Utilization of Aluminosilicate Industrial Wastes as Precursors in CO2-Cured Alkali-Activated Precast Concrete Pavement Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Binders
2.1.1. Density
2.1.2. X-ray Fluorescence
2.1.3. X-ray Diffraction
2.1.4. Particle Size Distribution
2.1.5. Thermogravimetric Analysis/Differential Thermal Analysis
2.1.6. Fourier-Transform Infrared Analysis
- o
- 1622 cm−1—O–H bending characteristic of water [49];
- o
- 1443 cm−1—asymmetric stretching vibrations of CO3 in calcite derived due to the carbonation of CaO [49];
- o
- 1141 cm−1 and 1126 cm−1—symmetrical and asymmetrical stretching vibration modes of tetrahedral SO4 groups, respectively, present in gypsum [49];
- o
- 992 cm−1 and 846 cm−1—stretching vibrations of the Si–O links within the tetrahedral SiO4 groups present in C2S [49];
- o
- 887 cm−1 and 922 cm−1—symmetrical and asymmetrical stretching vibrations of the Si–O links within the tetrahedral SiO4 groups present in C3S [49];
- o
- 712 cm−1—AlO4-tetrahedral groups present in C3A;
- o
- 660 cm−1—FeO4-tetrahedral groups in C4AF;
- o
- 660 cm−1 and 597 cm−1—asymmetrical bending vibrations of SO4 in gypsum;
- o
- 517 cm−1 and 447 cm−1—symmetric and antisymmetric bending of the O–Si–O bonds present in C3S, respectively [50].
- o
- o
- 794 cm−1 and 775 cm−1—Si–O–Si symmetrical stretching vibrations, constituting a distinctive quartz pair [52];
- o
- 669 cm−1, 547 cm−1 and 459 cm−1—O–Al–O vibrations associated with the presence of mullite [49].
- o
- 1634 cm−1—O–H bending of water;
- o
- 1425 cm−1—asymmetric stretching of CO32− [49];
- o
- o
- 712 cm−1—AlO4-tetrahedral groups in C3A;
- o
- 660 cm−1—FeO4-tetrahedral groups;
- o
- 517 cm−1—O–Si–O bonds [50].
- o
- 1629 cm−1—O–H bond vibrations (water);
- o
- 1427 cm−1, 874 cm−1, and 713 cm−1—CO32− vibrations [54];
- o
- 1160 cm−1 and 1060 cm−1—asymmetrical stretching of Si–O–Si linked to quartz;
- o
- 790 cm−1 and 775 cm−1—symmetrical stretching of the Si–O–Si bonds characteristic of a quartz doublet;
- o
- 551 cm−1 and 463 cm−1—Si–O vibrations of quartz [52].
2.2. Aggregates
2.3. Alkaline Activator
2.4. Admixtures
2.5. Testing Methods
- (a)
- Visual aspect, shape, and dimensions—EN 1338 [42] was used to inspect the visual aspect, shape, and dimensions of the blocks. This testing procedure involved conducting a meticulous visual examination of all blocks to ensure their uniformity, consistent texture and dimensions, flatness of their surfaces, and absence of any flaws;
- (b)
- Slip/skid resistance—The unpolished slip resistance value (USRV) of the specimen was measured using pendulum friction test equipment to assess its frictional properties on the upper face, following the guidelines outlined in EN 1338 [42]. During this test, the pendulum friction test equipment featured a spring-loaded slider made of standard rubber, which was affixed to the end of the pendulum. By swinging the pendulum, the reduction in the height of the swing, as measured by a calibrated scale, was used to determine the frictional force between the slider and the test surface;
- (c)
- Compressive and splitting tensile strengths—The determination of the splitting tensile strength was carried out following the guidelines of EN 1338 [42]. During this test, a compressive load was applied to two strips in contact with the longest length of the block (one positioned at the bottom and another at the top). The load was applied gradually until the block experienced failure and split into two halves. While the blocks were not required to undergo a compressive strength test as per the standard, this test was included to evaluate their ability to withstand compression forces. The blocks were subjected to a compressive load using the same method employed for the splitting tensile load, albeit without the utilization of strips;
- (d)
- Abrasion resistance—The abrasion resistance of the blocks was determined through the Böhme test, in accordance with the standard EN 1338 [42]. During this test, square slab samples extracted from the blocks were positioned on the Böhme disc abrader. The test track of the abrader was coated with standard abrasive material. Subsequently, the disc was rotated, and the specimens were subjected to an abrasive load for a specified number of cycles;
- (e)
- Total water absorption—The total water absorption was determined in accordance with standard EN 1338 [42] by assessing the percentage of mass loss of a specimen after it was soaked in water and subsequently dried in an oven at 105 ± 5 °C;
- (f)
- Thermal conductivity—The thermal conductivity of the blocks was determined using the ISOMET 2114 device from Applied Precision Ltd. (Berkshire, UK).
