as the phase transfer catalyst due to its efficiency and sustainability. The process parameters, including the concentration of NaOH, the wt.% of catalyst to PET, and the concentration of PET in the solution, were varied to optimize the hydrolysis reaction. The Taguchi design methodology with an L9 (3^3) orthogonal array was employed to analyze the influence of these factors on the depolymerization time. The analysis of variance (ANOVA) results revealed that the concentration of NaOH was the most significant factor, contributing to 93.3% of the process efficiency, followed by the wt.% of the catalyst to PET (6.5%). The findings also demonstrated that the concentration of NaOH had the greatest impact (Δ = 4.27, rank = 1), while the concentration of PET had the smallest effect (Δ = 0.16, rank = 3). The optimal conditions for PET depolymerization were achieved in 75 min with 20 g/100 mL of NaOH, 12 wt.% of catalyst to PET, and 5 g/100 mL of PET. The recovered TPA monomer was further employed as an organic ligand to synthesize Fe(III)-TPA MOFs under mild conditions (80 °C for 24 h). The X-ray diffraction (XRD) analysis revealed the simultaneous formation of MOF-235(Fe) and MIL-101(Fe), two multifunctional materials with diverse properties and applications. This study highlights an efficient approach for producing low-cost MOFs while promoting urban waste recycling, contributing to an integrated strategy for PET recycling and resource valorization. Full article
(This article belongs to the Special Issue Advances in the Study and Application of Polymers)
Show Figures

Graphical abstract

17 pages, 3552 KiB  
Article
Optimizing Mechanical Properties and Environmental Benefits of CFBFA Composite Gravels Through Gypsum, Hydrated Lime Addition, and CO2 Carbonation Curing
by Nuo Xu, Yuqing He, Rentuoya Sa, Nana Wang, Yuandong Yang and Suxia Ma
Solids 2025, 6(1), 9; https://doi.org/10.3390/solids6010009 - 26 Feb 2025
Viewed by 431
Abstract
This study explores the potential of utilizing circulating fluidized bed boiler fly ash (CFBFA) in the production of composite gravels, with the aim of achieving performance comparable to natural gravel while promoting sustainability. CFBFA, activated by hydrated lime and gypsum, was investigated for [...] Read more.
This study explores the potential of utilizing circulating fluidized bed boiler fly ash (CFBFA) in the production of composite gravels, with the aim of achieving performance comparable to natural gravel while promoting sustainability. CFBFA, activated by hydrated lime and gypsum, was investigated for its pozzolanic reaction and carbonation curing under simulated coal-fired power plant flue gas conditions (80 °C, 0.4 MPa, 15% CO2, 85% N2). The study focused on optimizing the ratios of gypsum and hydrated lime in CFBFA-based cementitious materials, with the goal of enhancing their mechanical properties and understanding the underlying hydration and carbonation mechanisms. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the mineral composition and microstructure of the composite gravels. The results revealed that the optimal gypsum-to-hydrated lime ratio for CFBFA composite gravels is 2:1, achieving a compressive strength of 9.01 MPa after 28 days of carbonation curing. Carbonation curing accelerated hydration, improving the material’s strength, stability, and microstructure. Additionally, the production of CFBFA composite gravels demonstrated significant environmental benefits, reducing Cumulative Energy Demand (CED) by 86.52% and Global Warming Potential (GWP) by 87.81% compared to cement road base materials. This research underscores the potential of CFBFA as a sustainable construction material, with insights into improving its mechanical performance and expanding its large-scale use through carbonation curing with flue gas. Full article
Show Figures

Figure 1

15 pages, 4998 KiB  
Article
Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays
by Beyza Nur Günaydın, Süleyman Çelik, Meral Yüce and Hasan Kurt
Solids 2025, 6(1), 8; https://doi.org/10.3390/solids6010008 - 12 Feb 2025
Viewed by 754
Abstract
Titanium nitride (TiN) is an advantageous material for plasmonic applications and is suitable for extreme conditions in which conventional plasmonic materials such as gold (Au) cannot be utilized. In this study, TiN and Au nanodisk arrays with different lattice spacing (Λ) were fabricated [...] Read more.
Titanium nitride (TiN) is an advantageous material for plasmonic applications and is suitable for extreme conditions in which conventional plasmonic materials such as gold (Au) cannot be utilized. In this study, TiN and Au nanodisk arrays with different lattice spacing (Λ) were fabricated using the electron beam lithography (EBL) method to increase the quality factor of TiN. At a period of 550 nm, the TiN nanodisk arrays demonstrate a higher sensitivity, 412.79 nm·RIU−1, with the plasmonic resonance wavelength shifting from 883 nm (n = 1.3335) to 915 nm (n = 1.4069) in the NIR region. The surface lattice resonance (SLR) properties of the produced TiN nanodisk arrays were investigated in detail with Au nanodisk arrays. The TiN nanodisk arrays caused sharp plasmon resonances by creating a localized plasmon vibration mode coupled with the diffractive grazing wave excited by the incident light. The transmission dips obtained at narrower full width at half maximum (FWHM) values caused at least an almost 10-fold improvement in the quality factor compared to localized surface plasmon resonance (LSPR) dips. This study is significant for assessing the surface plasmon resonance characteristics of TiN and Au nanodisk arrays across various periods and indices. Full article
Show Figures

