Phosphorus Dynamics in Stressed Soil Systems: Is There a Chemical and Biological Compensating Effect?
Abstract
:1. Introduction
2. Results
2.1. Experiment 1: Manipulation of Soil Microbiome and P Doses Application
2.2. P Dynamics after Plant Cultivation under Microbial Manipulation and P Fertilizer Rates Application
2.3. Experiment 2: Mycorrhiza Effect on Shoot P Uptake of Plant Cultivation under Microbial Manipulation and P Fertilizer Rate Application
3. Discussion
3.1. Experiment 1: Manipulation of Soil Microbiome and P Dose Application
3.2. Experiment 1: P Dynamics after Plant Cultivation under Microbial Manipulation and P Fertilizer Rate Application
3.3. Experiment 2: Mycorrhiza Effect on Shoot P Uptake of Plant Cultivation under Microbial Manipulation and P Fertilizer Rate Application
3.4. Limitations and Outlooks
4. Materials and Methods
4.1. Experiment 1: Manipulation of Soil Microbiome and P Dose Application
4.2. Experiment 1: P Dynamics after Plant Cultivation under Microbial Manipulation and P Fertilizer Rate Application
4.3. Experiment 2: Mycorrhiza Effect on Shoot P Uptake of Plant Cultivation under Microbial Manipulation and P Fertilizer Rate Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parfitt, R.L. Anion adsorption by soils and soil materials. Adv. Agron. 1979, 30, 1–50. [Google Scholar]
- Sample, E.C.; Soper, R.J.; Racz, G.J. Reactions of phosphate fertilizers in soils. In The Role of Phosphorus in Agriculture; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1980; pp. 263–310. [Google Scholar]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49. [Google Scholar] [CrossRef]
- Rausch, C.; Bucher, M. Molecular mechanisms of phosphate transport in plants. Planta 2002, 216, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Pavinato, P.S.; Cherubin, M.R.; Soltanghetisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Patel, H. Role of microbes in phosphorus availability and acquisition by plants. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1344–1347. [Google Scholar] [CrossRef]
- Kandeler, E.; Marschner, P.; Tscherko, D.; Gahoonia, T.S.; Nielsen, N.E. Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 2002, 238, 301–312. [Google Scholar] [CrossRef]
- Gahoonia, T.S.; Nielsen, N.E. Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 2004, 260, 47–57. [Google Scholar] [CrossRef]
- Herbien, S.; Neal, J. Soil pH and phosphatase activity. Commun. Soil Sci. Plant Anal. 1990, 21, 439–456. [Google Scholar] [CrossRef]
- Tkacz, A.; Cheema, J.; Chandra, G.; Grant, A.; Poole, P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015, 9, 2349–2359. [Google Scholar] [CrossRef]
- Machado, C.T.d.T.; Furlani, Â.M.C. Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize. Sci. Agric. 2004, 61, 69–76. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hasan, M.M.; Teixeira da Silva, J.A.; Li, X. Regulation of phosphorus uptake and utilization: Transitioning from current knowledge to practical strategies. Cell. Mol. Biol. Lett. 2016, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.; Dao, T.H.; Scott, H.D.; Lavy, T.L. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J. Environ. Qual. 1989, 18, 39–44. [Google Scholar] [CrossRef]
- Razavi Darbar, S. Evaluation of chemical and biological consequences of soil sterilization methods. Casp. J. Environ. Sci. 2007, 5, 87–91. [Google Scholar]
- Almeida, D.S.; Delai, L.B.; Sawaya, A.C.H.F.; Rosolem, C.A. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability. Sci. Rep. 2020, 10, 16955. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P. The role of rhizosphere microorganisms in relation to P uptake by plants. In The Ecophysiology of Plant-Phosphorus Interactions; Springer: Dordrecht, The Netherlands, 2008; pp. 165–176. [Google Scholar]