2.6. Optimization of Mixes Production and Method
2.6.1. Optimization of the Mix Density
- γd = dry density of the material (kg);
- W = weight of the mould filled with the mix (kg);
- Wm = weight of the mould (kg);
- w = water content of the material (%);
- V = volume of the mould (0.956 L).
2.6.2. Optimization of the Compaction Method
- (i)
- Number of layers: two layers were added and manually compacted (about half the height of the block and between half the height of the block and the upper edge of the mould), followed by another (last and thinner) layer up to the edge of the mould not manually compacted;
- (ii)
- Manual compaction: 20 strokes (hand-tamping) were applied to each layer using a hand tamper and distributed across the surface;
- (iii)
- Mechanical compaction: After performing the manual compaction, the upper plate of the mould (Figure 2a) is placed on top of the remaining mould. At this stage, the upper plate is still not in contact with the remaining mould. The mould is then placed under the hydraulic press (Figure 2b) and compacted with an average force of 150 kN, the value when the compaction is completed (i.e., when the upper plate of the mould is in contact with the remaining mould).
2.7. Production, Curing, and Testing
2.7.1. Part 1—Definition of a Unified Mix Design for All Binders
2.7.2. Part 2—Definition of an Optimized Mix Design for Each Binder
3. Results
3.1. Fresh-State Performance—Optimum Mix Design
3.2. Part 1—Defining a Unified Mix Design for All Binders
3.2.1. Visual Aspect, Shape, and Dimensions
3.2.2. Slip/Skid Resistance
3.2.3. Splitting Tensile and Compressive Strengths
3.2.4. Abrasion Resistance
3.2.5. Total Water Absorption
3.2.6. Thermal Conductivity
3.3. Part 2—Defining an Optimized Mixed Design for Each Binder
3.3.1. Visual Aspect, Shape, and Dimensions
3.3.2. Slip/Skid Resistance
3.3.3. Splitting Tensile and Compressive Strengths
3.3.4. Abrasion Resistance
3.3.5. Total Water Absorption
3.3.6. Thermal Conductivity
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall, Pearson Education, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Berlin/Heidelberg, Germany, 2014; p. 699. [Google Scholar]
- Belaïd, F. How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resour. Conserv. Recycl. Adv. 2022, 15, 200084. [Google Scholar] [CrossRef]
- Uwasu, M.; Hara, K.; Yabar, H. World cement production and environmental implications. Environ. Dev. 2014, 10, 36–47. [Google Scholar] [CrossRef]
- At the Top, Burj Khalifa, Fact Sheet. Available online: www.atthetop.ae (accessed on 9 August 2023).
- IEA. Cement Roadmap. Available online: http://www.iea.org/publications/freepublications/publication/Cement_Roadmap_Foldout_WEB.pdf (accessed on 2 November 2015).
- Klappholz, S. Cement and Construction Industries Gather Together to Find Solutions for a Net Zero CO2 Emissions Future; World Cement: Farnham Surrey, UK, 2022. [Google Scholar]
- Ramsden, K. Cement and Concrete: The Environmental Impact. Available online: https://psci.princeton.edu/tips/2020/11/3/cement-and-concrete-the-environmental-impact (accessed on 9 August 2023).
