Exploring the Associations Between Systematic Engagement in Physical Activity, Dietary Habits and Body Composition in a Sample of Greek Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Procedure
2.3. Study Participants
2.4. Exercise Engagement and Physical Activity Assessment
2.5. Nutritional Assessment
2.6. Body Composition Assessment
2.7. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Systematic Engagement in Sports
3.3. Family Characteristics According to Adolescent Stage and Engagement in Exercise
3.4. Anthropometric Variables According to Engagement in Sport Activities
3.5. Adherence to the Mediterranean Diet According to Gender and Engagement in Sport Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.-J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A Foundation for Future Health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.T.; Krenek, A.; Magge, S.N. Childhood Obesity and Cardiovascular Disease Risk. Curr. Atheroscler. Rep. 2023, 25, 405–415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child under nutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Delisle, H.; World Health Organization. Nutrition in Adolescence: Issues and Challenges for the Health Sector: Issues in Adolescent Health and Development; WHO: Geneva, Switzerland, 2005; ISBN 978-92-4-159366-3. [Google Scholar]
- Klimis-Zacas, D.J.; Kalea, A.Z.; Yannakoulia, M.; Matalas, A.L.; Vassilakou, T.; Papoutsakis-Tsarouhas, C.; Yiannakouris, N.; Polychronopoulos, E.; Passos, M. Dietary intakes of Greek urban adolescents do not meet the recommendations. Nutr. Res. 2007, 27, 18–26. [Google Scholar] [CrossRef]
- Prentice, A.M.; Ward, K.A.; Goldberg, G.R.; Jarjou, L.M.; Moore, S.E.; Fulford, A.J.; Prentice, A. Critical Windows for Nutritional Interventions against Stunting. Am. J. Clin. Nutr. 2013, 97, 911–918. [Google Scholar] [CrossRef]
- Vassilakou, T. Childhood Malnutrition: Time for Action. Children 2021, 8, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. Available online: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 12 March 2024).
- Manios, Y.; Yiannakouris, N.; Papoutsakis, C.; Moschonis, G.; Magkos, F.; Skenderi, K.; Zampelas, A. Behavioral and physiological indices related to BMI in a cohort of primary schoolchildren in Greece. Am. J. Hum. Biol. 2004, 16, 639–647. [Google Scholar] [CrossRef]
- Magkos, F.; Piperkou, I.; Manios, Y.; Papoutsakis, C.; Yiannakouris, N.; Cimponerio, A.; Aloumanis, K.; Skenderi, K.; Papathoma, A.; Arvaniti, F.; et al. Diet, blood lipid profile and physical activity patterns in primary school children from a semi-rural area of Greece. J. Hum. Nutr. Diet. 2006, 19, 101–112. [Google Scholar] [CrossRef]
- Angelopoulos, P.D.; Milionis, H.J.; Moschonis, G.; Manios, Y. Relations between obesity and hypertension: Preliminary data from a cross-sectional study in primary schoolchildren: The children study. Eur. J. Clin. Nutr. 2006, 60, 1226–1234. [Google Scholar] [CrossRef]
- Moschonis, G.; Tanagra, S.; Vandorou, A.; Kyriakou, A.E.; Dede, V.; Siatitsa, P.E.; Koumpitski, A.; Androutsos, O.; Grammatikaki, E.; Kantilafti, M.; et al. Social, economic and demographic correlates of overweight and obesity in primary school children: Preliminary data from the Healthy Growth Study. Public Health Nutr. 2011, 13, 1693–1700. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Leonibus, C.; Marcovecchio, M.L.; Chiarelli, F. Update on statural growth and pubertal development in obese children. Pediatr. Rep. 2012, 4, e35. [Google Scholar] [CrossRef] [PubMed]
- Chung, S. Growth and puberty in obese children and implications of body composition. J. Obes. Metab. Syndr. 2017, 26, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, M.; Birken, C.; Hamilton, J. Childhood obesity: Causes, consequences, and management. Pediatr. Clin. N. Am. 2015, 62, 821–840. [Google Scholar] [CrossRef]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Sheldon, S.H.; Spruyt, K.; Ward, S.D.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, e714–e755. [Google Scholar] [CrossRef]
- Tagi, V.M.; Giannini, C.; Chiarelli, F. Insulin resistance in children. Front. Endocrinol. 2019, 10, 342. [Google Scholar] [CrossRef]
- Rankin, J.; Matthews, L.; Cobley, S.; Han, A.; Sanders, R.; Wiltshire, H.D.; Baker, J.S. Psychological consequences of childhood obesity: Psychiatric comorbidity and prevention. Adolesc. Health Med. Ther. 2016, 7, 125–146. [Google Scholar] [CrossRef]
- Topçu, S.; Orhon, F.S.; Tayfun, M.; Uçaktürk, S.A.; Demirel, F. Anxiety, depression, and self-esteem levels in obese children: A case-control study. J. Pediatr. Endocrinol. Metabol. 2016, 29, 357–361. [Google Scholar] [CrossRef]
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Fam. Med. Prim. Care 2015, 4, 187–192. [Google Scholar] [CrossRef]
- Zahner, L.; Puder, J.J.; Roth, R.; Knöpfli, M.; Braun-Fahrländer, C.; Marti, B. A school-based physical activity program to improve health and fitness in children aged 6–13 years (“Kinder-Sportstudie KISS”): Study design of a randomized controlled trial [ISRCTN15360785]. BMC Public Health 2006, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- Diem, G.; Brownson, R.C.; Grabauskas, V.; Shatchkute, A.; Stachenko, S. Prevention and control of noncommunicable diseases through evidence-based public health: Implementing the NCD 2020 action plan. Glob. Health Promot. 2016, 23, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Report of the Commission on Ending Childhood Obesity: Implementation Plan. Available online: https://apps.who.int/gb/ebwha/pdf_files/wha70/a70_31-en.pdf (accessed on 20 July 2019).