Graphical abstract

37 pages, 11657 KiB  
Article
Experimental Evaluation of Temperature and Strain-Rate-Dependent Mechanical Properties of Austenitic Stainless Steel SS316LN and a New Methodology to Evaluate Parameters of Johnson–Cook and Ramberg–Osgood Material Models
by Sanjay Kumar Pandey and Mahendra Kumar Samal
Solids 2025, 6(1), 7; https://doi.org/10.3390/solids6010007 - 11 Feb 2025
Viewed by 789
Abstract
Austenitic stainless steel SS316LN is used as the material of construction of the vessel and core components of fast breeder reactors, which operate at an elevated temperature of 550 °C. For design and integrity analysis using the finite element method, material models, such [...] Read more.
Austenitic stainless steel SS316LN is used as the material of construction of the vessel and core components of fast breeder reactors, which operate at an elevated temperature of 550 °C. For design and integrity analysis using the finite element method, material models, such as Johnson–Cook and Ramberg–Osgood, are widely used. However, the temperature- and strain-rate-dependent plasticity and damage parameters of these models for this material are not available in the literature. Moreover, the method of evaluation of temperature and strain-rate-dependent plasticity parameters, in literature, has some major shortcomings, which have been addressed in this work. In addition, a new optimization-based procedure has been developed to evaluate all nine plasticity and damage parameters, which uses results of combined finite element analysis and experimental data. The procedure has been validated extensively by testing tensile specimens at different temperatures, by testing notched tensile specimens of different notch radii, and by carrying out high strain-rate tests using a split Hopkinson pressure bar test setup. The parameters of the Johnson–Cook material model, evaluated in this work, have been used in finite element analysis to simulate load-displacement behavior and fracture strains of various types of specimens, and the results have been compared with experimental data in order to check the accuracy of the parameters. The procedure developed in this work shall help the researchers to adopt such a technique for accurate estimation of both plasticity and damage parameters of different types of material models. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Figure 1

28 pages, 6510 KiB  
Review
[MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties
by Piotr W. Zabierowski
Solids 2025, 6(1), 6; https://doi.org/10.3390/solids6010006 - 8 Feb 2025
Viewed by 906
Abstract
This review provides an analysis of non-perovskite hybrid halides of coinage metals templated by metal–organic cations (CCDC November 2023). These materials display remarkable structural diversity, from zero-dimensional molecular complexes to intricate three-dimensional frameworks, allowing fine-tuning of their properties. A total of 208 crystal [...] Read more.
This review provides an analysis of non-perovskite hybrid halides of coinage metals templated by metal–organic cations (CCDC November 2023). These materials display remarkable structural diversity, from zero-dimensional molecular complexes to intricate three-dimensional frameworks, allowing fine-tuning of their properties. A total of 208 crystal structures, comprising haloargentates, mixed-metal haloargentates, and halocuprates, are categorized and examined. Their potential in photocatalysis is discussed. Special attention is given to the structural adaptability of these materials for the generation of functional interfaces. This review highlights key compounds and aims to inspire further research into optimizing hybrid halides for advanced technological applications. Full article
Show Figures

Graphical abstract

13 pages, 3935 KiB  
Article
Mechanochemical Synthesis of High-Entropy Layered Double Hydroxide MgCoNi/AlFeY
by Olga Kokoshkina, Maksim Yapryntsev and Olga Lebedeva
Solids 2025, 6(1), 5; https://doi.org/10.3390/solids6010005 - 2 Feb 2025
Viewed by 532
Abstract
In the present study, the possibility of synthesizing high-entropy hexacationic layered double hydroxide MgCoNi/AlFeY via mechanochemical synthesis was demonstrated. In the synthesis, the activation rate, activation time, and NaOH amount were varied. The main synthesis stages were as follows: the mechanical activation of [...] Read more.
In the present study, the possibility of synthesizing high-entropy hexacationic layered double hydroxide MgCoNi/AlFeY via mechanochemical synthesis was demonstrated. In the synthesis, the activation rate, activation time, and NaOH amount were varied. The main synthesis stages were as follows: the mechanical activation of salts, NaOH addition, washing with distilled water before achieving neutral pH, and drying at 100 °C. The stage of aging in aqueous solution was omitted. During the synthesis, the activation conditions were varied, the activation time ranged from 1 to 120 min, the rotation speed of the ball mill was changed from 200 to 400 rpm, and the ratio values of sodium hydroxide weight to the mass of cations were specified as 1.0, 1.5, or 2.0. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy combined with an energy-dispersive analyzer, thermal analysis, Fourier transform infrared spectroscopy, and Raman spectroscopy. The following optimal synthesis conditions for obtaining single-phase sample were determined: an activation rate of 300 rpm, an activation time of 30 min, and an m(cation)-to-m(NaOH) ratio of 1:1. Full article
Show Figures

