Metallic Nanoparticles for Surface-Enhanced Raman Scattering Based Biosensing Applications
Abstract
:1. Introduction
2. SERS-Based Biosensing
3. Gold-Based Nanomaterials for SERS and Their Applications in Biosensing
4. Silver-Based Nanomaterials for SERS and Their Applications in Biosensing
5. Copper-Based Nanomaterials for SERS and Their Applications in Biosensing
6. Bimetallic Nanomaterials for SERS and Their Applications in Biosensing
7. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Bora, T. Recent Developments on Metal Nanoparticles for SERS Applications. In Noble and Precious Metals—Properties, Nanoscale Effects and Applications; InTech Open: Rijeka, Croatia, 2018. [Google Scholar]
- Karlo, J.; Dhillon, A.K.; Siddhanta, S.; Singh, S.P. Reverse Stable Isotope Labelling with Raman Spectroscopy for Microbial Proteomics. J. Biophotonics 2024, 17, e202300341. [Google Scholar] [CrossRef]
- Karlo, J.; Dhillon, A.K.; Siddhanta, S.; Singh, S.P. Monitoring of Microbial Proteome Dynamics Using Raman Stable Isotope Probing. J. Biophotonics 2022, 6, e202200341. [Google Scholar] [CrossRef] [PubMed]
- Fornasaro, S.; Alsamad, F.; Baia, M.; Batista de Carvalho, L.A.E.; Beleites, C.; Byrne, H.J.; Chiadò, A.; Chis, M.; Chisanga, M.; Daniel, A.; et al. Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Anal. Chem. 2020, 92, 4053–4064. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Das, G.M.; Managò, S.; Mangini, M.; De Luca, A.C. Biosensing Using SERS Active Gold Nanostructures. Nanomaterials 2021, 11, 2679. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Karlo, J.; Dhillon, A.K.; Razi, S.S.; Siddhanta, S.; Singh, S.P. Imaging Based Raman Spectroscopy. In Raman Spectroscopy; Springer: Singapore, 2024; pp. 349–375. [Google Scholar]
- Moskovits, M. Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J.G. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5, 952–958. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtuluş, Ö.; Lee, S.H.; Lindquist, N.C.; Oh, S.-H.; Haynes, C.L. Recent Progress in SERS Biosensing. Phys. Chem. Chem. Phys. 2011, 13, 11551. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, X.-J.; Yi, J.; Li, J.-F.; Wu, D.-Y.; Tian, Z.-Q. From Plasmon-Enhanced Molecular Spectroscopy to Plasmon-Mediated Chemical Reactions. Nat. Rev. Chem. 2018, 2, 216–230. [Google Scholar] [CrossRef]
- Jensen, L.; Aikens, C.M.; Schatz, G.C. Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 2008, 37, 1061. [Google Scholar] [CrossRef] [PubMed]
- Ando, J.; Fujita, K.; Smith, N.I.; Kawata, S. Dynamic SERS Imaging of Cellular Transport Pathways with Endocytosed Gold Nanoparticles. Nano Lett. 2011, 11, 5344–5348. [Google Scholar] [CrossRef]
- Karlo, J.; Prasad, R.; Singh, S.P. Biophotonics in Food Technology: Quo Vadis? J. Agric. Food Res. 2023, 11, 100482. [Google Scholar] [CrossRef]
- Karlo, J.; Gupta, A.; Singh, S.P. In Situ Monitoring of the Shikimate Pathway: A Combinatorial Approach of Raman Reverse Stable Isotope Probing and Hyperspectral Imaging. Analyst 2024, 149, 2833–2841. [Google Scholar] [CrossRef]
- Yigit, M.V.; Medarova, Z. In Vivo and Ex Vivo Applications of Gold Nanoparticles for Biomedical SERS Imagingi. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 232–241. [Google Scholar]
- Laing, S.; Jamieson, L.E.; Faulds, K.; Graham, D. Surface-Enhanced Raman Spectroscopy for in Vivo Biosensing. Nat. Rev. Chem. 2017, 1, 0060. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Guo, H.; Xing, B.; White, J.C.; Mukherjee, A.; He, L. Ultra-Sensitive Determination of Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy (SERS) after Hydrophobization-Mediated Extraction. Analyst 2016, 141, 5261–5264. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem. 2019, 12, 1823–1838. [Google Scholar] [CrossRef]
- Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A.E.; Byrne, H.J. Surface Enhanced Raman Scattering with Gold Nanoparticles: Effect of Particle Shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar] [CrossRef]