- McLaughlin, M.J.; Alston, A. The relative contribution of plant residues and fertilizer to the phosphorus nutrition of wheat in a pasture cereal system. Soil Res. 1986, 24, 517–526. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambers, H.; Condron, L.M.; Cramer, M.D.; Leake, J.R.; Richardson, A.E.; Smith, S.E. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 2013, 367, 225–234. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Wertz, S.; Degrange, V.; Prosser, J.I.; Poly, F.; Commeaux, C.; Freitag, T.; Guillaumaud, N.; Le Roux, X. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 2006, 8, 2162–2169. [Google Scholar] [CrossRef]
- Li, K.; DiLegge, M.J.; Minas, I.S.; Hamm, A.; Manter, D.; Vivanco, J.M. Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere 2019, 12, 100176. [Google Scholar] [CrossRef]
- Sosnowski, M.; Fletcher, J.D.; Daly, A.M.; Rodoni, B.C.; Viljanen-Rollinson, S.L.H. Techniques for the treatment, removal and disposal of host material during programmes for plant pathogen eradication. Plant Pathol. 2009, 58, 621–635. [Google Scholar] [CrossRef]
- Franklin, R.B.; Mills, A.L. Structural and functional responses of a sewage microbial community to dilution-induced reductions in diversity. Microb. Ecol. 2006, 52, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Setälä, H.; Berg, M.P.; Jones, T.H. Trophic structure and functional redundancy in soil communities. In Biological Diversity and Function in Soils; Cambridge University Press: Cambridge, UK, 2005; pp. 236–249. [Google Scholar]
- Gorgone-Barbosa, E.; Pivello, V.R.; Bautista, S.; Zupo, T.; Rissi, M.N.; Fidelis, A. How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biol. Invasions 2015, 17, 423–431. [Google Scholar] [CrossRef]
- Marschner, P.; Yang, C.-H.; Lieberei, R.; Crowley, D. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001, 33, 1437–1445. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; Buma, D.S.; de Boer, W.; Klinkhamer, P.G.; van Veen, J.A. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Leeuwenhoek 2002, 81, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Deubel, A.; Merbach, W. Influence of microorganisms on phosphorus bioavailability in soils. In Microorganisms in Soils: Roles in Genesis and Functions; Springer: Berlin/Heidelberg, Germany, 2005; pp. 177–191. [Google Scholar]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Seeling, B.; Zasoski, R.J. Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil 1993, 148, 277–284. [Google Scholar] [CrossRef]
- Olander, L.P.; Vitousek, P.M. Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 2004, 7, 404–419. [Google Scholar] [CrossRef]
- Nogueira, M.A.; Cardoso, E.J.B.N. Interações microbianas na disponibilidade e absorção de manganês por soja. Pesqui. Agropecu. Bras. 2002, 37, 1605–1612. [Google Scholar] [CrossRef]
- Singh, B.K.; Quince, C.; Macdonald, C.A.; Khachane, A.; Thomas, N.; Abu Al-Soud, W.; Sørensen, S.J.; He, Z.; White, D.; Sinclair, A.; et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol. 2014, 16, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Carini, P.; Marsden, P.J.; Leff, J.W.; Morgan, E.E.; Strickland, M.S.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2017, 2, 16242. [Google Scholar] [CrossRef] [PubMed]
- Arruda, B.; George, P.B.L.; Robin, A.; Mescolotti, D.d.L.C.; Herrera, W.F.B.; Jones, D.L.; Andreote, F.D. Manipulation of the soil microbiome regulates the colonization of plants by arbuscular mycorrhizal fungi. Mycorrhiza 2021, 31, 545–558. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Raij, B.V.; de Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001; 285p.
- van Elsas, J.D.; Chiurazzi, M.; Mallon, C.A.; Salles, J.F. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 2012, 109, 1159–1164. [Google Scholar] [CrossRef]
- van der Voort, M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol. Lett. 2016, 19, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo; Instituto Agronômico/Fundação IAC: Campinas, Brazil, 1997.
