Recycling Potential of Construction Materials: A Comparative Approach
Abstract
:1. Introduction
2. Methodology
2.1. Market Value Recyclability Index
2.2. Resource Depletion Recyclability Index
2.3. Energy Consumption Recyclability Index
2.4. Carbon Emissions Recyclability Index
2.5. System Boundaries
2.6. Intended Users
3. Results
3.1. Market Value Recyclability Index
3.2. Resource Depletion Recyclability Index
3.3. Energy Consumption Recyclability Index
3.4. Carbon Emissions Recyclability Index
4. Discussion
4.1. Comparative Assessment
4.2. Limitations and Future Research
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grimaud, G.; Perry, N.; Laratte, B. Aluminium Cables Recycling Process: Environmental Impacts Identification and Reduction. Resour. Conserv. Recycl. 2018, 135, 150–162. [Google Scholar] [CrossRef]
- Sandin, G.; Peters, G.M. Environmental Impact of Textile Reuse and Recycling—A Review. J. Clean. Prod. 2018, 184, 353–365. [Google Scholar] [CrossRef]
- Hole, G.; Hole, A.S. Recycling as the Way to Greener Production: A Mini Review. J. Clean. Prod. 2019, 212, 910–915. [Google Scholar] [CrossRef]
- Cabalova, I.; Kacik, F.; Geffert, A.; Kacikov, D. The Effects of Paper Recycling and Its Environmental Impact. In Environmental Management in Practice; Broniewicz, E., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-358-3. [Google Scholar]
- Villoria Sáez, P.; Osmani, M. A Diagnosis of Construction and Demolition Waste Generation and Recovery Practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Townsend, T.; Tolaymat, T.; Leo, K.; Jambeck, J. Heavy Metals in Recovered Fines from Construction and Demolition Debris Recycling Facilities in Florida. Sci. Total Environ. 2004, 332, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vefago, L.H.M.; Avellaneda, J. Recycling Concepts and the Index of Recyclability for Building Materials. Resour. Conserv. Recycl. 2013, 72, 127–135. [Google Scholar] [CrossRef]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Mechanical Performance of Concrete Made with Aggregates from Construction and Demolition Waste Recycling Plants. J. Clean. Prod. 2015, 99, 59–74. [Google Scholar] [CrossRef]
- Pytel, Z. Evaluation of Potential Applications of Recycled Moulding and Core Sands to Production of Ceramic Building Materials. Ceram. Int. 2014, 40, 4351–4358. [Google Scholar] [CrossRef]
- Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. Production of Recycled Sand from Construction and Demolition Waste. Constr. Build. Mater. 2013, 40, 1168–1173. [Google Scholar] [CrossRef]
- Soutsos, M.N.; Tang, K.; Millard, S.G. Concrete Building Blocks Made with Recycled Demolition Aggregate. Constr. Build. Mater. 2011, 25, 726–735. [Google Scholar] [CrossRef]
- Höglmeier, K.; Weber-Blaschke, G.; Richter, K. Potentials for Cascading of Recovered Wood from Building Deconstruction—A Case Study for South-East Germany. Resour. Conserv. Recycl. 2017, 117, 304–314. [Google Scholar] [CrossRef]
- Saghafi, M.D.; Hosseini Teshnizi, Z.S. Recycling Value of Building Materials in Building Assessment Systems. Energy Build. 2011, 43, 3181–3188. [Google Scholar] [CrossRef]
- Thormark, C. The Effect of Material Choice on the Total Energy Need and Recycling Potential of a Building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Takano, A.; Pal, S.K.; Kuittinen, M.; Alanne, K.; Hughes, M.; Winter, S. The Effect of Material Selection on Life Cycle Energy Balance: A Case Study on a Hypothetical Building Model in Finland. Build. Environ. 2015, 89, 192–202. [Google Scholar] [CrossRef]
- Duran, X.; Lenihan, H.; O’Regan, B. A Model for Assessing the Economic Viability of Construction and Demolition Waste Recycling—The Case of Ireland. Resour. Conserv. Recycl. 2006, 46, 302–320. [Google Scholar] [CrossRef]
- Pappu, A.; Saxena, M.; Asolekar, S.R. Solid Wastes Generation in India and Their Recycling Potential in Building Materials. Build. Environ. 2007, 42, 2311–2320. [Google Scholar] [CrossRef]
- Vrancken, K.C.; Laethem, B. Recycling Options for Gypsum from Construction and Demolition Waste. In Waste Management Series; Elsevier: Amsterdam, The Netherlands, 2000; Volume 1, pp. 325–331. ISBN 978-0-08-043790-3. [Google Scholar]
- Zhao, W.; Leeftink, R.B.; Rotter, V.S. Evaluation of the Economic Feasibility for the Recycling of Construction and Demolition Waste in China—The Case of Chongqing. Resour. Conserv. Recycl. 2010, 54, 377–389. [Google Scholar] [CrossRef]
- Sukmak, P.; Sukmak, G.; De Silva, P.; Horpibulsuk, S.; Kassawat, S.; Suddeepong, A. The Potential of Industrial Waste: Electric Arc Furnace Slag (EAF) as Recycled Road Construction Materials. Constr. Build. Mater. 2023, 368, 130393. [Google Scholar] [CrossRef]