- Niu, W.; Chua, Y.A.A.; Zhang, W.; Huang, H.; Lu, X. Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. J. Am. Chem. Soc. 2015, 137, 10460–10463. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Ringane, A.B.; Arya, A.; Das, G.M.; Dantham, V.R.; Laha, R.; Hussian, S. A High-Yield, One-Step Synthesis of Surfactant-Free Gold Nanostars and Numerical Study for Single-Molecule SERS Application. J. Nanoparticle Res. 2016, 18, 242. [Google Scholar] [CrossRef]
- Kedia, A.; Kumar, P.S. Halide Ion Induced Tuning and Self-Organization of Gold Nanostars. RSC Adv. 2014, 4, 4782–4790. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent Advances of Au@Ag Core–Shell SERS-based Biosensors. Exploration 2023, 3, 20220072. [Google Scholar] [CrossRef]
- Wiley, B.J.; Im, S.H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 2006, 110, 15666–15675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, W.; Wen, L.-P.; Chen, J.; Xia, Y. Facile Synthesis of Ag Nanocubes of 30 to 70 Nm in Edge Length with CF3 COOAg as a Precursor. Chem.-Eur. J. 2010, 16, 10234–10239. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Liu, R.-S. Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications. J. Phys. Chem. C 2011, 115, 3513–3527. [Google Scholar] [CrossRef]
- Zaheer, Z. Rafiuddin Multi-Branched Flower-like Silver Nanoparticles: Preparation and Characterization. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 427–431. [Google Scholar] [CrossRef]
- Cai, X.; Zhai, A. Preparation of Microsized Silver Crystals with Different Morphologies by a Wet-Chemical Method. Rare Met. 2010, 29, 407–412. [Google Scholar] [CrossRef]
- Xu, M.-L.; Gao, Y.; Han, X.X.; Zhao, B. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 2017, 65, 6719–6726. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Gao, Y.; Fang, Z.; Li, H.; Feng, R.; Wang, Y.; Feng, Y.; Li, W.; Zhang, S.; Hu, L.; et al. SERS Detection for Pesticide Residue via a Single-Atom Sites Decoration Strategy. Appl. Surf. Sci. 2023, 621, 156832. [Google Scholar] [CrossRef]
- Moldovan, R.; Iacob, B.-C.; Farcău, C.; Bodoki, E.; Oprean, R. Strategies for SERS Detection of Organochlorine Pesticides. Nanomaterials 2021, 11, 304. [Google Scholar] [CrossRef]
- Augustine, S.; Sooraj, K.P.; Pachchigar, V.; Murali Krishna, C.; Ranjan, M. SERS Based Detection of Dichlorvos Pesticide Using Silver Nanoparticles Arrays: Influence of Array Wavelength/Amplitude. Appl. Surf. Sci. 2021, 544, 148878. [Google Scholar] [CrossRef]
- Sharma, V.; Krishnan, V. Fabrication of Highly Sensitive Biomimetic SERS Substrates for Detection of Herbicides in Trace Concentration. Sens. Actuators B Chem. 2018, 262, 710–719. [Google Scholar] [CrossRef]
- Allen, D.M.; Einarsson, G.G.; Tunney, M.M.; Bell, S.E.J. Characterization of Bacteria Using Surface-Enhanced Raman Spectroscopy (SERS): Influence of Microbiological Factors on the SERS Spectra. Anal. Chem. 2022, 94, 9327–9335. [Google Scholar] [CrossRef]
- Gukowsky, J.C.; He, L. Development of a Portable SERS Method for Testing the Antibiotic Sensitivity of Foodborne Bacteria. J. Microbiol. Methods 2022, 198, 106496. [Google Scholar] [CrossRef]
- Samek, O.; Bernatová, S.; Dohnal, F. The Potential of SERS as an AST Methodology in Clinical Settings. Nanophotonics 2021, 10, 2537–2561. [Google Scholar] [CrossRef]
- Lee, K.S.; Landry, Z.; Pereira, F.C.; Wagner, M.; Berry, D.; Huang, W.E.; Taylor, G.T.; Kneipp, J.; Popp, J.; Zhang, M.; et al. Raman Microspectroscopy for Microbiology. Nat. Rev. Methods Primers 2021, 1, 80. [Google Scholar] [CrossRef]
- Ahuja, T.; Ghosh, A.; Mondal, S.; Basuri, P.; Jenifer, S.K.; Srikrishnarka, P.; Mohanty, J.S.; Bose, S.; Pradeep, T. Ambient Electrospray Deposition Raman Spectroscopy (AESD RS) Using Soft Landed Preformed Silver Nanoparticles for Rapid and Sensitive Analysis. Analyst 2019, 144, 7412–7420. [Google Scholar] [CrossRef] [PubMed]
- Siddhanta, S.; Narayana, C. Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing. Nanomater. Nanotechnol. 2012, 2, 1. [Google Scholar] [CrossRef]
- Li, Y.; Driver, M.; Decker, E.; He, L. Lipid and Lipid Oxidation Analysis Using Surface Enhanced Raman Spectroscopy (SERS) Coupled with Silver Dendrites. Food Res. Int. 2014, 58, 1–6. [Google Scholar] [CrossRef]