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C.K. Adolescent Physical Activity and Health. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef]
- Landry, B.W.; Driscoll, S.W. Physical activity in children and adolescents. PMR 2012, 4, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Ventura, E.E.; Shaibi, G.Q.; Byrd-Williams, C.E.; Alexander, K.E.; Vanni, A.K.; Mei-ja, M.R.; Weigensberg, M.J.; Spruijt-Metz, D.; Goran, M.I. Interventions for improving meta-bolic risk in overweight Latino youth. Int. J. Pediatr. Obes. 2010, 5, 451–455. [Google Scholar] [CrossRef]
- Monteiro, P.A.; Antunes, B.M.M.; Silveira, L.S.; Fernandes, R.A.; Freitas Junior, I.F. Effect of a concurrent training on risk factors for the accumulation of hepatic fat of obese adolescents. Medicina 2013, 46, 17–23. [Google Scholar]
- Rossetti, M.B.; Britto, R.R.; Norton, R.C. Early prevention of cardiovascular diseases in juvenile obesity: The anti-inflammatory effect of physical exercise. Rev. Bras. Med. Esp. 2009, 15, 472–475. [Google Scholar] [CrossRef]
- Longmuir, P.; Colley, R.; Wherley, V.; Tremblay, M. Risks and benefits of childhood physical activity. Lancet Diabetes Endocrinol. 2014, 2, 861–862. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Gray, C.E.; Akinroye, K.; Harrington, D.M.; Katzmarzyk, P.T.; Lam-bert, E.V.; Liukkonen, J.; Maddison, R.; Ocansey, R.T.; Onywera, V.O.; et al. Physical Activity of Children: A Global Matrix of Grades Comparing 15 Countries. J. Phys. Act. Health 2014, 11, S113–S125. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Barnes, J.D.; González, S.A.; Katzmarzyk, P.T.; Onywera, V.O.; Reil-ly, J.J.; Tomkinson, G.R.; Global Matrix 2.0 Research Team. Introduction to the Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Com-paring 38 Countries. J. Phys. Act. Health 2016, 13, S85–S86. [Google Scholar] [CrossRef] [PubMed]
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacIn-nis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-Mass Index and Mortality among 1.46 Million White Adults. N. Engl. J. Med. 2010, 363, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Blossner, M.; Borghi, E. Global prevalence and trends of overweight and obesity among preschool children. Am. J. Clin. Nutr. 2010, 92, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Golden, N.H.; Abrams, S.A.; Committee on Nutrition. Optimizing bone health in children and adolescents. Pediatrics 2014, 134, e1229–e1243. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; González-Gálvez, N.; Abenza-Cano, L.; Vaquero-Cristóbal, R. Differences in Physical Fitness and Body Composition Between Active and Sedentary Adolescents: A Systematic Review and Meta-Analysis. J. Youth Adolesc. 2022, 51, 177–192. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Georgoulis, M.; Psarra, G.; Milkonidou, A.; Panagiotakos, D.B.; Kyriakou, D.; Bellou, E.; Tambalis, K.D.; Sidossis, L.S. Association of Anthropometric and Lifestyle Parameters with Fitness Levels in Greek Schoolchildren: Results from the EYZHN Program. Front. Nutr. 2018, 5, 10. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Schroder, H.; Ribas, L.; Koebnick, C.; Funtikova, A.; Gomez, S.F.; Fito, M.; Gusi, N.; Aznar, S.; Marín-Cascales, E.; González-Valeiro, M.; et al. Prevalence of abdominal obesity in Spanish children and adolescents. Do we need waist circumference measurements in pediatric practice? PLoS ONE 2014, 9, e87549. [Google Scholar] [CrossRef]
- Galan-Lopez, P.; Ries, F.; Gisladottir, T.; Domínguez, R.; Sánchez-Oliver, A.J. Healthy Lifestyle: Relationship between Mediterranean Diet, Body Composition and Physical Fitness in 13 to 16-Years Old Icelandic Students. Int. J. Environ. Res. Public Health 2018, 15, 2632. [Google Scholar] [CrossRef]
- Grao-Cruces, A.; Fernandez-Martinez, A.; Nuviala, A. Association of fitness with life satisfaction. health risk behaviors. and adherence to the Mediterranean diet in Spanish adolescents. J. Strength Cond. Res. 2014, 28, 2164–2172. [Google Scholar] [CrossRef]
- Farajian, P.; Risvas, G.; Karasouli, K.; Pounis, G.D.; Kastorini, C.M.; Panagiotakos, D.B.; Zampelas, A. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: The GRECO study. Atherosclerosis 2011, 217, 525–530. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 27 July 2022).
- Serra-Majem, L.; Roman, B.; Estruch, R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr. Rev. 2006, 64, S27–S47. [Google Scholar] [CrossRef]
- Keys, A. Mediterranean diet and public health: Personal reflections. Am. J. Clin. Nutr. 1995, 61 (Suppl. S6), 1321S–1323S. [Google Scholar] [CrossRef]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Grao-Cruces, A.; Nuviala, A.; Fernandez-Martinez, A.; Porcel-Galvez, A.M.; Moral Garcia, J.E.; Martinez-Lopez, E.J. Adherence to the Mediterranean diet in rural and urban adolescents of southern Spain, life satisfaction, anthropometry, and physical and sedentary activities. Nutr. Hosp. 2013, 28, 1129–1135. [Google Scholar] [PubMed]
- Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean diet among adults in Mediterranean countries: A systematic literature review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain, Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Damigou, E.; Faka, A.; Kouvari, M.; Anastasiou, C.; Kosti, R.I.; Chalkias, C.; Panagiotakos, D. Adherence to a Mediterranean type of diet in the world: A geographical analysis based on a systematic review of 57 studies with 1,125,560 participants. Int. J. Food Sci. Nutr. 2023, 74, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Argiropoulou, E.C.; Michalopoulou, M.; Aggeloussis, N.; Avgerinos, A. Validity and reliability of physical activity measures in Greek high school age children. J. Sports Sci. Med. 2004, 3, 147–159. [Google Scholar] [PubMed] [PubMed Central]
- WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020.
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 January 2022).
- Eime, R.M.; Harvey, J.T.; Charity, M.J. Sport drop-out during adolescence: Is it real, or an artefact of sampling behaviour? Int. J. Sport Policy Politics 2019, 11, 715–726. [Google Scholar] [CrossRef]
- Emmonds, S.; Till, K.; Weaving, D.; Burton, A.; Lara-Bercial, S. Youth Sport Participation Trends Across Europe: Implications for Policy and Practice. Res. Q. Exerc. Sport 2024, 95, 69–80. [Google Scholar] [CrossRef]
- Behan, S.; Belton, S.; Peers, C.; O’Connor, N.E.; Issartel, J. Moving well-being well: Investigating the maturation of fundamental movement skill proficiency across sex in Irish children aged five to twelve. J. Sports Sci. 2019, 37, 2604–2612. [Google Scholar] [CrossRef]
- Veldman, S.; Palmer, K.K.; Okely, A.D.; Robinson, L.E. Promoting ball skills in preschool-age girls. J. Sci. Med. Sport 2017, 20, 50–54. [Google Scholar] [CrossRef]
- Marques, A.; da Costa, F.C. Levels of Physical Activity of Urban Adolescents According to Age and Gender. Int. J. Sports Sci. 2013, 3, 23–27. [Google Scholar] [CrossRef]
- Grams, L.; Nelius, A.-K.; Pastor, G.G.; Sillero-Quintana, M.; Veiga, Ó.L.; Homey-er, D.; Kück, M. Comparison of Adherence to Mediterranean Diet between Spanish and German School-Children and Influence of Gender, Overweight, and Physical Activity. Nutrients 2022, 14, 4697. [Google Scholar] [CrossRef]
- Manzano-Carrasco, S.; Garcia-Unanue, J.; Lopez-Fernandez, J.; Hernandez-Martin, A.; Sanchez-Sanchez, J.; Gallardo, L.; Felipe, J.L. Differences in body composition and physical fitness parameters among prepubertal and pubertal children engaged in extracurricular sports: The active health study. Eur. J. Public Health 2022, 32 (Suppl. S1), i67–i72. [Google Scholar] [CrossRef]