- Ahmad, M.; Ali, M.; Turi, J.A.; Manan, A.; Al-Dala’ien, R.N.S.; Rashid, K. Potential Use of Recycled Materials on Rooftops to Improve Thermal Comfort in Sustainable Building Construction Projects. Front. Built Environ. 2022, 8, 1014473. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, F.; Li, J.; Gong, R. A Simplified Method to Evaluate the Recycling Potential of E-Waste. J. Clean. Prod. 2017, 168, 1518–1524. [Google Scholar] [CrossRef]
- Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Assessment of the Recycling Potential of Aluminum in Japan, the United States, Europe and China. Mater. Trans. 2009, 50, 650–656. [Google Scholar] [CrossRef]
- Lee, B.-K.; Ellenbecker, M.J.; Moure-Eraso, R. Analyses of the Recycling Potential of Medical Plastic Wastes. Waste Manag. 2002, 22, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.F. Materials and the Environment: Eco-Informed Material Choice, 3rd ed.; Elsevier Butterworth-Heinemann: Oxford, UK; Cambridge, MA, USA, 2021; ISBN 978-0-12-821521-0. [Google Scholar]
- Mayer, M. Economic Indicators for Material Recovery Estimation. In Environmental Sustainability and Economy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–150. ISBN 978-0-12-822188-4. [Google Scholar]
- Joshi, K.; Venkatachalam, A.; Jawahir, I.S. A New Methodology for Transforming 3R Concept into 6R Concept for Improved Product Sustainability. In Proceedings of the IV Global Conference on Sustainable Product Development and Life Cycle Engineering, Sao Carolos, Brazil, 3–6 October 2006; pp. 3–6. [Google Scholar]
- Habert, G.; Bouzidi, Y.; Chen, C.; Jullien, A. Development of a Depletion Indicator for Natural Resources Used in Concrete. Resour. Conserv. Recycl. 2010, 54, 364–376. [Google Scholar] [CrossRef]
- World Bank (Ed.) Measuring the Real Size of the World Economy: The Framework, Methodology, and Results of the International Comparison Program—ICP; World Bank: Washington, DC, USA, 2013; ISBN 978-0-8213-9728-2. [Google Scholar]
- Scrap Index Recycled Construction Materials Price Data. 2023. Available online: www.scrapindex.com (accessed on 10 September 2023).
- National Minerals Information Center U.S. Geological Survey Mineral Commodity Summaries 2022 Data; National Minerals Information Center U.S.: Reston, VA, USA, 2022.
- Ashby, M.F.; Miller, A.; Rutter, F.; Seymour, C.; Wegst, G.K. Granta EduPack for Eco Design—A White Paper; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- Mayer, M. Material Recovery Certification for Construction Workers. Build. Cities 2020, 1, 550–564. [Google Scholar] [CrossRef]
- Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Evolution of Aluminum Recycling Initiated by the Introduction of Next-Generation Vehicles and Scrap Sorting Technology. Resour. Conserv. Recycl. 2012, 66, 8–14. [Google Scholar] [CrossRef]
Material Attribute | Data Provider | Regions Covered | Scope |
---|---|---|---|
Point-of-sale market value | The World Bank [29] | Africa, Asia-Pacific, North America, South America, Western Asia, Europe | N/A |
End-of-use market value | Scrap Index [30] | U.S. and Canada | N/A |
Resource depletion | The U.S. Geological Survey (USGIS) [31] | U.S. | N/A |
Embodied energy | Ansys Granta EduPack [32] | U.S. | Cradle to gate |
Embodied carbon | Ansys Granta EduPack [32] | U.S. | Cradle to gate |
Material | Scenario A | Scenario B | Scenario C | Scenario D |
---|---|---|---|---|
Aluminum | 0.061998333 | 0.0468975 | 0.06864875 | 0.0704488 |
Titanium | 0.2926 | 0.24915 | 0.3144 | 0.31425 |
Low Carbon Steel | 0.1914 | 0.1472 | 0.21345 | 0.21355 |
Stainless steel | 0.1943 | 0.1487 | 0.2167 | 0.2175 |
Cast iron | 0.2036 | 0.15635 | 0.22915 | 0.2253 |
Polyethylene (PE) | 0.2906 | 0.228 | 0.322875 | 0.320925 |
Polyvinyl chloride (PVC) | 0.291866667 | 0.227875 | 0.32395 | 0.323775 |
Polystyrene (PS) | 0.2877 | 0.225675 | 0.320775 | 0.31665 |
Polypropylene (PP) | 0.2903 | 0.226425 | 0.320275 | 0.3242 |
Concrete | 0.173133333 | 0.137375 | 0.133425 | 0.2486 |
Soda-lime glass | 0.296266667 | 0.224125 | 0.3322 | 0.332475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, M. Recycling Potential of Construction Materials: A Comparative Approach. Constr. Mater. 2024, 4, 238-250. https://doi.org/10.3390/constrmater4010013
Mayer M. Recycling Potential of Construction Materials: A Comparative Approach. Construction Materials. 2024; 4(1):238-250. https://doi.org/10.3390/constrmater4010013
Chicago/Turabian StyleMayer, Matan. 2024. "Recycling Potential of Construction Materials: A Comparative Approach" Construction Materials 4, no. 1: 238-250. https://doi.org/10.3390/constrmater4010013
APA StyleMayer, M. (2024). Recycling Potential of Construction Materials: A Comparative Approach. Construction Materials, 4(1), 238-250. https://doi.org/10.3390/constrmater4010013