- Verma, M.; Naqvi, T.K.; Tripathi, S.K.; Kulkarni, M.M.; Prasad, N.E.; Dwivedi, P.K. Plasmonic Paper-Based Flexible SERS Biosensor for Highly Sensitive Detection of Lactic and Uric Acid. IEEE Trans. Nanobiosci. 2022, 21, 294–300. [Google Scholar] [CrossRef]
- Sharma, A.; Mondal, S.; Ahuja, T.; Karmakar, T.; Siddhanta, S. Ion-Mediated Protein Stabilization on Nanoscopic Surfaces. Langmuir 2023, 39, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Sunil, N.; Unnathpadi, R.; Pullithadathil, B. Label-Free SERS Salivary Biosensor Based on Ni@Ag Core–Shell Nanoparticles Anchored on Carbon Nanofibers for Prediagnosis of Lung Cancer. ACS Appl. Nano Mater. 2023, 6, 11334–11350. [Google Scholar] [CrossRef]
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef]
- Carlomagno, C.; Cabinio, M.; Picciolini, S.; Gualerzi, A.; Baglio, F.; Bedoni, M. SERS-based Biosensor for Alzheimer Disease Evaluation through the Fast Analysis of Human Serum. J. Biophotonics 2020, 13, e201960033. [Google Scholar] [CrossRef] [PubMed]
- Beffara, F.; Perumal, J.; Puteri Mahyuddin, A.; Choolani, M.; Khan, S.A.; Auguste, J.; Vedraine, S.; Humbert, G.; Dinish, U.S.; Olivo, M. Development of Highly Reliable SERS-active Photonic Crystal Fiber Probe and Its Application in the Detection of Ovarian Cancer Biomarker in Cyst Fluid. J. Biophotonics 2020, 13, e201960120. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.A.; Nowicka, A.B.; Szymborski, T.; Piecyk, P.; Kamińska, A. SERS-based Sensor for Direct L-selectin Level Determination in Plasma Samples as Alternative Method of Tumor Detection. J. Biophotonics 2021, 14, e202000318. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Metallic Colloids and Other SERS Substrates. In Principles of Surface-Enhanced Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2009; pp. 367–413. [Google Scholar]
- Vitol, E.A.; Brailoiu, E.; Orynbayeva, Z.; Dun, N.J.; Friedman, G.; Gogotsi, Y. Surface-Enhanced Raman Spectroscopy as a Tool for Detecting Ca2+ Mobilizing Second Messengers in Cell Extracts. Anal. Chem. 2010, 82, 6770–6774. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Lee, J.U.; Song, S.; Kim, S.; Choi, Y.J.; Sim, S.J. A Label-Free, Ultra-Highly Sensitive and Multiplexed SERS Nanoplasmonic Biosensor for MiRNA Detection Using a Head-Flocked Gold Nanopillar. Analyst 2019, 144, 1768–1776. [Google Scholar] [CrossRef]
- Zengin, A.; Tamer, U.; Caykara, T. A SERS-Based Sandwich Assay for Ultrasensitive and Selective Detection of Alzheimer’s Tau Protein. Biomacromolecules 2013, 14, 3001–3009. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Yoo, S.M.; Yoon, I.; Lee, S.Y.; Kim, B. Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor. Nano Lett. 2010, 10, 1189–1193. [Google Scholar] [CrossRef]
- Verde, A.; Mangini, M.; Managò, S.; Tramontano, C.; Rea, I.; Boraschi, D.; Italiani, P.; De Luca, A.C. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Front. Immunol. 2021, 12, 758410. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.G.; Lee, S.H.; Kim, W.; Bang, A.; Moon, S.W.; Song, J.; Shin, J.-H.; Yu, J.S.; Choi, S. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Wei, H.; Santiago, P.J.; Thrift, W.J.; Ragan, R.; Jiang, S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. Environ. Sci. Technol. 2023, 57, 4880–4891. [Google Scholar] [CrossRef] [PubMed]
- Quarta, A.; Bettini, S.; Cuscunà, M.; Lorenzo, D.; Epifani, G.; Gigli, G.; Valli, L.; Aliyev, J.A.; Kazimov, E.E.; Bakhishova, M.J.; et al. Tailoring Gold Nanoisland-Based Biosensors for Ultrasensitive Detection of Doxorubicin in Biological Fluids. ACS Appl. Nano Mater. 2024, 7, 18724–18736. [Google Scholar] [CrossRef]