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Wu, B.; Ye, G. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation. Constr. Build. Mater. 2017, 145, 52–61. [Google Scholar] [CrossRef]
- Von Greve-Dierfeld, S.; Lothenbach, B.; Vollpracht, A.; Wu, B.; Huet, B.; Andrade, C.; Medina, C.; Thiel, C.; Gruyaert, E.; Vanoutrive, H.; et al. Understanding the carbonation of concrete with supplementary cementitious materials: A critical review by RILEM TC 281-CCC. Mater. Struct. 2020, 53, 136. [Google Scholar] [CrossRef]
- Tang, P.; Chen, W.; Xuan, D.X.; Zuo, Y.; Poon, C.S. Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials. J. Clean. Prod. 2020, 258, 120675. [Google Scholar] [CrossRef]
- Sevim, O.; Alakara, E.H.; Guzelkucuk, S. Fresh and Hardened Properties of Cementitious Composites Incorporating Firebrick Powder from Construction and Demolition Waste. Buildings 2023, 13, 45. [Google Scholar] [CrossRef]
- Sevim, O.; Demir, İ.; Alakara, E.H.; Guzelkucuk, S.; Bayer, İ.R. The Effect of Magnetized Water on the Fresh and Hardened Properties of Slag/Fly Ash-Based Cementitious Composites. Buildings 2023, 13, 271. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem. Concr. Res. 2005, 35, 1984–1992. [Google Scholar] [CrossRef]
- Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.M.; Palomo, A.; Lopez-Hombrados, C. Engineering properties of alkali-activated fly ash concrete. ACI Mater. J. 2006, 103, 106–112. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr. Build. Mater. 2015, 80, 105–115. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; van Deventer, J.S.J. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar] [CrossRef]
- Lamaa, G.; Duarte, A.P.C.; Silva, R.V.; de Brito, J. Carbonation of Alkali-Activated Materials: A Review. Materials 2023, 16, 3086. [Google Scholar] [CrossRef]
- Martinez-Lopez, R.; Ivan Escalante-Garcia, J. Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: Strength as a function of the composition. Constr. Build. Mater. 2016, 119, 119–129. [Google Scholar] [CrossRef]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Casanova, S.; Silva, R.V.; de Brito, J.; Pereira, M.F.C. Mortars with alkali-activated municipal solid waste incinerator bottom ash and fine recycled aggregates. J. Clean. Prod. 2021, 289, 125707. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Bravo, M.; Silva, R.V.; Jiménez, J.R.; Fernandez-Rodriguez, J.M.; de Brito, J. Effect of reactive magnesium oxide in alkali-activated fly ash mortars exposed to accelerated CO2 curing. Constr. Build. Mater. 2022, 342, 127999. [Google Scholar] [CrossRef]
- Liu, J.; Hu, L.; Tang, L.; Ren, J. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. J. Hazard. Mater. 2021, 402, 123451. [Google Scholar] [CrossRef] [PubMed]
- Kurda, R.; Silva, R.V.; de Brito, J. Incorporation of Alkali-Activated Municipal Solid Waste Incinerator Bottom Ash in Mortar and Concrete: A Critical Review. Materials 2020, 13, 3428. [Google Scholar] [CrossRef]
- Ren, J.; Hu, L.; Dong, Z.J.; Tang, L.P.; Xing, F.; Liu, J. Effect of silica fume on the mechanical property and hydration characteristic of alkali-activated municipal solid waste incinerator (MSWI) fly ash. J. Clean. Prod. 2021, 295, 126317. [Google Scholar] [CrossRef]
- Ozturk, M.; Bankir, M.B.; Bolukbasi, O.S.; Sevim, U.K. Alkali activation of electric arc furnace slag: Mechanical properties and micro analyzes. J. Build. Eng. 2019, 21, 97–105. [Google Scholar] [CrossRef]
- Traven, K.; Češnovar, M.; Ducman, V. Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM. Ceram. Int. 2019, 45, 22632–22641. [Google Scholar] [CrossRef]
- Kassim, D.; Lamaa, G.; Silva, R.V.; de Brito, J. Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process. Appl. Sci. 2022, 12, 1662. [Google Scholar] [CrossRef]
- Lamaa, G.; Suescum-Morales, D.; Duarte, A.P.C.; Silva, R.V.; de Brito, J. Optimising the Performance of CO2-Cured Alkali-Activated Aluminosilicate Industrial By-Products as Precursors. Materials 2023, 16, 1923. [Google Scholar] [CrossRef]
- Avila, Y.; Silva, R.V.; de Brito, J. Alkali-Activated Materials with Pre-Treated Municipal Solid Waste Incinerator Bottom Ash. Appl. Sci. 2022, 12, 3535. [Google Scholar] [CrossRef]
- EN-1338; Concrete Paving Blocks—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2003; p. 76.
- EN 197-1; Cement. Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2000; p. 50.
- Ozturk, M.; Akgol, O.; Sevim, U.K.; Karaaslan, M.; Demirci, M.; Unal, E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr. Build. Mater. 2018, 165, 58–63. [Google Scholar] [CrossRef]
- JCPDS. Joint Committee on International Centre for Diffraction Data; Powder Diffraction File, PDF-4/Organics 2003; International Centre for Diffraction Data: Newtown Square, PA, USA, 2003. [Google Scholar]
- Rashad, A.M.; Zeedan, S.R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater. 2011, 25, 3098–3107. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Yoo, S.-W.; Jung, S.-H.; Lee, K.-M.; Kwon, S.-J. Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Constr. Build. Mater. 2017, 145, 253–260. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Silva, R.V.; Bravo, M.; Jiménez, J.R.; Fernández-Rodríguez, J.M.; de Brito, J. Effect of incorporating municipal solid waste incinerated bottom ash in alkali-activated fly ash concrete subjected to accelerated CO2 curing. J. Clean. Prod. 2022, 370, 133533. [Google Scholar] [CrossRef]
- Hidalgo López, A.; García Calvo, J.L.; García Olmo, J.; Petit, S.; Alonso, M.C. Microstructural Evolution of Calcium Aluminate Cements Hydration with Silica Fume and Fly Ash Additions by Scanning Electron Microscopy, and Mid and Near-Infrared Spectroscopy. J. Am. Ceram. Soc. 2008, 91, 1258–1265. [Google Scholar] [CrossRef]
- Lucia, F.-C.; Torrens-Martín, D.; Morales, L.M.; Sagrario, M.-R. Infrared Spectroscopy in the Analysis of Building and Construction Materials. In Infrared Spectroscopy; Theophile, T., Ed.; IntechOpen: Rijeka, Croatia, 2012; p. Ch. 19. [Google Scholar]
- Garcia Calvo, J.L.; Sanchez Moreno, M.; Alonso Alonso, M.C.; Hidalgo Lopez, A.; Garcia Olmo, J. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement. Materials 2013, 6, 2508–2521. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Microporous Mesoporous Mater. 2007, 106, 180–191. [Google Scholar] [CrossRef]
- Aziz, I.H.; Zulkifly, K.; Sakkas, K.; Panias, D.; Tsaousi, G.M.; Bakri, M.M.A.A.; Yong, H.C. The Characterization of Steel Slag by Alkali Activation. OALib 2017, 04, 80267. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- EN-12620:2002+A1:2008; Aggregates for Concrete. European Committee for Standardization: Brussels, Belgium, 2008; p. 56.
- Europeia, U. Diretiva 98/83/CE do Conselho, de 3 de novembro de 1998, relativa à qualidade da água destinada ao consumo humano. J. Of. Das Comunidades Europeias. L 1998, 330, 32–54. [Google Scholar]
- EN-1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (By Flow Table). European Committee for Standardization: Brussels, Belgium, 1999; p. 10.
- ASTM-D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM: West Conshohocken, PA, USA, 2012.
- LNEC-E-197; Solos—Ensaio de Compactação. National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1966; p. 8.
- Nithiya, A.; Saffarzadeh, A.; Shimaoka, T. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash. Waste Manag. 2018, 73, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Provis, J.L.; van Deventer, J.S.J. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; RILEM State—Art Report; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Li, Z.; He, Z.; Shao, Y. Early age carbonation heat and products of tricalcium silicate paste subject to carbon dioxide curing. Materials 2018, 11, 730. [Google Scholar] [CrossRef]
- Carvalho, R.; Silva, R.V.; de Brito, J.; Pereira, M.F.C. Alkali activation of bottom ash from municipal solid waste incineration: Optimization of NaOH- and Na 2SiO3-based activators. J. Clean. Prod. 2021, 291, 125930. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Nedeljković, M.; Zuo, Y.; Arbi, K.; Ye, G. Carbonation Resistance of Alkali-Activated Slag Under Natural and Accelerated Conditions. J. Sustain. Metall. 2018, 4, 33–49. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Vázquez, T. Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 2006, 41, 3071–3082. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 2001, 31, 1277–1283. [Google Scholar] [CrossRef]
Mix Type | Components | w/b Ratio | ||||
---|---|---|---|---|---|---|
0.25 | 0.30 | 0.35 | 0.40 | 0.45 | ||
OPC | Binder | 350 | 350 | 350 | 350 | 350 |
Water | 99.0 | 116.5 | 134.0 | 151.5 | 169.0 | |
Fine 0/2 sand | 382.3 | 382.3 | 382.3 | 382.3 | 382.3 | |
Coarse 0/4 sand | 863.8 | 863.8 | 863.8 | 863.8 | 863.8 | |
Sand gravel | 721.5 | 721.5 | 721.5 | 721.5 | 721.5 | |
AAMs | Binder | 350 | 350 | 350 | 350 | 350 |
Water | 12.6 | 30.1 | 47.5 | 65.1 | 82.5 | |
Fine 0/2 sand | 382.3 | 382.3 | 382.3 | 382.3 | 382.3 | |
Coarse 0/4 sand | 863.8 | 863.8 | 863.8 | 863.8 | 863.8 | |
Sand gravel | 721.5 | 721.5 | 721.5 | 721.5 | 721.5 | |
NaOH | 30.8 | 30.8 | 30.8 | 30.8 | 30.8 | |
Na2SiO3 solution | 132.5 | 132.5 | 132.5 | 132.5 | 132.5 | |
Borax | 14 | 14 | 14 | 14 | 14 |
Mix Type | Binder | Total Water | WRA | Fine 0/2 Sand | Coarse 0/4 Sand | Sand Gravel | NaOH | Na2SiO3 Solution | Borax |
---|---|---|---|---|---|---|---|---|---|
OPC | 350 | 107.2 | 7 | 382.3 | 863.8 | 721.5 | - | - | - |
AAMs | 350 | 20.5 | 7 | 382.3 | 863.8 | 721.5 | 30.8 | 132.5 | 14 |
Binder | Number of Specimens in Each Curing Condition | Specimen Code | |||
---|---|---|---|---|---|
Thermal | Dry | Dry/Carbonation | |||
24 h | 21 Days | 7 Days | |||
OPC | 16 | 16 | Dry—8 | Uncarbonated | OPC-U |
Carbonation—8 | Carbonated | OPC-C | |||
FA | 16 | 16 | Dry—8 | Uncarbonated | FA-U |
Carbonation—8 | Carbonated | FA-C | |||
MIBA | 16 | 16 | Dry—8 | Uncarbonated | MIBA-U |
Carbonation—8 | Carbonated | MIBA-C | |||
EAFS | 16 | 16 | Dry—8 | Uncarbonated | EAFS-U |
Carbonation—8 | Carbonated | EAFS-C |
Total Number of Specimens (Carbonated/Uncarbonated) | Number of Specimens per Test | Standard Tests (EN 1338 [42]) |
---|---|---|
8 | 8 | Visual inspection |
2 (a) | Slip/skid resistance | |
3 (b) | Splitting tensile strength | |
3 (c) | Compressive strength | |
3 (b) | Abrasion resistance | |
2 (a) | Total water absorption | |
2 (a) | Thermal conductivity |
Binder | w/b Ratio | Binder Content | WRA | Water | Fine Sand | Coarse Sand | Sand Gravel | NaOH | Na2SiO3 Solution | Borax |
---|---|---|---|---|---|---|---|---|---|---|
OPC | 0.35 | 350 | 5 | 136.1 | 300.3 | 581.3 | 1035.3 | - | - | - |
FA | 0.25 | 350 | 0 | 14.6 | 283.1 | 547.9 | 1043.0 | 30.8 | 132.6 | 14 |
MIBA | 0.30 | 350 | 5 | 31.7 | 307.5 | 595.3 | 1060.2 | 30.8 | 132.6 | 14 |
EAFS | 0.30 | 350 | 4 | 32.4 | 307.5 | 595.3 | 1060.2 | 30.8 | 132.6 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamaa, G.; Kassim, D.; Silva, B.A.; Duarte, A.P.C.; Brito, J.d.; Silva, R.V. Utilization of Aluminosilicate Industrial Wastes as Precursors in CO2-Cured Alkali-Activated Precast Concrete Pavement Blocks. Constr. Mater. 2024, 4, 353-381. https://doi.org/10.3390/constrmater4020020
Lamaa G, Kassim D, Silva BA, Duarte APC, Brito Jd, Silva RV. Utilization of Aluminosilicate Industrial Wastes as Precursors in CO2-Cured Alkali-Activated Precast Concrete Pavement Blocks. Construction Materials. 2024; 4(2):353-381. https://doi.org/10.3390/constrmater4020020
Chicago/Turabian StyleLamaa, Ghandy, Dany Kassim, Bruna A. Silva, António P. C. Duarte, Jorge de Brito, and Rui Vasco Silva. 2024. "Utilization of Aluminosilicate Industrial Wastes as Precursors in CO2-Cured Alkali-Activated Precast Concrete Pavement Blocks" Construction Materials 4, no. 2: 353-381. https://doi.org/10.3390/constrmater4020020
APA StyleLamaa, G., Kassim, D., Silva, B. A., Duarte, A. P. C., Brito, J. d., & Silva, R. V. (2024). Utilization of Aluminosilicate Industrial Wastes as Precursors in CO2-Cured Alkali-Activated Precast Concrete Pavement Blocks. Construction Materials, 4(2), 353-381. https://doi.org/10.3390/constrmater4020020