- Tabatabai, M.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes–Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Hedley, M.J.; Stewart, J.; Chauhan, B. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 1962, 26, 31–36. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.; Jenkinson, D. Phosphorus in the soil microbial biomass. Soil Biol. Biochem. 1984, 16, 169–175. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae; INRA: Paris, France, 1986; pp. 217–221. [Google Scholar]
Treatments | PAER (mg kg−1) | |||
P (mg kg−1) | ||||
0 | 20 | 40 | 60 | |
AS | 0.86 | 2.84 | 2.63 | 6.11 |
NH80 | 2.95 | 4.77 | 6.65 | 8.10 |
NS | 3.92 | 5.04 | 6.87 | 8.10 |
Fe (mg dm−3) | ||||
P (mg kg−1) | ||||
0 | 20 | 40 | 60 | |
AS | 100 | 105 | 170 | 122 |
NH80 | 79 | 80 | 74 | 77 |
NS | 77 | 79 | 78 | 85 |
Mn (mg dm−3) | ||||
P (mg kg−1) | ||||
0 | 20 | 40 | 60 | |
AS | 32.8 | 33.8 | 26.9 | 31.5 |
NH80 | 7.0 | 7.8 | 7.6 | 5.8 |
NS | 5.8 | 5.5 | 6.4 | 5.9 |
Treatments | APASE (mg kg−1 h−1) | |||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 317 | dA | 143 | cBC | 168 | dB | 133 | cBC |
AS + 10−3 | 409 | cA | 212 | bBC | 319 | cAB | 250 | bB |
NH80 | 585 | bBC | 645 | aB | 531 | bC | 745 | aA |
NS | 726 | a ns | 753 | a ns | 736 | a ns | 682 | a ns |
Gene abundance (log g−1)—16S—bacteria | ||||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 10.15 | bB | 10.09 | cC | 10.25 | bA | 10.21 | abAB |
AS + 10−3 | 10.27 | aB | 10.33 | aA | 10.33 | aA | 10.19 | bC |
NH80 | 10.18 | bB | 10.18 | bB | 10.19 | cAB | 10.22 | abA |
NS | 10.27 | aB | 10.34 | aA | 10.32 | aAB | 10.26 | aC |
Gene abundance (log g−1)—ITS—fungi | ||||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 8.12 | bD | 8.48 | bC | 8.71 | aB | 8.87 | aA |
AS + 10−3 | 8.44 | aB | 8.70 | aA | 8.69 | aA | 8.30 | bB |
NH80 | 7.76 | bc ns | 7.83 | d ns | 7.84 | b ns | 7.81 | c ns |
NS | 7.90 | b ns | 7.99 | c ns | 7.98 | b ns | 7.85 | c ns |
Treatment | PAER (mg kg−1) | |||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 0.76 | cD | 2.32 | bC | 4.62 | cB | 7.30 | bA |
AS + 10−3 | 1.28 | bC | 2.78 | bB | 6.22 | cA | 5.62 | cA |
NH80 | 4.32 | aD | 6.68 | aC | 14.70 | aA | 10.98 | aB |
NS | 4.94 | aB | 8.12 | aA | 8.94 | bA | 10.20 | aA |
APASE (mg kg−1 h−1) | ||||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 509 | bA | 235 | bB | 250 | cB | 238 | bB |
AS + 10−3 | 473 | bA | 225 | bC | 300 | bB | 279 | bB |
NH80 | 639 | aB | 658 | aB | 744 | aA | 774 | aA |
NS | 678 | aA | 210 | bB | 740 | aA | 752 | aA |
PMIC (mg kg−1) | ||||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 7.0 | cA | 10.8 | aA | 6.3 | bA | 6.7 | cA |
AS + 10−3 | 14.1 | bA | 15.2 | aA | 5.0 | bB | 8.9 | bcAB |
NH80 | 13.3 | bA | 2.7 | bB | 7.5 | bAB | 15.2 | abA |
NS | 34.0 | aA | 22.2 | aAB | 30.2 | aAB | 19.8 | aB |
PUPT (µg pot−1) | ||||||||
P (mg kg−1) | ||||||||
0 | 20 | 40 | 60 | |||||
AS | 410 | aC | 533 | aB | 927 | aA | 1272 | aA |