- Chen, H.; Park, S.-G.; Choi, N.; Kwon, H.-J.; Kang, T.; Lee, M.-K.; Choo, J. Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sens. 2021, 6, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Eremina, O.E.; Yarenkov, N.R.; Bikbaeva, G.I.; Kapitanova, O.O.; Samodelova, M.V.; Shekhovtsova, T.N.; Kolesnikov, I.E.; Syuy, A.V.; Arsenin, A.V.; Volkov, V.S.; et al. Silver Nanoparticle-Based SERS Sensors for Sensitive Detection of Amyloid-β Aggregates in Biological Fluids. Talanta 2024, 266, 124970. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Xu, D.; Zhan, C.; Liang, C.; Zhao, W.; Zhang, J.; Feng, H.; Ma, X. Surfactant-Free Synthesis of Graphene Oxide Coated Silver Nanoparticles for SERS Biosensing and Intracellular Drug Delivery. ACS Appl. Nano Mater. 2018, 1, 2748–2753. [Google Scholar] [CrossRef]
- Saridag, A.M.; Kahraman, M. Layer-by-Layer Coating of Natural Diatomite with Silver Nanoparticles for Identification of Circulating Cancer Protein Biomarkers Using SERS. Nanoscale 2023, 15, 13770–13783. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, W.; Huang, X.; Dai, Z.; Zhou, C.; Hong, P.; Li, C. Detection of Bacillus cereus Spore Biomarkers Using SERS-Based Cuttlebone-Derived Organic Matrix/Silver Nanoparticles. ACS Sustain. Chem. Eng. 2023, 11, 4145–4154. [Google Scholar] [CrossRef]
- Butler, M.R.; Hrncirova, J.; Jacot, T.A.; Dutta, S.; Clark, M.R.; Doncel, G.F.; Cooper, J.B. Detection and Quantification of Antiviral Drug Tenofovir Using Silver Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) with Spatially Resolved Hotspot Selection. Front. Nanotechnol. 2023, 5, 1270474. [Google Scholar] [CrossRef]
- Ge, K.; Ni, R.; Tao, P.; Zhao, X.; Luo, Y.; Zhu, Y.; Song, B.; Zhang, W.; Dai, S.; Zhang, N.; et al. Low-Toxicity PEG-Coated SERS Silver Nanocubes for Diagnosing Esophageal Cancer. Opt. Commun. 2024, 554, 130183. [Google Scholar] [CrossRef]
- Markina, N.E.; Ustinov, S.N.; Zakharevich, A.M.; Markin, A.V. Copper Nanoparticles for SERS-Based Determination of Some Cephalosporin Antibiotics in Spiked Human Urine. Anal. Chim. Acta 2020, 1138, 9–17. [Google Scholar] [CrossRef]
- Halouzka, V.; Halouzkova, B.; Jirovsky, D.; Hemzal, D.; Ondra, P.; Siranidi, E.; Kontos, A.G.; Falaras, P.; Hrbac, J. Copper Nanowire Coated Carbon Fibers as Efficient Substrates for Detecting Designer Drugs Using SERS. Talanta 2017, 165, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Li, X.; Xu, S.; Dai, C.; Xue, Q.; Wang, H. SERS-Based Copper-Mediated Signal Amplification Strategy for Simple and Sensitive Detection of Telomerase Activity. Talanta 2021, 235, 122814. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wen, S.; Luo, X.; Xue, F.; Wu, S.; Yuan, B.; Lu, X.; Cai, C.; Jiang, L.-P.; Wu, P.; et al. Highly Biocompatible Plasmonically Encoded Raman Scattering Nanoparticles Aid Ultrabright and Accurate Bioimaging. ACS Appl. Mater. Interfaces 2021, 13, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Choo, J.; Shin, S.Y.; Lee, Y.H.; Choi, H.Y.; Ha, S.; Kang, K.; Oh, C.H. Biological Imaging of HEK293 Cells Expressing PLCγ1 Using Surface-Enhanced Raman Microscopy. Anal. Chem. 2007, 79, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Kaja, S.; Mathews, A.V.; Venuganti, V.V.K.; Nag, A. Bimetallic Ag–Cu Alloy SERS Substrates as Label-Free Biomedical Sensors: Femtomolar Detection of Anticancer Drug Mitoxantrone with Multiplexing. Langmuir 2023, 39, 5591–5601. [Google Scholar] [CrossRef]
- Sui, C.; Wang, K.; Wang, S.; Ren, J.; Bai, X.; Bai, J. SERS Activity with Tenfold Detection Limit Optimization on a Type of Nanoporous AAO-Based Complex Multilayer Substrate. Nanoscale 2016, 8, 5920–5927. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Choi, Y.; Hong, S.; Kang, T.; Lee, L.P. Self-Organized Hexagonal-Nanopore SERS Array. Small 2010, 6, 1741–1744. [Google Scholar] [CrossRef]
- Shan, D.; Huang, L.; Li, X.; Zhang, W.; Wang, J.; Cheng, L.; Feng, X.; Liu, Y.; Zhu, J.; Zhang, Y. Surface Plasmon Resonance and Interference Coenhanced SERS Substrate of AAO/Al-Based Ag Nanostructure Arrays. J. Phys. Chem. C 2014, 118, 23930–23936. [Google Scholar] [CrossRef]
- Das, S.; Goswami, L.P.; Gayathri, J.; Tiwari, S.; Saxena, K.; Mehta, D.S. Fabrication of Low Cost Highly Structured Silver Capped Aluminium Nanorods as SERS Substrate for the Detection of Biological Pathogens. Nanotechnology 2021, 32, 495301. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, M. Active Site-Dominated Electromagnetic Enhancement of Surface-Enhanced Raman Spectroscopy (SERS) on a Cu Triangle Plate. RSC Adv. 2020, 10, 42030–42037. [Google Scholar] [CrossRef] [PubMed]
