Detection of Snow Cover from Historical and Recent AVHHR Data—A Thematic TIMELINE Processor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Normalized Difference Snow Index (NDSI)
2.2. Snow Cover—TIMELINE Level 2 Processor
2.3. Snow Cover—TIMELINE Level 3 Processor
2.4. Validation with MODIS
3. Results
3.1. Timeline Snow Cover—Level 2 and Level 3 Products
3.2. Validation Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Oceanographic Commission (IOC). The Global Observing System for Climate; GCOS-No. 200; World Meteorological Organization (WMO): Geneva, Switzerland, 2016. [Google Scholar]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote Sensing of Snow—A Review of Available Methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS Snow-Cover Products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Dech, S.; Holzwarth, S.; Asam, S.; Andresen, T.; Bachmann, M.; Boettcher, M.; Dietz, A.; Eisfelder, C.; Frey, C.; Gesell, G.; et al. Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience. Remote Sens. 2021, 13, 3618. [Google Scholar] [CrossRef]
- Harrison, A.R.; Lucas, R.M. Multi-Spectral Classification of Snow Using NOAA AVHRR Imagery. Int. J. Remote Sens. 1989, 10, 907–916. [Google Scholar] [CrossRef]
- Lindsay, R.W.; Rothrock, D.A. Arctic Sea Ice Albedo from AVHRR. J. Climate 1994, 7, 1737–1749. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Schneider, S.R.; McGinnis, D.F. Effect of Grain Size and Snowpack Water Equivalence on Visible and Near-Infrared Satellite Observations of Snow. Water Resour. Res. 1981, 17, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Khlopenkov, K.V.; Trishchenko, A.P. SPARC: New Cloud, Snow, and Cloud Shadow Detection Scheme for Historical 1-Km AVHHR Data over Canada. J. Atmos. Ocean. Technol. 2007, 24, 322–343. [Google Scholar] [CrossRef]
- Gesell, G. An Algorithm for Snow and Ice Detection Using AVHRR Data An Extension to the APOLLO Software Package. Int. J. Remote Sens. 1989, 10, 897–905. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, J. An Algorithm for Subpixel Snow Mapping: Extraction of a Fractional Snow-Covered Area Based on Ten-Day Composited AVHRR\/2 Data of the Qinghai-Tibet Plateau. IEEE Geosci. Remote Sens. Mag. 2018, 6, 86–98. [Google Scholar] [CrossRef]
- Akyürek, Z.; Şorman, A.Ü. Monitoring Snow-Covered Areas Using NOAA-AVHRR Data in the Eastern Part of Turkey. Hydrol. Sci. J. 2002, 47, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A Satellite-Based Snow Cover Climatology (1985–2011) for the European Alps Derived from AVHRR Data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Hüsler, F.; Jonas, T.; Wunderle, S.; Albrecht, S. Validation of a Modified Snow Cover Retrieval Algorithm from Historical 1-Km AVHRR Data over the European Alps. Remote Sens. Environ. 2012, 121, 497–515. [Google Scholar] [CrossRef]
- Foppa, N.; Wunderle, S.; Oesch, D.; Kuchen, F. Operational Sub-Pixel Snow Mapping over the Alps with NOAA AVHRR Data. Ann. Glaciol. 2004, 38, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Bolch, T.; Gafurov, A.; Prechtel, N. Snow Cover Distribution in the Aksu Catchment (Central Tien Shan) 1986–2013 Based on AVHRR and MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5361–5375. [Google Scholar] [CrossRef]
- Klüser, L.; Killius, N.; Gesell, G. APOLLO_NG—A Probabilistic Interpretation of the APOLLO Legacy for AVHRR Heritage Channels. Atmos. Meas. Tech. 2015, 8, 4155–4170. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.; Klein, I.; Gessner, U.; Frey, C.; Kuenzer, C.; Dech, S. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor. Remote Sens. 2017, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. Normalized-Difference Snow Index (NDSI). In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-90-481-2641-5. [Google Scholar]
- Trishchenko, A.P. Solar Irradiance and Effective Brightness Temperature for SWIR Channels of AVHRR/NOAA and GOES Imagers. J. Atmos. Ocean. Technol. 2006, 23, 198–210. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating Fractional Snow Cover from MODIS Using the Normalized Difference Snow Index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving Snow Cover Mapping in Forests through the Use of a Canopy Reflectance Model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. ERA5-Land Hourly Data from 2001 to Present; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Villaescusa-Nadal, J.L.; Vermote, E.; Franch, B.; Santamaria-Artigas, A.E.; Roger, J.-C.; Skakun, S. MODIS-Based AVHRR Cloud and Snow Separation Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5400513. [Google Scholar] [CrossRef]
- Wang, X.; Zender, C.S. MODIS Snow Albedo Bias at High Solar Zenith Angles Relative to Theory and to In Situ Observations in Greenland. Remote Sens. Environ. 2010, 114, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Lucht, W. Expected Retrieval Accuracies of Bidirectional Reflectance and Albedo from EOS-MODIS and MISR Angular Sampling. J. Geophys. Res. 1998, 103, 8763–8778. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. The Solar Zenith Angle Dependence of Desert Albedo. Geophys. Res. Lett. 2005, 32, L05403. [Google Scholar] [CrossRef]
- Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A.; Dutton, E.G. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) Albedo Retrieval Algorithm: Dependence of Albedo on Solar Zenith Angle: VALIDATION OF MODIS ALBEDO ON SZN. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Klaes, K.D. The EUMETSAT Polar System. In Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 192–219. ISBN 978-0-12-803221-3. [Google Scholar]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Rouault, E.; Warmerdam, F.; Schwehr, K.; Kiselev, A.; Butler, H.; Łoskot, M. GDAL; Zenodo: Genève, Switzerland, 2022. [Google Scholar]
- Saunders, R.W.; Kriebel, K.T. An Improved Method for Detecting Clear Sky and Cloudy Radiances from AVHRR Data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Allen, R.C.; Durkee, P.A.; Wash, C.H. Snow/Cloud Discrimination with Multispectral Satellite Measurements. J. Appl. Meteorol. 1990, 29, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic Cloud Detection Applied to NOAA-11 /AVHRR Imagery. Remote Sens. Environ. 1993, 46, 246–267. [Google Scholar] [CrossRef]
- Musial, J.P.; Hüsler, F.; Sütterlin, M.; Neuhaus, C.; Wunderle, S. Probabilistic Approach to Cloud and Snow Detection on Advanced Very High Resolution Radiometer (AVHRR) Imagery. Atmos. Meas. Tech. 2014, 7, 799–822. [Google Scholar] [CrossRef] [Green Version]
- Voigt, S.; Koch, M.; Baumgartner, M.F. Operational Monitoring of Snow Cover in the Swiss Alps Using Real-Time NOAA-AVHRR Data. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293). Hamburg, Germany, 28 June–1 July; IEEE: Hamburg, Germany, 1999; Volume 2, pp. 1077–1079. [Google Scholar]
- Voigt, S.; Koch, M.; Baumgartner, M. A Multichannel Threshold Technique for NOAA AVHRR Data to Monitor the Extent of Snow Cover in the Swiss Alps. In Interactions between the Cryosphere, Climate and Greenhouse Gases; IAHS-AISH Publication: Wallingford, UK, 1999; pp. 35–43. [Google Scholar]
- Dietz, A.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef] [Green Version]
- Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of Vegetation Indices from Different Sensor Systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Zhonghai, J.; Simpson, J.J. Bidirectional Anisotropic Reflectance of Snow and Sea Ice in AVHRR Channel 1 and 2 Spectral Regions. I. Theoretical Analysis. IEEE Trans. Geosci. Remote Sens. 1999, 37, 543–554. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Che, T.; Ji, W.; Sun, X.; Zhao, Q.; Zhao, H.; Wang, J.; Li, H.; Yang, Q. The NIEER AVHRR Snow Cover Extent Product over China—A Long-Term Daily Snow Record for Regional Climate Research. Earth Syst. Sci. Data 2021, 13, 4711–4726. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS Snow Cover Products Using Landsat and Ground Measurements during the 2001–2005 Snow Seasons over Northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Dech, S. Global SnowPack: A New Set of Snow Cover Parameters for Studying Status and Dynamics of the Planetary Snow Cover Extent. Remote Sens. Lett. 2015, 6, 844–853. [Google Scholar] [CrossRef]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Matikainen, L.; Kuittinen, R.; Vepsäläinen, J. Estimating Drainage Area-Based Snow-Cover Percentages from NOAA AVHRR Images. Int. J. Remote Sens. 2002, 23, 2971–2988. [Google Scholar] [CrossRef]
- Rößler, S.; Witt, M.S.; Ikonen, J.; Brown, I.A.; Dietz, A.J. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 2021, 11, 130. [Google Scholar] [CrossRef]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Accuracy Assessment of MODIS, NOAA and IRS Data in Snow Cover Mapping under Himalayan Conditions. Int. J. Remote Sens. 2008, 29, 5863–5878. [Google Scholar] [CrossRef]
Bit | Value | Description |
---|---|---|
1 | 128 | Missing data or night (solar zenith angle > 85°) |
2 | 64 | Pixel covered with clouds |
3 | 32 | Pixel classified as water |
4 | 16 | Unfavorable illumination and/or observation geometry (sun zenith angle > 70°, satellite zenith angle > 65°) |
5 | 8 | Brightness temperature of Band 4 too high (>281 K) |
6 | 4 | SWIR reflectance too high (>25%–reclassified to “snow free” if >45%) |
7 | 2 | VIS Reflectance too low (<7% in Band 1 or 2) |
8 | 1 | Pixels classified as “snow free” |
MODIS | |||
---|---|---|---|
Snow | Snow-Free | ||
AVHRR | Snow | TP (true positive) | FP (false positive) |
Snow-free | FN (false negative) | TN (true negative) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rößler, S.; Dietz, A.J. Detection of Snow Cover from Historical and Recent AVHHR Data—A Thematic TIMELINE Processor. Geomatics 2022, 2, 144-160. https://doi.org/10.3390/geomatics2010009
Rößler S, Dietz AJ. Detection of Snow Cover from Historical and Recent AVHHR Data—A Thematic TIMELINE Processor. Geomatics. 2022; 2(1):144-160. https://doi.org/10.3390/geomatics2010009
Chicago/Turabian StyleRößler, Sebastian, and Andreas J. Dietz. 2022. "Detection of Snow Cover from Historical and Recent AVHHR Data—A Thematic TIMELINE Processor" Geomatics 2, no. 1: 144-160. https://doi.org/10.3390/geomatics2010009
APA StyleRößler, S., & Dietz, A. J. (2022). Detection of Snow Cover from Historical and Recent AVHHR Data—A Thematic TIMELINE Processor. Geomatics, 2(1), 144-160. https://doi.org/10.3390/geomatics2010009