Structural Quasi-Isomerism in Au/Ag Nanoclusters
Abstract
:1. Introduction
2. Synthesis of Quasi-Isomerism of Metal Nanoclusters and the Structures
3. Reversion of the Isomerism Structure
4. Catalytic Applications and Photoluminescence
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
DFT | density functional theory |
TBBT | tert-butyl benzene thiol |
PET | phenylethanethiolate |
p-MBA | para-mercaptobenzoic acid |
SG | glutathione |
R/S-NYA | N-((R/S)-1-(naphthalen-4-yl)ethyl)prop-2-yn-1-amine |
DMBT | dimethyl benzene thiol |
CHT | cyclohexanethiol |
SCXD | single crystal X-ray diffraction |
CTABr | cetyl trimethyl ammonium bromide |
UV-vis-NIR | Uv-visible near infrared |
TOAB | tetraoctyl ammonium bromide |
ESI-MS | electrospray ionization mass spectrometry |
MALDI-TOF-MS | matrix-assisted laser desorption/ ionization time of flight mass spectrometry |
References
- Kang, X.; Zhu, M. Structural Isomerism in Atomically Precise Nanoclusters. Chem. Mater. 2021, 33, 39–62. [Google Scholar] [CrossRef]
- Gao, L.; Rongchao, J. Atomically Precise Gold Nanoclusters as New Model Catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar]
- Shi, Q.; Qin, Z.; Sharma, S.; Li, G. Recent progress in heterogeneous catalysis over atomically and structurally precise metal nanoclusters. Chem. Rec. 2021, 21, 879–892. [Google Scholar] [CrossRef]
- Rongchao, J.; Gao, L.; Sachil, S.; Yingwei, L.; Xiangsha, D. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem. Rev. 2021, 121, 567–648. [Google Scholar]
- Yan, Z.; Huifeng, Q.; Bethany, A.D.; Rongchao, J. Atomically Precise Au25(SR)18 Nanoparticles as Catalysts for the Selective Hydrogenation of α,β-Unsaturated Ketones and Aldehydes. Angew. Chem. Int. Ed. 2010, 49, 1295–1298. [Google Scholar]
- Gao, L.; Rongchao, J. Gold Nanocluster-Catalyzed Semihydrogenation: A Unique Activation Pathway for Terminal Alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354. [Google Scholar]
- Xian-Kai, W.; Zong-Jie, G.; Quan-Ming, W. Homoleptic Alkynyl-Protected Gold Nanoclusters: Au44(PhC/C)28 and Au36(PhC/C)24. Angew. Chem. Int. Ed. 2017, 129, 11652–11655. [Google Scholar]
- Jiangwei, Z.; Yang, Z.; Kai, Z.; Hadi, A.; Douglas, R.K.; Junliang, S.; Gao, L. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798. [Google Scholar]
- Chao, L.; Hadi, A.; Chunyang, Y.; Gao, L.; Masatake, H. One-pot Synthesis of Au11(PPh2Py)7Br3 for the Highly Chemoselective Hydrogenation of Nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99. [Google Scholar]
- Wu, Z.; Suhan, J.; Jin, R. One-Pot Synthesis of Atomically Monodisperse, Thiol-Functionalized Au25 Nanoclusters. J. Mater. Chem. 2009, 19, 622–626. [Google Scholar] [CrossRef]
- Das, A.; Liu, C.; Byun, H.Y.; Nobusada, K.; Zhao, S.; Rosi, N.L.; Jin, R. Structure Determination of [Au18(SR)14]. Angew. Chem. Int. Ed. 2015, 54, 3140–3144. [Google Scholar] [CrossRef] [PubMed]
- Jehad, A.; Nitul, S.R.; Amine, E.M.; Mustapha, J. Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting. Nanomaterials 2020, 10, 2260. [Google Scholar]
- Zhu, M.; Aikens, C.M.; Hollander, F.J.; Schatz, G.C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008, 130, 5883–5885. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N.; Yoon, B.; Barnett, R.N.; Whetten, R.L.; Landman, U.; Jin, R. Total Structure and Electronic Properties of the Gold Nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, Z.; Yu, Y.; Lee, J.Y.; Xie, J. Observation of Cluster Size Growth in CO-Directed Synthesis of Au25(SR)18 Nanoclusters. ACS Nano 2012, 6, 7920–7927. [Google Scholar] [CrossRef]