- Bańkowska, M.; Krajczewski, J.; Dzięcielewski, I.; Kudelski, A.; Weyher, J.L. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem. C 2016, 120, 1841–1846. [Google Scholar] [CrossRef]
- Cong, S.; Liu, X.; Jiang, Y.; Zhang, W.; Zhao, Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation 2020, 1, 100051. [Google Scholar] [CrossRef]
- Terekhov, S.N.; Kachan, S.M.; Panarin, A.Y.; Mojzes, P. Surface-Enhanced Raman Scattering on Silvered Porous Alumina Templates: Role of Multipolar Surface Plasmon Resonant Modes. Phys. Chem. Chem. Phys. 2015, 17, 31780–31789. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Yun, B.J.; Koh, W.-G. SERS-Based Biosensing Platform Using Shape-Coded Hydrogel Microparticles Incorporating Silver Nanoparticles. Sens. Actuators B Chem. 2021, 341, 129989. [Google Scholar] [CrossRef]
- Yaraki, M.T.; Tan, Y.N. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem. Asian J. 2020, 15, 3180–3208. [Google Scholar] [CrossRef]
- Qian, X.; Peng, X.-H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags. Nat. Biotechnol. 2008, 26, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Indrasekara, A.S.D.S.; Meyers, S.; Shubeita, S.; Feldman, L.C.; Gustafsson, T.; Fabris, L. Gold Nanostar Substrates for SERS-Based Chemical Sensing in the Femtomolar Regime. Nanoscale 2014, 6, 8891–8899. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.S.; Juneja, S.; Kanaujia, P.K.; Maurya, V.; Prakash, G.V.; Chakraborti, A.; Bhattacharya, J. Gold Nanoflowers as Efficient Hosts for SERS Based Sensing and Bio-Imaging. Nano-Struct. Nano-Objects 2018, 16, 329–336. [Google Scholar] [CrossRef]
- Ponlamuangdee, K.; Hornyak, G.L.; Bora, T.; Bamrungsap, S. Graphene Oxide/Gold Nanorod Plasmonic Paper—A Simple and Cost-Effective SERS Substrate for Anticancer Drug Analysis. New J. Chem. 2020, 44, 14087–14094. [Google Scholar] [CrossRef]
- Fernanda Cardinal, M.; Rodríguez-González, B.; Alvarez-Puebla, R.A.; Pérez-Juste, J.; Liz-Marzán, L.M. Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating. J. Phys. Chem. C 2010, 114, 10417–10423. [Google Scholar] [CrossRef]
- Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2020, 68, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, K.; Miao, J.; Wang, Z.; Tian, B.; Zhang, L.; Li, Q.; Fan, S.; Jiang, K. Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Lett. 2010, 10, 1747–1753. [Google Scholar] [CrossRef]
- Ma, Z.; Zhai, Y.; Chen, Z.; Yang, H.; Wang, F. Preparation of QSS@AuNPs and Solvent Inducing Enhancement Strategy for Raman Determination of Salivary Thiocyanate. ACS Appl. Mater. Interfaces 2021, 13, 5966–5974. [Google Scholar] [CrossRef]
- Wang, T.-J.; Barveen, N.R.; Liu, Z.-Y.; Chen, C.-H.; Chou, M.-H. Transparent, Flexible Plasmonic Ag NP/PMMA Substrates Using Chemically Patterned Ferroelectric Crystals for Detecting Pesticides on Curved Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 34910–34922. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, H.; Zhen, S.J.; Huang, C.Z. Hydrogen-Bond-Mediated In Situ Fabrication of AgNPs/Agar/PAN Electrospun Nanofibers as Reproducible SERS Substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; He, P.; Huang, T.; Yang, S.; Han, S.; Wang, X.; Ding, G. Plasmonic Coupling of AgNPs near Graphene Edges: A Cross-Section Strategy for High-Performance SERS Sensing. Chem. Mater. 2020, 32, 3813–3822. [Google Scholar] [CrossRef]
- Ghopry, S.A.; Alamri, M.; Goul, R.; Cook, B.; Sadeghi, S.M.; Gutha, R.R.; Sakidja, R.; Wu, J.Z. Au Nanoparticle/WS2 Nanodome/Graphene van Der Waals Heterostructure Substrates for Surface-Enhanced Raman Spectroscopy. ACS Appl. Nano Mater. 2020, 3, 2354–2363. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.-Y.; He, W.-M. Surface-Enhanced Raman Spectroscopy Biosensor Based on Silver Nanoparticles@metal-Organic Frameworks with Peroxidase-Mimicking Activities for Ultrasensitive Monitoring of Blood Cholesterol. Sens. Actuators B Chem. 2022, 365, 131939. [Google Scholar] [CrossRef]
- He, L.; Huang, J.; Xu, T.; Chen, L.; Zhang, K.; Han, S.; He, Y.; Lee, S.T. Silver Nanosheet-Coated Inverse Opal Film as a Highly Active and Uniform SERS Substrate. J. Mater. Chem. 2012, 22, 1370–1374. [Google Scholar] [CrossRef]
- Fang, C.; Brodoceanu, D.; Kraus, T.; Voelcker, N.H. Templated Silver Nanocube Arrays for Single-Molecule SERS Detection. RSC Adv. 2013, 3, 4288. [Google Scholar] [CrossRef]
- Ju, J.; Liu, W.; Perlaki, C.M.; Chen, K.; Feng, C.; Liu, Q. Sustained and Cost Effective Silver Substrate for Surface Enhanced Raman Spectroscopy Based Biosensing. Sci. Rep. 2017, 7, 6917. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mungroo, N.; Daikuara, L.; Neethirajan, S. Label-Free NIR-SERS Discrimination and Detection of Foodborne Bacteria by in Situ Synthesis of Ag Colloids. J. Nanobiotechnol. 2015, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Dina, N.E.; Gherman, A.M.R.; Chiş, V.; Sârbu, C.; Wieser, A.; Bauer, D.; Haisch, C. Characterization of Clinically Relevant Fungi via SERS Fingerprinting Assisted by Novel Chemometric Models. Anal. Chem. 2018, 90, 2484–2492. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS Detection of Bacteria in Water by In Situ Coating with Ag Nanoparticles. Anal. Chem. 2014, 86, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Hermann, D.-R.; Lilek, D.; Daffert, C.; Fritz, I.; Weinberger, S.; Rumpler, V.; Herbinger, B.; Prohaska, K. In Situ Based Surface-Enhanced Raman Spectroscopy (SERS) for the Fast and Reproducible Identification of PHB Producers in Cyanobacterial Cultures. Analyst 2020, 145, 5242–5251. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Y.-W.; Park, B.; Tripp, R.A.; Zhao, Y. Differentiation and Classification of Bacteria Using Vancomycin Functionalized Silver Nanorods Array Based Surface-Enhanced Raman Spectroscopy and Chemometric Analysis. Talanta 2015, 139, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015009. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A Chemical Reduction Approach to the Synthesis of Copper Nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar] [CrossRef]
- Kudelski, A.; Grochala, W.; Janik-Czachor, M.; Bukowska, J.; Szummer, A.; Dolata, M. Surface-Enhanced Raman Scattering (SERS) at Copper(I) Oxide. J. Raman Spectrosc. 1998, 29, 431–435. [Google Scholar] [CrossRef]
- Li, Y.-S. Surface-Enhanced Raman Scattering at Colloidal Silver Oxide Surfaces. J. Raman Spectrosc. 1994, 25, 795–797. [Google Scholar] [CrossRef]
- Lin, J.; Hao, W.; Shang, Y.; Wang, X.; Qiu, D.; Ma, G.; Chen, C.; Li, S.; Guo, L. Direct Experimental Observation of Facet-Dependent SERS of Cu2O Polyhedra. Small 2018, 14, 1703274. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Shang, Y.; Li, X.; Yu, J.; Wang, X.; Guo, L. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle. Adv. Mater. 2017, 29, 1604797. [Google Scholar] [CrossRef]
- Dizajghorbani Aghdam, H.; Moemen Bellah, S.; Malekfar, R. Surface-Enhanced Raman Scattering Studies of Cu/Cu2O Core-Shell NPs Obtained by Laser Ablation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117379. [Google Scholar] [CrossRef]
- Kowalska, A.A.; Kaminska, A.; Adamkiewicz, W.; Witkowska, E.; Tkacz, M. Novel Highly Sensitive Cu-Based SERS Platforms for Biosensing Applications. J. Raman Spectrosc. 2015, 46, 428–433. [Google Scholar] [CrossRef]
- Dai, P.; Li, H.; Huang, X.; Wang, N.; Zhu, L. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. Nanomaterials 2021, 11, 2770. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lai, F.-J.; Chou, H.-L.; Lu, W.-T.; Hwang, B.-J.; Brolo, A.G. Surface-Enhanced Raman Scattering (SERS) from Au:Ag Bimetallic Nanoparticles: The Effect of the Molecular Probe. Chem. Sci. 2013, 4, 509–515. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Q. Facile Fabrication of Nanoporous Au–Pd Bimetallic Foams with High Catalytic Activity for 2-Nitrophenol Reduction and SERS Property. J. Mater. Chem. 2011, 21, 11961. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, C.; Gao, W.; Han, Z.; Liu, T.; Li, C.; Wang, Z.; He, E.; Zheng, H. Ag-Au Alloy Nanoparticles: Synthesis and in Situ Monitoring SERS of Plasmonic Catalysis. Sens. Actuators B Chem. 2016, 231, 609–614. [Google Scholar] [CrossRef]