Figure 1

20 pages, 16756 KiB  
Article
About the Rare-Earth Metal(III) Bromide Oxoarsenates(III) RE5Br3[AsO3]4 with A- (RE = La and Ce) or B-Type Structure (RE = Pr, Nd, Sm–Tb) and RE3Br2[AsO3][As2O5] (RE = Y, Dy–Yb)
by Ralf J. C. Locke, Florian Ledderboge, Felix C. Goerigk, Frank C. Zimmer and Thomas Schleid
Solids 2025, 6(1), 4; https://doi.org/10.3390/solids6010004 - 15 Jan 2025
Cited by 1 | Viewed by 768
Abstract
The monoclinic rare-earth metal(III) bromide oxoarsenates(III) RE5Br3[AsO3]4 of the A-type (RE = La and Ce) crystallize in the space group C2/c with the lattice parameters a = 1834.67(9) pm, b = 553.41(3) pm, [...] Read more.
The monoclinic rare-earth metal(III) bromide oxoarsenates(III) RE5Br3[AsO3]4 of the A-type (RE = La and Ce) crystallize in the space group C2/c with the lattice parameters a = 1834.67(9) pm, b = 553.41(3) pm, c = 1732.16(9) pm and β = 107.380(3)° for La5Br3[AsO3]4 and a = 1827.82(9) pm, b = 550.67(3) pm, c = 1714.23(9) pm and β = 107.372(3)° for Ce5Br3[AsO3]4 with Z = 4, while, for the B-type (RE = Pr, Nd and Sm–Tb), they prefer the space group P2/c with lattice parameters from a = 881.23(5) pm, b = 547.32(3) pm, c = 1701.14(9) pm and β = 90.231(3)° for Pr5Br3[AsO3]4 to a = 875.71(5) pm, b = 535.90(3) pm, c = 1643.04(9) pm and β = 90.052(3)° for Tb5Br3[AsO3]4 with Z = 2. The closely related rare-earth metal(III) bromide oxoarsenates(III) RE3Br2[AsO3][As2O5] crystallize in the triclinic space group P1¯ with lattice parameters from a = 539.15(4) pm, b = 870.68(6) pm, c = 1092.34(8), α = 90.661(2)°, β = 94. 792(2)° and γ = 90.223(2)° for Dy3Br2[AsO3][As2O5] to a = 533.56(4) pm, b = 869.61(6) pm, c = 1076.70(8), α = 90.698(2)°, β = 94.785(2)° and γ = 90.053(2)° for Yb3Br2[AsO3][As2O5] with Z = 2. All three structures have the same building units with [REO8]13− and [REO4Br4]9− polyhedra as well as isolated ψ1-tetrahedral [AsO3]3− anions in common, with the exception that, in the latter two, ψ1-[AsO3]3− tetrahedra linked by a corner form a pyroanionic [As2O5]4− entity. A- and B-type differ in the stacking sequence of their 2{[(RE3)Ot4/1(Br1)v1/2(Br2)e3/3]6.5−} layers. While the former have an ABC sequence, the latter exhibit an AAA variant. In the triclinic structures, the (RE3)3+ sites are thinned out, while the As3+ sites are simultaneously enriched, resulting in the mentioned condensed units. Full article
Show Figures

Figure 1

22 pages, 17837 KiB  
Article
In-Situ Cure-Induced Strain Measurements Using Optical Fiber Bragg Gratings for Residual Stress Determinations in Thermosets
by Lars P. Mikkelsen, Jesper K. Jørgensen, Ulrich A. Mortensen and Tom L. Andersen
Solids 2025, 6(1), 3; https://doi.org/10.3390/solids6010003 - 9 Jan 2025
Viewed by 1028
Abstract
A small experimental setup for in-situ measurement of the load-transferring strains during the curing process of thermosets is proposed. Combining the output from an unconstrained and a kinematically constrained setup, it is possible to design a cure profile for the first time, lowering [...] Read more.
A small experimental setup for in-situ measurement of the load-transferring strains during the curing process of thermosets is proposed. Combining the output from an unconstrained and a kinematically constrained setup, it is possible to design a cure profile for the first time, lowering the residual stresses in the final product while keeping the cure time short based on the output from a few simple experiments. The stress relaxation during the curing process under a kinetically constrained condition is accounted for by comparing the final cure-induced strain during a kinetically unconstrained and constrained cure experiment. The constrained polymer is curing between two laminates where the constraining layer is removed after finalizing the cure profile, making it possible to measure the final cure-induced strain for that case as well. The temperature at which the load-transferring point is reached is found to be a key process parameter from which the final cure-induced strains can be predicted for the unconstrained case. From the corresponding constrained cure experiments, the final residual stresses can be measured. Full article
Show Figures