- Espinoza-Salinas, A.; González-Jurado, J.; Molina-Sotomayor, E.; Fuentes-Barría, H.; Farías-Valenzuela, C.; Arenas-Sánchez, G. Mobilization, transport and oxidation of fatty acids: Physiological mechanisms associated with weight loss. J. Sport Health Res. 2020, 12 (Suppl. S3), 303–312. [Google Scholar]
- Golubic, R.; Wijndaele, K.; Sharp, S.J.; Simmons, R.K.; Griffin, S.J.; Wareham, N.J.; Ekelund, U.; Brage, S.; Pro Active Study Group. Physical activity, sedentary time and gain in overall and central body fat: 7-year follow-up of the Pro Active trial cohort. Int. J. Obes. 2015, 39, 142–148. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; García Bengoechea, E.; Wiesner, G. Sedentary behaviour and adiposity in youth: A systematic review of reviews and analysis of causality. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 43. [Google Scholar] [CrossRef]
- Muros, J.; Salvador, F.; Zurita, F.; Gamez, V.K.E. The association between healthy lifestyle behaviors and health-related quality of life among adolescents. J. Pediatr. 2017, 93, 406–412. [Google Scholar] [CrossRef]
- Evaristo, O.S.; Moreira, C.; Lopes, L.; Abreu, S.; Agostinis-Sobrinho, C.; Oliveira-Santos, J.; Póvoas, S.; Oliveira, A.; Santos, R.; Mota, J. Associations between physical fitness and adherence to the Mediterranean diet with health-related quality of life in adolescents: Results from the Lab Med Physical Activity Study. Eur. J. Public Health 2018, 28, 631–635. [Google Scholar] [CrossRef]
- Moradell, A.; Santaliestra-Pasías, A.M.; Aparicio-Ugarriza, R.; Huybrechts, I.; Bertalanné Szommer, A.; Forsner, M.; González-Gross, M.; Kafatos, A.; Androutsos, O.; Michels, N.; et al. Are Physical Activity and Sedentary Screen Time Levels Associated With Food Consumption in European Adolescents? The HELENA Study. J. Am. Nutr. Assoc. 2023, 42, 55–66. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Brazo-Sayavera, J.; García-Hermoso, A.; Yuste Lucas, J.L. Adherence to Mediterranean Diet related with physical fitness and physical activity in school-children aged 6–13. Nutrients 2020, 12, 567. [Google Scholar] [CrossRef]
- Bellisle, F. Food choice, appetite and physical activity. Public Health Nutr. 1999, 2, 357–361. [Google Scholar] [CrossRef]
- Lazarou, C.; Panagiotakos, D.B.; Matalas, A. Physical activity mediates the protec-tive effect of the Mediterranean diet on children’s obesity status: The CYKIDS study. Nutrition 2010, 26, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Manz, K.; Mensink, G.B.M.; Finger, J.D.; Haftenberger, M.; Brettschneider, A.-K.; Barbosa, C.L.; Krug, S.; Schienkiewitz, A. Associations between physical activity and food intake among children and adolescents: Results of KiGGS Wave 2. Nutrients 2019, 11, 1060. [Google Scholar] [CrossRef]
- Ottevaere, C.; Huybrechts, I.; Cuenca-Garcia, M.; De Bourdeaudhuij, I.; Gottrand, F.; Kafatos, A.; Le Donne, C.; Moreno, L.A.; Widhalm, K.; De Henauw, S.; et al. Relation-ship between self-reported dietary intake and physical activity levels among adolescents: The HELENA study. Int. J. Behav. Nutr. Phys. 2011, 8, 8. [Google Scholar] [CrossRef]
Variables | Total Population | Early Adolescents | Late Adolescents | ||||||
---|---|---|---|---|---|---|---|---|---|
All (N = 292) | Boys (N = 169) | Girls (N = 123) | All (N = 81) | Boys (N = 45) | Girls (N = 36) | All (N = 211) | Boys (N = 124) | Girls (N = 87) | |