- Jana, N.R. Silver Coated Gold Nanoparticles as New Surface Enhanced Raman Substrate at Low Analyte Concentration. Analyst 2003, 128, 954. [Google Scholar] [CrossRef]
- Cui, Y.; Ren, B.; Yao, J.-L.; Gu, R.-A.; Tian, Z.-Q. Synthesis of AgcoreAushell Bimetallic Nanoparticles for Immunoassay Based on Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2006, 110, 4002–4006. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.V.P.; Shruthi, S.; Vibha, B.; Reddy, B.A.A.; Kundu, T.K.; Narayana, C. Hot Spots in Ag Core–Au Shell Nanoparticles Potent for Surface-Enhanced Raman Scattering Studies of Biomolecules. J. Phys. Chem. C 2007, 111, 4388–4392. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Ross, D.J.; Nazri, G.-A.; Aroca, R.F. Surface-Enhanced Raman Scattering on Nanoshells with Tunable Surface Plasmon Resonance. Langmuir 2005, 21, 10504–10508. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.G.; Hommer, M.B.; Grabar, K.C.; Jackson, M.A.; Natan, M.J. Ag-Clad Au Nanoparticles: Novel Aggregation, Optical, and Surface-Enhanced Raman Scattering Properties. J. Phys. Chem. 1996, 100, 718–724. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.L.; Lee, S.J. Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface Enhanced Raman Scattering Spectroscopy. Chem. Phys. Lett. 2005, 403, 77–82. [Google Scholar] [CrossRef]
- Russo, L.; Merkoçi, F.; Patarroyo, J.; Piella, J.; Merkoçi, A.; Bastús, N.G.; Puntes, V. Time- and Size-Resolved Plasmonic Evolution with Nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chem. Mater. 2018, 30, 5098–5107. [Google Scholar] [CrossRef]
- Daniel, J.R.; McCarthy, L.A.; Ringe, E.; Boudreau, D. Enhanced Control of Plasmonic Properties of Silver–Gold Hollow Nanoparticles via a Reduction-Assisted Galvanic Replacement Approach. RSC Adv. 2019, 9, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Li, S.; Bailey, R.C.; Zou, S.; Schatz, G.C.; Hupp, J.T. Optical Properties of Metal Nanoshells. J. Phys. Chem. B 2004, 108, 1224–1229. [Google Scholar] [CrossRef]
- Feng, J.; Wu, X.; Ma, W.; Kuang, H.; Xu, L.; Xu, C. A SERS Active Bimetallic Core–Satellite Nanostructure for the Ultrasensitive Detection of Mucin-1. Chem. Commun. 2015, 51, 14761–14763. [Google Scholar] [CrossRef]
- Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. Sensors 2017, 17, 2689. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, A.; Witkowska, E.; Winkler, K.; Dzięcielewski, I.; Weyher, J.L.; Waluk, J. Detection of Hepatitis B Virus Antigen from Human Blood: SERS Immunoassay in a Microfluidic System. Biosens. Bioelectron. 2015, 66, 461–467. [Google Scholar] [CrossRef]
- Zengin, A.; Tamer, U.; Caykara, T. SERS Detection of Hepatitis B Virus DNA in a Temperature-Responsive Sandwich-Hybridization Assay. J. Raman Spectrosc. 2017, 48, 668–672. [Google Scholar] [CrossRef]
- Shanmukh, S.; Jones, L.; Driskell, J.; Zhao, Y.; Dluhy, R.; Tripp, R.A. Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate. Nano Lett. 2006, 6, 2630–2636. [Google Scholar] [CrossRef]
- Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297, 1536–1540. [Google Scholar] [CrossRef]
- Xia, J.; Liu, Y.; Ran, M.; Lu, D.; Cao, X.; Wang, Y. SERS Platform Based on Bimetallic Au-Ag Nanowires-Decorated Filter Paper for Rapid Detection of MiR-196ain Lung Cancer Patients Serum. J. Chem. 2020, 2020, 5073451. [Google Scholar] [CrossRef]
- Prakash, O.; Sil, S.; Verma, T.; Umapathy, S. Direct Detection of Bacteria Using Positively Charged Ag/Au Bimetallic Nanoparticles: A Label-Free Surface-Enhanced Raman Scattering Study Coupled with Multivariate Analysis. J. Phys. Chem. C 2020, 124, 861–869. [Google Scholar] [CrossRef]
Metallic Nanomaterials | Applications | Ref. |
---|---|---|
Gold | Detection of calcium mobilizing second messenger nicotinic adenine dinucleotide phosphate (100 µM) in cell extract without sample purification and labeling. | [55] |
Label-free multiplex detection of miRNAs; miR– 10b, miR–21, and miR–373 relevant to cancer metastasis with LODs of 3.53 fM, 2.17 fM, and 2.16 fM. | [56] | |
Ultrasensitive and selective detection of Alzheimer’s Tau protein using SERS-based sandwich assay. | [57] | |
Quantitative multiplex sensing of DNAs with a limit of detection of 10 pM. | [58] | |
Sensing of bacterial endotoxin (lipopolysaccharide) with the low detection limit of 5 lipopolysaccharide molecules per AuNP. | [59] | |
SERS-based onsite detection of breast cancer using human tears and detection at femtomole scale | [60] | |
Label-free sensing of quinoline antibiotic found in wastewater with a 5.01 ppb lower limit of detection. | [61] | |
Drug (doxorubicin) biosensing in biological fluid using SERS. The experimental limit of detection in water is 1 nM and in human and bovine serum is 16 nM. | [62] | |
SARS-CoV-2 detection using the SERS platform with a limit of detection of virus concentrations less than 10 PFU/ml. | [63] | |
Silver | Detection of amyloid-β (a known hallmark for Alzheimer’s disease pathogenesis) peptide aggregates in biological fluids with a nanomolar limit of detection using AgNP composite SERS sensors and a 532 nm laser. | [64] |
SERS biosensing and drug delivery of anticancerous doxorubicin using nanosized graphene-oxide-coated AgNPs. | [65] | |
Label-free identification of circulating cancer protein biomarkers. Using SERS active strip natural diatomite coated with AgNPs via a layer-by-layer assembly method. | [66] | |
Quantitative rapid SERS detection of Bacillus cereus spore biomarker 2,6-pyridine dicarboxylic acid with a limit of detection as 8.62 nM. | [67] | |
Quantitative detection of tenofovir down to 25 ng/ml clinically relevant concentrations in an aqueous matrix using SERS. | [68] | |
Detection of esophageal cancer using stable and low-toxicity polyethylene-glycol-coated silver nanocubes. | [69] | |
Copper | SERS-based determination of cephalosporins antibiotics in spiked human urine using CuNPs. | [70] |
SERS detection of designer drugs using copper nanowires coated carbon fibers. | [71] | |
SERS-based sensitive detection of telomerase activity using copper oxide nanoparticles. | [72] | |
Bimetallic | Highly reproducible and accurate single-cell Raman imaging and in vivo tumor imaging with 1 × 1 mm2 area can be quickly achieved within 35 s under open-air conditions using SERS Au core–Raman-active molecule–Ag shell–Au shell nanoparticles. | [73] |
Au/Ag core–shell nanoparticles, conjugated with monoclonal antibodies for highly sensitive SERS imaging of cancer biomarkers in live cells. | [74] | |
Sensitive detection of Anticancer drug mitoxantrone using Bimetallic Ag–Au and Ag–Cu alloy microflowers SERS sensor with a limit of detection of 1 fM. | [75] |
Component | Chemical Agent | ACS Number | Pack Size | Price (USD) | Chemical Quantity for Synthesizing 5 mg Ag NP@N-GQD | Cost (USD) | Cost Distribution |
---|---|---|---|---|---|---|---|
Ag NP | AgNO3 | 7761-88-8 | 5 g | 24.9 | 10.0 mg | 4.98 × 10−2 | 99.67% |
N-GQD | Citric Acid | 77-92-9 | 500 g | 90.3 | 0.8 mg | 1.45 × 10−4 | 0.29% |
Dicyandiamid | 461-58-5 | 1000 g | 45.7 | 0.4 mg | 1.83 × 10−5 | 0.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlo, J.; Razi, S.S.; Phaneeswar, M.S.; Vijay, A.; Singh, S.P. Metallic Nanoparticles for Surface-Enhanced Raman Scattering Based Biosensing Applications. Photochem 2024, 4, 417-433. https://doi.org/10.3390/photochem4040026
Karlo J, Razi SS, Phaneeswar MS, Vijay A, Singh SP. Metallic Nanoparticles for Surface-Enhanced Raman Scattering Based Biosensing Applications. Photochem. 2024; 4(4):417-433. https://doi.org/10.3390/photochem4040026
Chicago/Turabian StyleKarlo, Jiro, Syed S. Razi, Mahamkali Sri Phaneeswar, Arunsree Vijay, and Surya Pratap Singh. 2024. "Metallic Nanoparticles for Surface-Enhanced Raman Scattering Based Biosensing Applications" Photochem 4, no. 4: 417-433. https://doi.org/10.3390/photochem4040026
APA StyleKarlo, J., Razi, S. S., Phaneeswar, M. S., Vijay, A., & Singh, S. P. (2024). Metallic Nanoparticles for Surface-Enhanced Raman Scattering Based Biosensing Applications. Photochem, 4(4), 417-433. https://doi.org/10.3390/photochem4040026