AS + 10−3 | 230 | bD | 429 | aC | 662 | aB | 1469 | aA |
NH80 | 146 | cD | 329 | bB | 230 | bC | 728 | bA |
NS | 63 | dC | 112 | cB | 199 | bA | 196 | cA |
Treatments | PAER (mg kg−1) | ||||||||
P (mg kg−1) | |||||||||
0 | 20 | 40 | 60 | ||||||
AS | 6.75 | dA | 8.61 | cA | 0.52 | bB | 4.02 | bA | |
AS + 10−3 | 10.00 | bA | 10.10 | aA | 2.86 | bC | 7.42 | aB | |
NH80 | 9.63 | cA | 9.03 | bAB | 7.13 | aB | 8.41 | aAB | |
NS | 21.80 | aA | 9.63 | bB | 4.27 | aC | 6.19 | aB | |
APASE (mg kg−1 h−1) | |||||||||
P (mg kg−1) | |||||||||
0 | 20 | 40 | 60 | ||||||
AS | 382 | abA | 89 | cC | 330 | bAB | 179 | bB | |
AS + 10−3 | 292 | bA | 285 | bA | 377 | bA | 301 | abA | |
NH80 | 560 | aA | 591 | aA | 472 | abA | 649 | aA | |
NS | 580 | aAB | 525 | aAB | 771 | aA | 392 | aB | |
PMIC (mg kg−1) | |||||||||
P (mg kg−1) | |||||||||
0 | 20 | 40 | 60 | Mean | |||||
AS | 6.74 | ns | 3.15 | 3.71 | 7.13 | 5.18 b | |||
AS + 10−3 | 3.97 | 2.34 | 4.04 | 3.64 | 3.50 b | ||||
NH80 | 5.34 | 4.82 | 4.98 | 3.20 | 4.59 b | ||||
NS | 18.60 | 2.49 | 8.66 | 6.40 | 9.04 a | ||||
Mean | 8.66 | A | 3.20 | B | 5.35 | AB | 5.09 | AB | |
PUPT (µg pot−1) | |||||||||
P (mg kg−1) | |||||||||
0 | 20 | 40 | 60 | Mean | |||||
AS | 162 | ns | 286 | 302 | 667 | 354 a | |||
AS + 10−3 | 138 | 201 | 330 | 408 | 269 bc | ||||
NH80 | 162 | 221 | 259 | 379 | 255 c | ||||
NS | 119 | 257 | 259 | 313 | 237 c | ||||
Mean | 145 | C | 241 | B | 287 | B | 442 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, B.; Prataviera, F.; Bejarano Herrera, W.F.; Colombo Mescolotti, D.d.L.; Miranda Silva, A.M.; Pereira de Carvalho, H.W.; Pavinato, P.S.; Dini Andreote, F. Phosphorus Dynamics in Stressed Soil Systems: Is There a Chemical and Biological Compensating Effect? Stresses 2024, 4, 251-268. https://doi.org/10.3390/stresses4020015
Arruda B, Prataviera F, Bejarano Herrera WF, Colombo Mescolotti DdL, Miranda Silva AM, Pereira de Carvalho HW, Pavinato PS, Dini Andreote F. Phosphorus Dynamics in Stressed Soil Systems: Is There a Chemical and Biological Compensating Effect? Stresses. 2024; 4(2):251-268. https://doi.org/10.3390/stresses4020015
Chicago/Turabian StyleArruda, Bruna, Fábio Prataviera, Wilfrand Ferney Bejarano Herrera, Denise de Lourdes Colombo Mescolotti, Antonio Marcos Miranda Silva, Hudson Wallace Pereira de Carvalho, Paulo Sergio Pavinato, and Fernando Dini Andreote. 2024. "Phosphorus Dynamics in Stressed Soil Systems: Is There a Chemical and Biological Compensating Effect?" Stresses 4, no. 2: 251-268. https://doi.org/10.3390/stresses4020015
APA StyleArruda, B., Prataviera, F., Bejarano Herrera, W. F., Colombo Mescolotti, D. d. L., Miranda Silva, A. M., Pereira de Carvalho, H. W., Pavinato, P. S., & Dini Andreote, F. (2024). Phosphorus Dynamics in Stressed Soil Systems: Is There a Chemical and Biological Compensating Effect? Stresses, 4(2), 251-268. https://doi.org/10.3390/stresses4020015