Age (years) | 15.0 (14.0–16.0) | 16.0 (14.0–16.0) | 15.0 (14.0–16.0) | 13.0 (12.0–14.0) | 13.0 (13.0–14.0) # | 13.0 (12.0–14.0) $ | 16.0 (15.0–17.0) | 16.0 (15.0–17.00) # | 16.0 (15.0–17.0) $ |
Height (m) | 1.70 (1.62–1.76) | 1.76 (1.70–1.79) * | 1.62 (1.58–1.67) * | 1.64 (1.58–1.75) | 1.72 (1.61–1.77) *# | 1.61 (1.56–1.64) * | 1.71 (1.64–1.77) | 1.76 (1.72–1.80) *# | 1.63 (1.59–1.67) * |
Weight (kg) | 61.8 (53.2–69.7) | 66.6 (58.5–73.3) * | 54.8 (50.5–62.8) * | 55.8 (48.2–63.1) | 58.3 (49.4–65.5) *# | 51.6 (45.9–60.9) *$ | 64.6 (55.3–72.3) | 68.0 (62.0–76.2) *# | 55.3 (52.1–64.8) *$ |
BMI (kg/m2) | 20.9 (19.3–23.2) | 21.1 (19.3–23.5) | 20.8 (19.3–22.7) | 19.6 (17.9–20.9) | 19.6 (17.7–20.8) # | 19.8 (18.0–21.7) $ | 21.4 (20.0–23.6) | 21.9 (20.3–24.1) # | 21.1 (19.5–23.2) $ |
Body weight categories | |||||||||
Underweight (%) | 4.5 | 3.0 | 6.5 | 2.0 | 2.2 | 2.8 | 5.2 | 3.2 | 8.0 |
Normal weight (%) | 75.3 | 72.8 | 78.9 | 79.0 | 80.0 | 77.8 | 73.9 | 70.2 | 79.3 |
Overweight (%) | 15.4 | 17.8 | 12.2 | 14.8 | 11.1 | 19.4 | 15.6 | 20.2 | 9.2 |
Obese (%) | 4.8 | 6.5 | 2.4 | 3.7 | 6.7 | 0 | 5.2 | 6.5 | 3.4 |
FFM (kg) | 26.9 (22.2–32.8) | 31.8 (27.7–35.5) * | 22.2 (20.4–24.4) * | 24.6 (20.7–30.3) | 27.5 (22.5–32.5) *# | 22.3 (20.3–24.3) * | 29.3 (22.5–33.4) | 32.8 (29.9–36.3) *# | 22.2 (20.4–24.8) * |
FM (kg) | 11.0 (6.9–15.8) | 8.6 (5.8–13.1) * | 13.8 (9.7–18.0) * | 8.3 (4.5–14.5) | 5.3 (4.0–9.5) *# | 11.1 (8.3–16.0) *$ | 11.9 (7.9–16.2) | 10.1 (6.8–13.7) *# | 14.6 (10.9–18.6) *$ |
FM (%) | 17.9 (11.8–25.4) | 13.7 (9.5–18.3) * | 24.7 (19.3–29.6) * | 16.7 (8.0–25.6) | 9.6 (6.6–17.5) *# | 22.9 (16.5–26.7) * | 18.2 (12.6–25.3) | 14.5 (11.2–18.5) *# | 25.2 (20.5–30.6) * |
BMR (kcal/day) | 1422.0 (1252.0–1630.0) | 1595.0 (1450.0–1722.0) * | 1254.5 (1186.2–1342.7) * | 1340.0 (1206.0–1543.0) | 1439.0 (1259.02–1620.7) *# | 1260.0 (1181.0–1327.0) * | 1506.0 (1267.0–1655.0) | 1623.0 (1525.0–1751.0) *# | 1253.0 (1187.0–1361.0) * |
KIDMED score | 6.0 (4.0–7.0) | 6.0 (4.0–8.0) | 6.0 (4.0–7.0) | 6.0 (4.0–8.0) | 6.0 (4.0–8.0) | 7.0 (5.0–8.0) | 6.0 (4.0–7.0) | 6.0 (4.0–7.0) | 6.0 (4.0–7.00) |
Exercise | All Participants | Early Adolescents | Late Adolescents | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Type of Exercise | All (N = 286) | Boys (N =167) | Girls (N = 119) | All (N =78) | Boys (N = 44) | Girls (N =34) | All (N = 208) | Boys (N = 123) | Girls (N = 85) | P for Gender |
No Exercise | 55 (19.2) 1 | 19 (11.4) 2 | 36 (30.3) | 5 (6.4) | 2 (4.5) | 3 (8.8) | 50 (24.0) | 17 (13.8) | 33 (38.8) | All: <0.001. Early Adolescents: p 0.086 Late Adolescents: <0.001 |
Team Sports | 106 (37.1) 1 | 75 (44.9) 2 | 31 (26.1) 2 | 42 (53.8) | 29 (65.9) | 13 (38.2) | 64 (30.8) | 46 (37.4) | 18 (21.2) | |
Indoor Gym Sports | 92 (32.2) | 52 (31.1) | 40 (33.6) | 17 (21.8) | 6 (13.6) | 11 (32.4) | 75 (36.1) | 46 (37.4) | 29 (34.1) | |
Team and Gym | 33 (11.5) | 21 (12.6) | 12 (10.1) | 14 (17.9) | 7 (15.9) | 7 (20.6) | 19 (9.1) | 14 (11.4) | 5 (5.9) | |
MVPA ≥ 60 min/day | 190 (66.4) | 126 (75.4) | 64 (53.8) | 61 (78.2) | 37 (84.1) | 24 (70.6) | 129 (62.0) | 89 (72.4) | 40 (47.1) | All: <0.001. Early Adolescents: p 0.176 Late Adolescents: <0.001 |
MVPA ≤ 60 min/day | 96 (33.6) | 41 (24.6) | 55 (46.2) | 17 (21.8) | 7 (15.9) | 10 (29.4) | 79 (38.0) | 34 (27.6) | 45 (52.9) |
Early Adolescence | Late Adolescence | |||
---|---|---|---|---|
No Exercise | Any Exercise | No Exercise | Any Exercise | |
Age of mother (in years) | 47.0 (45.0–50.0) | 47.0 (44.0–51.0) | 48.0 (45.0–54.00) | 49.0 (46.0–52.0) |
Age of father (in years) | 49.0 (47.0–56.0) | 49.0 (46.0–54.0) | 51.5 (47.0–61.2) | 52.0 (49.0–55.0) |
Marital status (%) | Single: 0.0 Married: 80.0 Divorced: 20.0 Widowed: 0.0 | Single: 2.7 Married: 79.5 Divorced: 17.8 Widowed: 0.0 | Single: 4.2 Married: 75.0 Divorced: 12.5 Widowed: 8.3 | Single: 0.6 Married: 83.8 Divorced: 14.3 Widowed: 1.3 |
BMI of mother (Kg/m2) | 22.8 (22.6–26.5) | 23.7 (21.4–25.7) | 23.6 (21.6–28.2) | 23.9 (21.4–27.1) |
BMI of father (Kg/m2) | 23.9 (22.0–31.6) | 26.9 (25.2–30.6) | 27.5 (24.4–30.51) | 27.4 (25.3–30.2) |
Education of mother (in years) | 14.0 (14.0–16.5) | 16.0 (13.2–18.0) | 12.0 (12.0–16.0) | 16.0 (12.0–16.0) ** |
Education of father (in years) | 12.0 (11.0–14.0) | 16.0 (12.0–18.0) * | 12.0 (12.0–16.0) | 16.0 (12.0–16.0) ** |
Student’s daily hours of studying (in hours/day) | 2.0 (1.65–3.0) | 2.3 (2.0–3.0) | 3.0 (2.0–4.8) | 2.30 (2.0–3.3) |
Having TV in the bedroom (% yes) | 20.0 | 21.9 | 24.0 | 31.8 |
Student’s daily hours of TV gaming (in hours/day) | 3.3 (2.5–5.5) | 2.0 (2.0–3.0) | 2.2 (1.3–3.1) | 2.0 (1.0–3.3) |
(i) | |||||
Total Population (Ν = 286) | |||||
No Exercise (N = 55) | Team Sports (N = 106) | Indoor Gym Sports (N = 92) | Team and Gym (N = 33) | p1 | |
Age (years) | 16.0 (16.0–17.0) a,b,c | 15.0 (13.0–16.0) a,d | 16.0 (15.0–16.0) b,d | 15.0 (14.0–16.0) c | <0.001 |
Height (m) | 1.65 (1.60–1.73) a,b,c | 1.71 (1.62–1.79) a | 1.70 (1.62–1.76) b | 1.72 (1.64–1.79) c | 0.009 |
Weight (kg) | 56.5 (52.0–66.6) a | 62.0 (52.7–68.5) | 64.5 (54.3–72.4) a | 65.3 (52.4–70.6) | 0.074 |
BMI (kg/m2) | 20.7 (18.6–22.9) a | 20.8 (19.2–22.6) b | 21.4 (20.1–24.0) a,b | 20.7 (18.6–23.8) | 0.037 |
Body weight categories | |||||
Underweight (%) | 12.7 | 2.8 | 2.2 | 3.0 | 0.196 |
Normal weight (%) | 70.9 | 79.2 | 73.9 | 72.7 | |
Overweight (%) | 12.7 | 14.2 | 17.4 | 18.2 | |
Obese (%) | 3.6 | 3.8 | 6.6 | 6.1 | |
FFM (kg) | 22.7 (20.1–30.3) a,b,c | 28.2 (22.5–32.9) a | 27.9 (22.9–33.7) b | 30.1 (22.4–34.6) c | 0.004 |
FM (kg) | 13.8 (7.6–18.0) a,b | 9.4 (6.0–13.4) a,c | 12.4 (8.7–16.5) c,d | 9.85 (4.35–13.6) b,d | 0.001 |
FM (%) | 22.5 (14.6–30.7) a,b | 16.6 (10.2–22.6) a,c | 19.6 (13.9–26.3) c,d | 13.6 (6.75–20.9) b,d | <0.001 |
ΒΜR (kcal/day) | 1275.0 (1176.0–1558.0) a,b,c | 1467 (1264–1631) a | 1452 (1273–1649) b | 1547 (1311–1710) c | 0.002 |
KIDMED score | 5.0 (3.0–6.0) a,b,c | 6.0 (4.0–8.0) a,d | 6.0 (4.0–7.0) b,e | 7.0 (6.0–9.0) c,d,e | <0.001 |
(ii) | |||||
Early Adolescents (N = 78) | |||||
No Exercise (N = 5) | Team Sports (N = 42) | Indoor Gym Sports (N = 17) | Team and Gym (N = 14) | p | |
Age (years) | 13.0 (12.5–13.5) | 13.0 (12.0–14.0) | 14.0 (12.5–14.0) | 14.0 (12.7–14.0) | 0.075 |
Height (m) | 1.65 (1.56–1.71) | 1.67 (1.55–1.78) | 1.63 (1.59–1.74) | 1.64 (1.60–1.76) | 0.892 |
Weight (kg) | 55.8 (44.0–60.7) | 55.4 (46.7–64.8) | 58.4 (53.6–63.6) | 51.6 (48.1–63.2) | 0.652 |
BMI (kg/m2) | 19.6 (16.8–22.8) | 19.5 (17.5–20.9) | 20.1 (19.2–22.1) | 19.2 (17.5–22.8) | 0.484 |
Weight categories | |||||
Underweight (%) | 0.0 | 2.4 | 0.0 | 7.1 | 0.945 |
Normal weight (%) | 80.0 | 78.6 | 82.4 | 71.4 | |
Overweight (%) | 20.0 | 14.3 | 11.8 | 21.4 | |
Obese (%) | 0.0 | 4.8 | 5.9 | 0.0 | |
FFM (kg) | 22.7 (17.8–23.8) | 25.2 (20.3–31.9) | 25.0 (21.9–30.7) | 24.0 (20.0–26.4) | 0.359 |
FM (kg) | 14.7 (6.0–21.1) | 7.1 (4.5–12.9) | 11.1 (5.2–16.0) | 5.7 (2.1–14.1) | 0.249 |
FM (%) | 25.8 (14.4–34.8) | 14.0 (8.6–22.6) | 20.8 (10.1–26.7) | 11.6 (3.4–25.6) | 0.206 |
ΒΜR (kcal/day) | 1275 (1104–1314) | 1354 (1177–1602) | 1351 (1238–1558) | 1312 (1198–1411) | 0.419 |
KIDMED score | 5.0 (2.5–7.0) | 6.0 (4.7–8.0) | 5.0 (3.5–9.0) | 7.0 (5.5–8.2) | 0.329 |
(iii) | |||||
Late Adolescents (N = 208) | |||||
No Exercise (N = 50) | Team Sports (N = 64) | Indoor Gym Sports (N = 75) | Team and Gym (N = 19) | p | |
Age (years) | 16.5 (16.0–17.0) a,b | 15.5 (15.0–16.0) a,d | 16.0 (15.0–16.0) b,d | 16.0 (15.0–17.0) | <0.001 |
Height (m) | 1.65 (1.59–1.73) a,b,c | 1.73 (1.66–1.79) a | 1.71 (1.64–1.76) b,d | 1.74 (1.71–1.81) c,d | <0.001 |
Weight (kg) | 58.25 (52.0–67.25) a,b,c | 63.9 (56.85–71.07) a | 66.5 (54.8–77.4) b | 70.0 (62.9–72.8) c | 0.006 |
BMI (kg/m2) | 20.75 (18.67–22.9) a | 21.20 (20.0–23.1) | 21.7 (20.4–24.7) a | 22.4 (20.2–24.8) | 0.066 |
Weight categories | |||||
Underweight (%) | 14.0 | 3.1 | 2.7 | 0.0 | 0.158 |
Normal weight (%) | 70.0 | 79.7 | 72.0 | 73.7 | |
Overweight (%) | 12.0 | 14.1 | 18.7 | 15.8 | |
Obese (%) | 4.0 | 3.1 | 6.7 | 10.5 | |
FFM (kg) | 23.0 (20.32–30.95) a,b,c | 30.4 (24.1–33.5) a | 29.1 (23.2–34.7) b | 32.6 (30.0–35.8) c | <0.001 |
FM (kg) | 13.20 (7.55–17.85) | 11.0 (7.4–13.6) a | 12.7 (9.1–16.8) a | 10.5 (5.1–13.6) | 0.094 |
FM (%) | 1283.0 (1179.0–1283.0) a,b | 16.8 (11.8–22.6) a | 19.5 (14.1–25.6) c | 14.4 (8.4–18.2) b,c | 0.002 |
ΒΜR (kcal/day) | 1283.0 (1179.0–1567.0) a,b,c | 1541.0 (1320.0–1657.0) a,d | 1505 (1284–1692) b,e | 1642 (1546–1736) c,d,e | <0.001 |
KIDMED score | 4.5 (3.0–6.0) a,b,c | 6.0 (4.0–7.7) a,d | 6.0 (4.0–7.0) b,e | 8.0 (6.0–9.0) c,d,e | <0.001 |
MVPA ≥ 60 min/day | MVPA < 60 min/day | |||||
---|---|---|---|---|---|---|
Total Population (N = 190) | Early Adolescents (N = 78) | Late Adolescents (N = 129) | TotaL Population (N = 96) | Early Adolescents (N = 17) | Late Adolescents (N = 79) | |
Age (years) | 15.0 (14.0–16.0) # | 13.0 (12.0–14.0) * | 16.0 (15.0–16.0) *^ | 16.0 (15.0–17.0) # | 13.0 (12.0–14.0) * | 16.0 (15.0–17.0) *^ |
Gender (% girls) | 33.7 # | 39.3 | 31.0 ^ | 57.3 # | 58.8 | 57.0 ^ |
Height (m) | 1.71 (1.62–1.78) # | 1.64 (1.58–1.76) * | 1.73 (1.66–1.78) *^ | 1.67 (1.62–1.74) # | 1.68 (1.61–1.71) | 1.67 (1.62–1.75) ^ |
Weight (kg) | 62.7 (53.4–70.0) | 54.0 (46.5–62.8) * | 66.4 (57.3–72.8) *^ | 60.1 (53.2–68.4) | 59.1 (52.8–66.3) | 60.4 (53.2–68.6) ^ |
BMI (kg/m2) | 20.8 (19.2–23.2) | 19.5 (17.7–20.9) * | 21.4 (20.3–23.8) * | 21.1 (19.4–22.9) | 20.4 (19.3–21.6) | 21.3 (19.4–23.0) |
Weight categories | ||||||
Underweight (%) | 3.7 # | 3.3 | 3.9 | 6.3 # | 0.0 | 7.6 |
Normal weight (%) | 76.8 # | 78.7 | 76.0 | 71.9 # | 76.5 | 70.9 |
Overweight (%) | 16.8 # | 16.4 | 17.1 | 12.5 # | 11.8 | 12.7 |
Obese (%) | 2.6 # | 1.6 | 3.1 | 9.4 # | 11.8 | 8.9 |
FFM (kg) | 28.3 (22.9–33.6) # | 23.8 (20.2–30.6) * | 31.2 (25.2–34.9) *^ | 24.6 (21.3–30.8) # | 25.1 (22.8–29.1) | 23.8 (21.1–31.3) ^ |
FM (kg) | 9.7 (6.0–13.8) # | 6.7 (4.3–12.4) *$ | 10.9 (7.5–13.8) *^ | 13.9 (9.5–18.7) # | 13.4 (8.7–19.2) $ | 13.9 (9.7–18.5) ^ |
FM (%) | 16.3 (10.5–21.7) # | 13.3 (7.1–24.9) $ | 16.6 (11.6–21.2) ^ | 23.3 (15.1–30.1) # | 22.9 (14.6–31.9) $ | 23.3 (15.1–30.1) ^ |
ΒΜR (kcal/day) | 1472 (1288–1657) # | 1310 (1179–1554) * | 1575 (1369–1705) *^ | 1340 (1279–1508) # | 1353 (1280.0–1550.0) | 1314 (1221–1573) ^ |
KIDMED score | 6.0 (5.0–8.0) # | 7.0 (5.0–8.0) $ | 6.0 (5.0–8.0) ^ | 5.0 (3.5–5.5) # | 5.5 (4.7–8.2) $ | 5.0 (3.0–6.0) ^ |
Late Adolescence (N = 208) | ||||||
---|---|---|---|---|---|---|
All (N = 208) | Boys (N = 123) | Girls (N = 85) | ||||
Eating Habits | No Exercise (N = 50) | Any Exercise (N = 158) | No Exercise (N = 17) | Any Exercise (N = 106) | No Exercise (N = 33) | Any Exercise (N = 52) |
Q1: Takes a fruit or fruit juice every day | 62.0 | 77.8 * | 47 | 79.2 * | 69.7 | 75.0 |
Q2: Has a second fruit every day | 28.0 | 31.0 | 11.8 | 32.1 | 36.4 | 28.8 |
Q3: Has fresh or cooked vegetables regularly once a day | 70.0 | 80.4 | 52.9 | 78.3 * | 78.8 | 84.6 |
Q4: Has fresh or cooked vegetables more than once a day | 26.0 | 29.7 | 17.6 | 30.2 | 30.3 | 28.8 |
Q5: Consumes fish regularly | 6.0 | 25.9 * | 5.90 | 25.5 | 6.1 | 26.9 * |
Q6: >1/week to a fast food restaurant | 62.0 | 69.0 | 64.7 | 69.8 | 60.6 | 67.3 |
Q7: Likes pulses and eats them >1/week | 46.0 | 69.0 * | 52.9 | 68.9 | 42.4 | 69.2 * |
Q8: Consumes pasta or rice almost daily | 64.0 | 70.9 | 64.7 | 71.7 | 63.6 | 69.2 |
Q9: Has cereals or grains for breakfast | 60 | 62 | 52.9 | 60.4 | 63.9 | 65.4 |
Q10: Consumes nuts regularly | 20 | 31 | 5.9 | 28.3 * | 27.3 | 36.5 |
Q11: Uses olive oil at home | 98 | 96.2 | 94.1 | 94.3 | 100.0 | 100.0 |
Q12: Skips breakfast | 64 | 69 | 58.8 | 68.9 | 66.7 | 69.2 |
Q13: Has a dairy product for breakfast | 50.0 | 70.3 * | 58.8 | 72.6 | 45.5 | 65.4 |
Q14: Has commercially baked goods or pastries for breakfast | 78.0 | 84.2 | 88.2 | 84.0 | 72.7 | 84.6 |
Q15: Takes two yoghurts and/or some cheese (40 g) daily | 30.0 | 47.5 * | 5.90 | 43.4 * | 42.4 | 55.8 |
Q:16 Takes sweets and candy several times every day | 60.0 | 70.9 | 76.5 | 74.5 | 51.5 | 63.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaoglou, A.; Nomikos, T.; Kontele, I.; Vassilakou, T.; Vlachos, P.; Chatzopoulou, T.; Kotrokois, K. Exploring the Associations Between Systematic Engagement in Physical Activity, Dietary Habits and Body Composition in a Sample of Greek Adolescents. Adolescents 2025, 5, 13. https://doi.org/10.3390/adolescents5020013
Karaoglou A, Nomikos T, Kontele I, Vassilakou T, Vlachos P, Chatzopoulou T, Kotrokois K. Exploring the Associations Between Systematic Engagement in Physical Activity, Dietary Habits and Body Composition in a Sample of Greek Adolescents. Adolescents. 2025; 5(2):13. https://doi.org/10.3390/adolescents5020013
Chicago/Turabian StyleKaraoglou, Anastasios, Tzortzis Nomikos, Ioanna Kontele, Tonia Vassilakou, Panagiotis Vlachos, Theodosia Chatzopoulou, and Konstantinos Kotrokois. 2025. "Exploring the Associations Between Systematic Engagement in Physical Activity, Dietary Habits and Body Composition in a Sample of Greek Adolescents" Adolescents 5, no. 2: 13. https://doi.org/10.3390/adolescents5020013
APA StyleKaraoglou, A., Nomikos, T., Kontele, I., Vassilakou, T., Vlachos, P., Chatzopoulou, T., & Kotrokois, K. (2025). Exploring the Associations Between Systematic Engagement in Physical Activity, Dietary Habits and Body Composition in a Sample of Greek Adolescents. Adolescents, 5(2), 13. https://doi.org/10.3390/adolescents5020013