Figure 1

15 pages, 2623 KiB  
Article
Impact of Vanadium and Zirconium Contents on Properties of Novel Lightweight Ti3ZryNbVx Refractory High-Entropy Alloys
by Noura Al-Zoubi, Amer Almahmoud and Abdalla Obeidat
Solids 2025, 6(1), 2; https://doi.org/10.3390/solids6010002 - 2 Jan 2025
Cited by 3 | Viewed by 905
Abstract
This research explores the physical properties of refractory high-entropy alloys Ti3ZryNbVx (0.5 ≤ x ≤ 3.5; 1 ≤ y ≤ 2), utilizing the first-principles exact muffin-tin orbitals method, in addition to the coherent potential approximation. We examine the [...] Read more.
This research explores the physical properties of refractory high-entropy alloys Ti3ZryNbVx (0.5 ≤ x ≤ 3.5; 1 ≤ y ≤ 2), utilizing the first-principles exact muffin-tin orbitals method, in addition to the coherent potential approximation. We examine the atomic size difference (δ), the valence electron concentration (VEC) and the total energy of the body-centered cubic (bcc), the face-centered cubic (fcc) and the hexagonal close-packed (hcp) lattices, revealing a disordered solid solution with a bcc lattice as the stable phase of these alloys. The stability of the bcc Ti3ZryNbVx alloys increases with the addition of vanadium, and slightly decreases with increasing Zr concentration. All the investigated RHEAs have densities less than 6.2 g/cm3. Adding V to the Ti-Zr-Nb-V system reduces the volume and slightly enhances the density of the studied alloys. Our results show that increasing V content increases the tetragonal shear modulus C′, which assures that V enhances the mechanical stability of the bcc phase, and also increases the elastic moduli. Moreover, all the examined alloys are ductile. Vickers hardness and bond strength increase as V concentration increases. In contrast, decreasing Zr content reduces the density and increases the hardness and the bond strength of the present RHEAs, potentially resulting in systems with desirable mechanical properties and lower densities. These findings provide theoretical insights into the behavior of RHEAs, and emphasize the necessity for additional experimental investigations. Full article
Show Figures

Graphical abstract

17 pages, 6287 KiB  
Article
A Quaternary Solid Dispersion System for Improving the Solubility of Olaparib
by Tae-Han Yun, Jeong-Gyun Lee, Kyu-Ho Bang, Jung-Hyun Cho and Kyeong-Soo Kim
Solids 2025, 6(1), 1; https://doi.org/10.3390/solids6010001 - 2 Jan 2025
Viewed by 1274
Abstract
To improve the low solubility of poorly water soluble olaparib, in the following study, we prepared olaparib-loaded quaternary solid dispersions with hypromellose, Tween 20 or Labrasol, and colloidal silica. The solubility of olaparib with various types of surfactants was evaluated to select the [...] Read more.
To improve the low solubility of poorly water soluble olaparib, in the following study, we prepared olaparib-loaded quaternary solid dispersions with hypromellose, Tween 20 or Labrasol, and colloidal silica. The solubility of olaparib with various types of surfactants was evaluated to select the most suitable surfactant to effectively enhance its solubility, and subsequently, olaparib-loaded quaternary solid dispersions were prepared through spray drying. The physicochemical properties of the prepared olaparib-loaded quaternary solid dispersions were investigated using scanning electron microscopy, flowability, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. The particle size of the olaparib-loaded quaternary solid dispersions was smaller and more spherical compared to the olaparib drug powder and maintained an amorphous state, and olaparib exhibited no intermolecular interactions with other excipients within the solid dispersion. Additionally, they exhibited enhanced flow properties compared to the olaparib drug powder. The results of subsequent kinetic solubility tests and dissolution tests demonstrated that the surfactant influenced the enhancement of the solubility and drug release of olaparib. Therefore, olaparib-loaded quaternary solid dispersions, characterized by enhanced solubility, will be beneficial for the oral delivery of poorly soluble olaparib. Full article
(This article belongs to the Special Issue Amorphous Materials: Fabrication, Properties, and Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop