Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Hydrophosphination
2.2. Computational Analysis
3. Conclusions
4. Synthetic, Spectroscopic, and Catalytic Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bange, C.A.; Waterman, R. Challenges in Catalytic Hydrophosphination. Chem. Eur. J. 2016, 22, 12598–12605. [Google Scholar] [CrossRef]
- Slootweg, J.C. Sustainable Phosphorus Chemistry: A Silylphosphide Synthon for the Generation of Value-Added Phosphorus Chemicals. Angew. Chem. Int. Ed. Engl. 2018, 57, 6386–6388. [Google Scholar] [CrossRef]
- Øgaard, A.; Brod, E. Efficient Phosphorus Cycling in Food Production: Predicting the Phosphorus Fertilization Effect of Sludge from Chemical Wastewater Treatment. J. Agric. Food Chem. 2016, 64, 4821–4829. [Google Scholar] [CrossRef] [PubMed]
- Troev, K.D. Chapter 2—Reactivity of P–H Group of Phosphines. In Reactivity of P-H Group of Phosphorus Based Compounds; Troev, K.D., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 19–144. [Google Scholar]
- Greenberg, S.; Stephan, D.W. Phosphines Bearing Alkyne Substituents: Synthesis and Hydrophosphination Polymerization. Inorg. Chem. 2009, 48, 8623–8631. [Google Scholar] [CrossRef]
- Kovacik, I.; Wicht, D.K.; Grewal, N.S.; Glueck, D.S.; Incarvito, C.D.; Guzei, I.A.; Rheingold, A.L. Pt(Me-Duphos)-Catalyzed Asymmetric Hydrophosphination of Activated Olefins: Enantioselective Synthesis of Chiral Phosphines. Organometallics 2000, 19, 950–953. [Google Scholar] [CrossRef]
- Koshti, V.; Gaikwad, S.; Chikkali, S.H. Contemporary Avenues in Catalytic PH Bond Addition Reaction: A Case Study of Hydrophosphination. Coord. Chem. Rev. 2014, 265, 52–73. [Google Scholar] [CrossRef]
- Bange, C.A. Exploration of Zirconium-Catalyzed Intermolecular Hydrophosphination with Primary Phosphines: Photocatalytic Single and Double Hydrophosphination. Ph.D. Thesis, University of Vermont, Burlington, VT, USA, 2018; pp. 1–339. [Google Scholar]
- Gladysz, J.A.; Bedford, R.B.; Fujita, M.; Gabbaï, F.P.; Goldberg, K.I.; Holland, P.L.; Kiplinger, J.L.; Krische, M.J.; Louie, J.; Lu, C.C.; et al. Organometallics Roundtable 2013–2014. Organometallics 2014, 33, 1505–1527. [Google Scholar] [CrossRef]
- King, A.K.; Gallagher, K.J.; Mahon, M.F.; Webster, R.L. Markovnikov versus anti-Markovnikov Hydrophosphination: Divergent Reactivity Using an Iron(II) β-Diketiminate Pre-Catalyst. Chem. Eur. J. 2017, 23, 9039–9043. [Google Scholar] [CrossRef]
- Kamitani, M.; Itazaki, M.; Tamiya, C.; Nakazawa, H. Regioselective Double Hydrophosphination of Terminal Arylacetylenes Catalyzed by an Iron Complex. J. Am. Chem. Soc. 2012, 134, 11932–11935. [Google Scholar] [CrossRef]
- Bange, C.A.; Waterman, R. Zirconium-Catalyzed Intermolecular Double Hydrophosphination of Alkynes with a Primary Phosphine. ACS Catal. 2016, 6, 6413–6416. [Google Scholar] [CrossRef]
- Mimeau, D.; Gaumont, A.-C. Regio- and Stereoselective Hydrophosphination Reactions of Alkynes with Phosphine−Boranes: Access to Stereodefined Vinylphosphine Derivatives. J. Org. Chem. 2003, 68, 7016–7022. [Google Scholar] [CrossRef]
- Basalov, I.V.; Dorcet, V.; Fukin, G.K.; Carpentier, J.-F.; Sarazin, Y.; Trifonov, A.A. Highly Active, Chemo- and Regioselective YbII and SmII Catalysts for the Hydrophosphination of Styrene with Phenylphosphine. Chem. Eur. J. 2015, 21, 6033–6036. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, L. Mechanisms of Metal-Catalyzed Hydrophosphination of Alkenes and Alkynes. ACS Catal. 2013, 3, 2845–2855. [Google Scholar] [CrossRef]
- Wang, C.; Huang, K.; Ye, J.; Duan, W.-L. Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-Boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex. J. Am. Chem. Soc. 2021, 143, 5685–5690. [Google Scholar] [CrossRef] [PubMed]
- Lapshin, I.V.; Basalov, I.V.; Lyssenko, K.A.; Cherkasov, A.V.; Trifonov, A.A. CaII, YbII and SmII Bis(Amido) Complexes Coordinated by NHC Ligands: Efficient Catalysts for Highly Regio- and Chemoselective Consecutive Hydrophosphinations with PH3. Chem. Eur. J. 2019, 25, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Sadeer, A.; Kojima, T.; Ng, J.S.; Gan, K.; Chew, R.J.; Li, Y.; Pullarkat, S.A. Catalytic Access to Ferrocenyl Phosphines Bearing both Planar and Central Chirality—A Kinetic Resolution Approach via Catalytic Asymmetric P(III)–C Bond Formation. Tetrahedron 2020, 76, 131259. [Google Scholar] [CrossRef]
- Isley, N.A.; Linstadt, R.T.H.; Slack, E.D.; Lipshutz, B.H. Copper-Catalyzed Hydrophosphinations of Styrenes in Water at Room Temperature. Dalton Trans. 2014, 43, 13196–13200. [Google Scholar] [CrossRef]
- Li, J.; Lamsfus, C.A.; Song, C.; Liu, J.; Fan, G.; Maron, L.; Cui, C. Samarium-Catalyzed Diastereoselective Double Addition of Phenylphosphine to Imines and Mechanistic Studies by DFT Calculations. ChemCatChem 2017, 9, 1368–1372. [Google Scholar] [CrossRef]
- Moglie, Y.; González-Soria, M.J.; Martín-García, I.; Radivoy, G.; Alonso, F. Catalyst- and Solvent-Free Hydrophosphination and Multicomponent Hydrothiophosphination of Alkenes and Alkynes. Green Chem. 2016, 18, 4896–4907. [Google Scholar] [CrossRef] [Green Version]
- Teo, R.H.X.; Chen, H.J.; Li, Y.; Pullarkat, S.A.; Leung, P.-H. Asymmetric Catalytic 1,2-Dihydrophosphination of Secondary 1,2-Diphosphines—Direct Access to Free P*- and P*,C*-Diphosphines. Adv. Synth. Catal. 2020, 362, 2373–2378. [Google Scholar] [CrossRef]
- Garner, M.E.; Parker, B.F.; Hohloch, S.; Bergman, R.G.; Arnold, J. Thorium Metallacycle Facilitates Catalytic Alkyne Hydrophosphination. J. Am. Chem. Soc. 2017, 139, 12935–12938. [Google Scholar] [CrossRef] [PubMed]
- Waterman, R. Triamidoamine-Supported Zirconium Compounds in Main Group Bond-Formation Catalysis. Acc. Chem. Res. 2019, 52, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, A.A.; Basalov, I.V.; Kissel, A.A. Use of Organolanthanides in the Catalytic Intermolecular Hydrophosphination and Hydroamination of Multiple C–C Bonds. Dalton Trans. 2016, 45, 19172–19193. [Google Scholar] [CrossRef]
- Webster, R.L. β-Diketiminate Complexes of the First Row Transition Metals: Applications in Catalysis. Dalton Trans. 2017, 46, 4483–4498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dannenberg, S.G.; Waterman, R. A Bench-Stable Copper Photocatalyst for the Rapid Hydrophosphination of Activated and Unactivated Alkenes. Chem. Comm. 2020, 56, 14219–14222. [Google Scholar] [CrossRef]
- Sarazin, Y.; Carpentier, J.-F. Calcium, Strontium and Barium Homogeneous Catalysts for Fine Chemicals Synthesis. Chem. Rec. 2016, 16, 2482–2505. [Google Scholar] [CrossRef]
- Seah, J.W.K.; Teo, R.H.X.; Leung, P.-H. Organometallic Chemistry and Application of Palladacycles in Asymmetric Hydrophosphination Reactions. Dalton Trans. 2021, 50, 16909–16915. [Google Scholar] [CrossRef]
- Pullarkat, S.A. Recent Progress in Palladium-Catalyzed Asymmetric Hydrophosphination. Synthesis 2016, 48, 493–503. [Google Scholar] [CrossRef]
- Bange, C.A.; Conger, M.A.; Novas, B.T.; Young, E.R.; Liptak, M.D.; Waterman, R. Light-Driven, Zirconium-Catalyzed Hydrophosphination with Primary Phosphines. ACS Catal. 2018, 8, 6230–6238. [Google Scholar] [CrossRef]
- Novas, B.T.; Bange, C.A.; Waterman, R. Photocatalytic Hydrophosphination of Alkenes and Alkynes Using Diphenylphosphine and Triamidoamine-Supported Zirconium. Eur. J. Inorg. Chem. 2019, 2019, 1640–1643. [Google Scholar] [CrossRef]