- Kenzler, S.; Schrenk, C.; Schnep, A. Au108S24(PPh3)16: A Highly Symmetric Nanoscale Gold Cluster Confirms the Generalm Concept of Metalloid Clusters. Angew. Chem. Int. Ed. 2017, 56, 393–396. [Google Scholar] [CrossRef]
- Chen, W.T.; Hsu, Y.J.; Kamat, P.V. Realizing Visible Photoactivity of Metal Nanoparticles: Excited-State Behavior and Electron-Transfer Properties of Silver (Ag8) Clusters. J. Phys. Chem. Lett. 2012, 3, 2493–2499. [Google Scholar] [CrossRef]
- Sridharan, K.; Jang, E.; Park, J.H.; Kim, J.H.; Lee, J.H.; Park, T.J. Silver Quantum Cluster (Ag9)-Grafted Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Generation and Dye Degradation. Chem. Eur. J. 2015, 21, 9126–9132. [Google Scholar] [CrossRef]
- Wang, Z.; Su, H.F.; Kurmoo, M.; Tung, C.H.; Sun, D.; Zheng, L.S. Trapping an Octahedral Ag6 Kernel in a Seven-Fold Symmetric Ag56 Nanowheel. Nat. Commun. 2018, 9, 2094. [Google Scholar] [CrossRef] [Green Version]
- Chao, L.; Tao, L.; Hadi, A.; Zhimin, L.; Chen, Z.; Hyung, J.K.; Gao, L.; Rongchao, J. Chiral Ag23 Nanocluster with Open Shell Electronic Structure and Helical Face-Centered Cubic Framework. Nat. Commun. 2018, 9, 744. [Google Scholar]
- Xiaoben, Z.; Zhimin, L.; Wei, P.; Gao, L.; Wei, L.; Pengfei, D.; Zhen, W.; Zhaoxian, Q.; Haifeng, Q.; Xiaoyan, L.; et al. Crystal Phase Mediated Restructuring of Pt on TiO2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catal. 2022, 12, 3634–3643. [Google Scholar]
- Zheyi, L.; Zhaoxian, Q.; Chaonan, C.; Zhixun, L.; Bing, Y.; You, J.; Can, L.; Zhipeng, W.; Xiaolei, W.; Xiang, F.; et al. In-Situ Generation and Global Property Profiling of Metal nanoclusters by Ultraviolet Laser Dissociation-Mass Spectrometry. Sci. China Chem. 2022, 65, 1196–1203. [Google Scholar]
- Zhuang, Z.; Yang, Q.; Chen, W. One-Step Rapid and Facile Synthesis of Subnanometer-Sized Pd6(C12H25S)11 Clusters with Ultra High Catalytic Activity for 4-Nitrophenol Reduction. ACS Sustain. Chem. Eng. 2019, 7, 2916–2923. [Google Scholar] [CrossRef]
- Gao, X.; Chen, W. Highly Stable and Efficient Pd6(SR)12 Cluster Catalysts for the Hydrogen and Oxygen Evolution Reactions. Chem. Commun. 2017, 53, 9733–9736. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Sheng, H.; Yu, J.; Bao, L.; Du, Y.; Xu, F.; Yu, H.; Li, P.; Zhu, M. Boosting the Activity of Ligand-on Atomically Precise Pd3Cl Cluster Catalyst by Metal-Support Interaction from Kinetic and Thermodynamic Aspects. Adv. Synth. Catal. 2018, 360, 4731–4743. [Google Scholar] [CrossRef]
- Li, F.; Tang, Q. The Critical Role of Hydride (H-) Ligands in Electrocatalytic CO2 Reduction to HCOOH by [Cu25H22(PH3)12]Cl Nanocluster. J. Catal. 2020, 387, 95–101. [Google Scholar] [CrossRef]
- Hossain, S.; Imai, Y.; Suzuki, D.; Choi, W.; Chen, Z.; Suzuki, T.; Yoshioka, M.; Kawawaki, T.; Lee, D.; Negishi, Y. Elucidating Ligand Effects in Thiolate-Protected Metal Clusters Using Au24Pt(TBBT)18 as a Model Cluster. Nanoscale 2019, 11, 22089–22098. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jin, S.; Yang, S.; Chen, S.; Song, Y.; Zhang, J.; Zhu, M. Total Structure Determination of Surface Doping [Ag46Au24(SR)32]-(BPh4)2 Nanocluster and Its Structure-Related Catalytic Property. Sci. Adv. 2015, 1, e1500441. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Yang, S.; Lv, Y.; Chong, H.; Yu, H.; Zhu, M. Exposing the Delocalized Cu-S π Bonds on the Au24Cu6(SPhtBu)22 Nanocluster and Its Application in Ring-Opening Reactions. Angew. Chem. Int. Ed. 2019, 58, 15671–15674. [Google Scholar] [CrossRef]
- Panapitiya, G.; Wang, H.; Chen, Y.; Hussain, E.; Jin, R.; Lewis, J.P. Structural and Catalytic Properties of the Au25−xAgx(SCH3)18 (x = 6, 7, 8) Nanocluster. Phys. Chem. Chem. Phys. 2018, 20, 13747–13756. [Google Scholar] [CrossRef]
- Hanbao, C.; Guiqi, G.; Jinsong, C.; Sha, Y.; Bo, R.; Guang, L.; Manzhou, Z. Photoinduced Oxidation Catalysis by Au25−xAgx(SR)18 Nanoclusters. ChemNanoMat 2018, 4, 482–486. [Google Scholar] [CrossRef]
- Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D.; Lee, D. A Molecule-like PtAu24(SC6H13)18 Nanocluster as an Electrocatalyst for Hydrogen Production. Nat. Commun. 2017, 8, 14723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Hard-Sphere Random Close-Packed Au47Cd2(TBBT)31 Nanoclusters with a Faradaic Efficiency of Up to 96% for Electrocatalytic CO2 Reduction to CO. Angew. Chem. Int. Ed. 2020, 59, 3073. [Google Scholar] [CrossRef] [PubMed]
- Zhaoxian, Q.; Sachil, S.; Chong-qing, W.; Sami, M.; Wen-wu, X.; Hannu, H.; Gao, L. A Homoleptic Alkynyl-Ligated [Au13Ag16L24]3− Cluster as a Catalytically Active Eight-Electron Superatom. Angew. Chem. Int. Ed. 2020, 59, 970–975. [Google Scholar]
- Shubo, T.; Yi-Zhi, L.; Man-Bo, L.; Jinyun, Y.; Jinlong, Y.; Zhikun, W.; Rongchao, J. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667. [Google Scholar]
- Zhang, J.; Li, Z.; Zheng, K.; Li, G. Synthesis and characterization of size-controlled atomically-precise gold clusters. Phys. Sci. Rev. 2018, 20170083. [Google Scholar] [CrossRef]
- Zong-Jie, G.; Feng, H.; Jiao-Jiao, L.; Zhao-Rui, W.; Yu-Mei, L.; Quan-Ming, W. Isomerization in Alkynyl-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2020, 142, 299–3001. [Google Scholar]
- Elina, K.; Sami, M.; María, F.M.; Rania, K.; Thomas, B.; Hannu, H. Experimental Confirmation of a Topological Isomer of the Ubiquitous Au25(SR)18 Cluster in the Gas Phase. J. Am. Chem. Soc. 2021, 143, 1273–1277. [Google Scholar]
- Ren-Wu, H.; Xi-Yan, D.; Bing-Jie, Y.; Xiang-Sha, D.; Dong-Hui, W.; Shuang-Quan, Z.; Thomas, C.W.M. Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Cluster Assembled-Materials. Angew. Chem. Int. Ed. 2018, 57, 8560–8566. [Google Scholar]
- Huifeng, Q.; William, T.E.; Yan, Z.; Tomislav, P.; Rongchao, J. Total Structure Determination of Thiolate-Protected Au38 Nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281. [Google Scholar]
- Shengli, Z.; Lingwen, L.; Jinyun, Y.; Nan, X.; Yan, Z.; Chengming, W.; Zibao, G.; Nan, Y.; Lizhong, H.; Jin, L.; et al. Fcc versus Non-fcc Structural Isomerism of Gold Nanoparticles with Kernel Atom Packing Dependent Photoluminescence. Angew. Chem. Int. Ed. 2019, 58, 4510–4514. [Google Scholar]
- Xu, L.; Wen, W.X.; Xinyu, H.; Endong, W.; Xiao, C.; Yue, Z.; Jin, L.; Min, X.; Chunfeng, Z.; Yi, G.; et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349. [Google Scholar]
- Nan, X.; Jingyun, Y.; Lingwen, L.; Wenhao, Z.; Jin, L.; Haiteng, D.; Jinlong, Y.; Zhikun, W. Structural Oscillation Revealed in Gold Nanoparticles. J. Am. Chem. Soc. 2020, 142, 28, 12140–12140. [Google Scholar]
- Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z.; Xie, Y.; Kim, H.J.; Rosi, N.L.; Jin, R. Tailoring the Electronic and Catalytic Properties of Au25 Nanoclusters via Ligand Engineering. ACS Nano 2016, 10, 7998–8005. [Google Scholar] [CrossRef]
- María, F.M.; Sami, M.; Emily, K.B.; Brian, M.B.; Christine, M. Aikensb and Hannu Häkkinen. A topological isomer of the Au25(SR)18− nanocluster. Chem. Commun. 2020, 56, 8087–8090. [Google Scholar]
- Zhen, H.; Xi-Yan, D.; Peng, L.; Si, L.; Zhao-Yang, W.; Shuang-Quan, Z.; Thomas, C.W.M. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107. [Google Scholar]
- Miao-Miao, Z.; Xi-Yan, D.; Zhao-Yang, W.; Xi-Ming, L.; Jia-Hong, H.; Shuang-Quan, Z.; Thomas, C.W.M. Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. J. Am. Chem. Soc. 2021, 143, 6048–6053. [Google Scholar]
- Yitao, C.; Sami, M.; María, F.M.; Tiankai, C.; Qiaofeng, Y.; Run, S.; Hannu, H.; Jianping, X. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021, 8, 2227–2244. [Google Scholar]
- Gao, L.; De-en, J.; Chao, L.; Changlin, Y.; Rongchao, J. Oxide-supported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling. J. Catal. 2013, 306, 177–183. [Google Scholar]
- Chao, L.; Junying, Z.; Jiahui, H.; Chaolei, Z.; Feng, H.; Yang, Z.; Gao, L.; Masatake, H. Efficient Aerobic Oxidation of Glucose to Gluconic Acid over Activated Carbon-Supported Gold Clusters. ChemSuSChem 2017, 10, 1976–1980. [Google Scholar]
- Kai, Z.; Jiangwei, Z.; Dan, Z.; Yong, Y.; Zhimin, L.; Gao, L. Motif Mediated Au25(SPh)5(PPh3)10X2 Nanorod of Conjugated Electron Delocalization. Nano Res. 2019, 12, 501–507. [Google Scholar]
- Qin, Z.; Hu, S.; Han, W.; Li, Z.; Xu, W.W.; Zhang, J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.; Wan, C.; Liu, S.; Abroshan, H.; Jin, R.; Li, G. Atomically Precise Nanoclusters with Reversible Isomeric Transformation for Rotary Nanomotors. Nat. Commun. 2020, 11, 6019. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Abroshan, H.; Ge, Q.; Yang, X.; Xu, H.; Li, G. Catalytic CO Oxidation Using Bimetallic MxAu25−x Clusters: A Combined Experimental and Computational Study on Doping Effects. J. Phys. Chem. C 2016, 120, 10261–10267. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, J.; Sharma, S.; Malola, S.; Wu, K.; Häkkinen, H.; Li, G. Photo-Induced Cluster-to-Cluster Transformation of [Au37−xAgx(PPh3)13Cl10]3+ into [Au25−yAgy(PPh3)10Cl8]+: Fragmentation of A Trimer of 8-Electron Superatoms by Light. J. Phys. Chem. Lett. 2021, 12, 10920–10926. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Z.; Li, G.; Lai, C.; Wang, Z.; Wang, X.; Pidko, E.; Xiao, C.; Wang, F.; Li, G.; et al. Single-Atom Pt+ Derived from Laser Dissociation of Platinum Cluster: Insights of Non-Oxidative Alkane Conversion. J. Phys. Chem. Lett. 2020, 11, 5987–5991. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Qin, Z.; Tian, S.; Ye, Z.; Ye, L.; Abroshan, H.; Li, G. TixCe1-xO2 Nanocomposites: A Monolithic Catalyst for Direct Conversion of Carbon Dioxide and Methanol to Dimethyl Carbonate. Green Chem. 2019, 21, 4642–4649. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Q.; Xu, L.; Han, Z.; Guo, S.; Li, G.; Baiker, A. Effect of Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of Copper-Ceria Solid Solution. ACS App. Mater. Interfaces 2021, 13, 61078–61087. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, G.; Han, Z.; Zhang, S.; Sarker, D.; Xu, W.; Pan, X.; Li, G.; Baiker, A. Synergistic Effects of Ternary PdO-CeO2-OMS-2 Catalyst afford high Catalytic Performance and Stability in the Reduction of NO with CO. ACS Appl. Mater. Interfaces 2021, 13, 622–630. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Chen, W.; Xu, W.; Han, Z.; Waheed, A.; Ye, Z.; Li, G.; Baiker, A. Continuous Dimethyl Carbonate Synthesis from CO2 and Methanol over BixCe1-xOδ Monoliths: Effect of Bismuth Doping on Population of Oxygen Vacancies, Activity, and Reaction Pathway. Nano Res. 2022, 15, 1366–1374. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Wang, H.; Li, Z.; Zheng, K.; Li, S.; Li, G. Transition-Metal-Mediated Catalytic Properties of CeO2-Supported Gold Clusters in Aerobic Alcohol Oxidation. Nano Res. 2018, 11, 2139–2148. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Q.; Liu, X.; Li, J.; Xu, H.; Ding, H.; Li, G. Facile assembly of InVO4/TiO2 heterojunction for enhanced photo-oxidation of benzyl alcohol. Nanomaterials 2022, 12, 1544. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Qin, Z.; Liu, S.; Zhu, M.; Li, G. On the Redox Property of Ag16Au13 Clusters and Its Catalytic Application in the Photooxidation. J. Chem. Phys. 2021, 154, 164308. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Qin, Z.; Yu, C.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Oxygen Vacancy Engineering: An Approach to Promote Photocatalytic Conversion of Methanol to Methyl Formate over CuO/TiO2-Spindle. Nano Res. 2020, 13, 939–946. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, S.; Yu, C.; Zhang, J.; Pan, X.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Li, G. Recent Advances in Aerobic Photo-Oxidation over Small-Sized IB Metal Nanoparticles. Photochem 2022, 2, 528–538. [Google Scholar] [CrossRef]
- Cao, Y.; Su, Y.; Xu, L.; Yang, X.; Han, Z.; Cao, R.; Li, G. Ionic liquids modified oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters on carbon-based materials as an efficient electrocatalyst for electrochemical water oxidation. J. Energy Chem. 2022, 71, 167–173. [Google Scholar] [CrossRef]
- Li, G.; Xie, Y.; Huang, J.; Guo, S.; Xu, L.; Zhang, J.; Jiang, Q.; Wang, Y. Facile Synthesis of Cobalt Clusters-CoNx Composites: Synergistic Effect Boosts up Electrochemical Oxygen Reduction. J. Mater. Chem. A 2022, 10, 16920–16927. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, X.; Liu, X.; Xu, L.; Liu, B.; Zhang, J.; Xu, H.; Han, Z.; Li, G. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible light. Carbon 2022, 195, 401–409. [Google Scholar] [CrossRef]
Isomers | Method | Briefly Synthetic Process | Applications |
---|---|---|---|
Au38T & Au38Q | Respective synthesis | Au38T was prepared by a reduction method. Au38Q was obtained with an etching method | Catalytic hydrogenation of NO2PhOH |
Au28i & Au28ii | Column chromatography | Separated by column chromatography on silica gel | - |
Au23-1 & Au23-2 | Ph4PCl inductive agent | Ph4PCl as the inductive agent leads the formation of Au23-1 to transform into Au23-2 | - |
Au42N & Au42F | Cd cation inductive agent | Addition of cadmium cation in the synthesis of Au42N | Photoluminescence |
Au36(DMBT)24-1D & Au36(DMBT)24-2D | Column chromatography | Two isomer structures were obtained by thin-layer chromatography separation | - |
Ag6L6/D6 & Ag6PL6/PD6 | Chiral organic ligands | Using the chiral ligands of L/D and PL/PD | - |
Au13Ag12 & Au12Ag13 | Refactoring coupling | The fresh AgCl dispersed in CH2Cl2 was added in to a solution containing Au13Ag12 cluster. | Photocatalysis of ethanol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Busari, K.; Cao, C.; Li, G. Structural Quasi-Isomerism in Au/Ag Nanoclusters. Photochem 2022, 2, 932-946. https://doi.org/10.3390/photochem2040060
Zhang Y, Busari K, Cao C, Li G. Structural Quasi-Isomerism in Au/Ag Nanoclusters. Photochem. 2022; 2(4):932-946. https://doi.org/10.3390/photochem2040060
Chicago/Turabian StyleZhang, Yifei, Kehinde Busari, Changhai Cao, and Gao Li. 2022. "Structural Quasi-Isomerism in Au/Ag Nanoclusters" Photochem 2, no. 4: 932-946. https://doi.org/10.3390/photochem2040060
APA StyleZhang, Y., Busari, K., Cao, C., & Li, G. (2022). Structural Quasi-Isomerism in Au/Ag Nanoclusters. Photochem, 2(4), 932-946. https://doi.org/10.3390/photochem2040060