- Cibuzar, M.P.; Novas, B.T.; Waterman, R. Zirconium Complexes. In Comprehensive Coordination Chemistry III; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Oxford, UK, 2021; pp. 162–196. [Google Scholar]
- Bange, C.A.; Waterman, R. Zirconium-Catalyzed Hydroarsination with Primary Arsines. Polyhedron 2018, 156, 31–34. [Google Scholar] [CrossRef]
- Cibuzar, M.P.; Dannenberg, S.G.; Waterman, R. A Commercially Available Ruthenium Compound for Catalytic Hydrophosphination. Isr. J. Chem. 2020, 60, 446–451. [Google Scholar] [CrossRef]
- Ackley, B.J.; Pagano, J.K.; Waterman, R. Visible-Light and Thermal Driven Double Hydrophosphination of Terminal Alkynes Using a Commercially Available Iron Compound. Chem. Comm. 2018, 54, 2774–2776. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, L.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes. Inorg. Chem. 2018, 57, 139–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, Y.; Yuan, D.; Yao, Y. Hydrophosphination of Alkenes and Alkynes with Primary Phosphines Catalyzed by Zirconium Complexes Bearing Aminophenolato Ligands. Dalton Trans. 2018, 47, 9090–9095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Intramolecular Hydroamination Reactions Catalyzed by Zirconium Complexes Bearing Bridged Bis(phenolato) Ligands. RSC Adv. 2016, 6, 10541–10548. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Izsák, R.; Neese, F. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011, 135, 144105. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA Program System. WIREs Comp. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- Waterman, R. Selective Dehydrocoupling of Phosphines by Triamidoamine Zirconium Catalyst. Organometallics 2007, 26, 2492–2494. [Google Scholar] [CrossRef]
Entry | Substrate | Product | Light Source | Time | Conversion |
---|---|---|---|---|---|
1 | LED | 2 h | 83% | ||
2 | Ambient | 2 h | 8% | ||
3 | Dark | 2 h | >1% | ||
4 | Ambient | 24 h | 87% | ||
5 | Dark | 24 h | 4% | ||
6 | LED | 2 h | 70% | ||
7 | LED | 2 h | 91% | ||
8 | LED | 2 h | 65% | ||
9 | LED | 2 h | 90% | ||
10 | LED | 24 h | 68% |
Entry | Product | Light Source | Time | Conversion |
---|---|---|---|---|
1 | LED | 2 h | >99% | |
2 | Ambient | 2 h | 21% | |
3 | Dark | 2 h | 2% | |
4 | Ambient | 24 h | 69% | |
5 | Dark | 24 h | 4% |
Entry | Substrate | Product | Light Source | Time | Conversion |
---|---|---|---|---|---|
1 | LED | 2 h | 91% | ||
2 | Ambient | 2 h | 12% | ||
3 | Dark | 2 h | >1% | ||
4 | Ambient | 24 h | 92% | ||
5 | Dark | 24 h | 1% | ||
6 | LED | 2 h | 88% | ||
7 | LED | 2 h | >99% | ||
8 | LED | 2 h | 66% | ||
9 | LED | 2 h | >99% | ||
10 | LED | 24 h | 83% |
Entry | Product | Light Source | Time | Conversion |
---|---|---|---|---|
1 | LED | 2 h | >99% | |
2 | Ambient | 2 h | 17% | |
3 | Dark | 2 h | >1% | |
4 | Ambient | 24 h | 76% | |
5 | Dark | 24 h | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novas, B.T.; Morris, J.A.; Liptak, M.D.; Waterman, R. Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis. Photochem 2022, 2, 77-87. https://doi.org/10.3390/photochem2010007
Novas BT, Morris JA, Liptak MD, Waterman R. Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis. Photochem. 2022; 2(1):77-87. https://doi.org/10.3390/photochem2010007
Chicago/Turabian StyleNovas, Bryan T., Jacob A. Morris, Matthew D. Liptak, and Rory Waterman. 2022. "Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis" Photochem 2, no. 1: 77-87. https://doi.org/10.3390/photochem2010007
APA StyleNovas, B. T., Morris, J. A., Liptak, M. D., & Waterman, R. (2022). Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis. Photochem, 2(1), 77-87. https://doi.org/10.3390/photochem2010007