Perspectives on Resolving Diagnostic Challenges between Myocardial Infarction and Takotsubo Cardiomyopathy Leveraging Artificial Intelligence
Abstract
:1. Introduction
2. Methodology
3. Artificial Intelligence in Healthcare
4. Machine Learning in Diagnostics
4.1. Supervised Machine Learning
4.2. Unsupervised Machine Learning
4.3. Deep Learning
5. Significance of Distinguishing MI from Takotsubo Cardiomyopathy
6. Current Diagnostic Approaches for Myocardial Infarction and Takotsubo Cardiomyopathy
6.1. Cardiac Biomarkers
6.1.1. N-Terminal Pro-B-Type Natriuretic Peptide, Troponin, CK, CK-MB, and Myoglobin
6.1.2. Soluble Suppression of Tumorigenicity 2 (sST2)
6.1.3. Soluble Urokinase Plasminogen Activator Receptor (suPAR)
6.1.4. Heart-Type Fatty Acid Binding Protein (H-FABP)
6.1.5. Growth/Differentiation Factor-15 (GDF-15)
6.2. Electrocardiography ECG
6.3. Cardiac Imaging Techniques
6.3.1. Echocardiography
6.3.2. Cardiac MRI
6.3.3. Coronary Angiography
6.4. InterTak Score
- Female sex—25 points (TTC: the disease shows a strong preponderance toward the female sex, with ~90% of all patients being women [69]).
- Emotional trigger—24 points (emotional and physical trigger factors are typical features of TTC [70].
- Physical trigger—13 points [71].
- Psychiatric disorders—11 points (prevalence of neurologic or psychiatric disorders is twice as high in TTC compared with AMI) [69].
- Neurologic disorders—9 points.
7. Discussion
8. Limitations Using AI to Distinguish TTC from AMI
9. Ethical Challenges in Using AI to Distinguish TTC from AMI
9.1. Informed Consent to Use
9.2. Safety and Transparency
9.3. Algorithmic Fairness and Biases
10. Future Perspective Harnessing AI for Transformative Healthcare in Cardiology
10.1. Educational Awareness as a Catalyst for Transformation
10.2. Regulatory Frameworks for Trust and Safety
10.3. AI in Cardiology: Transforming Patient Care
10.4. Digital Transformation and AI Integration
10.5. Future Research
11. Patient-Centered Perspectives
11.1. Patient Experience
- Using AI promises greater diagnostic precision and efficacy by analyzing extensive patient and clinical data, reducing misdiagnosis due to human errors and clinician fatigue.
- Faster diagnostics with the assistance of AI algorithms provide consistent and standardized interpretations of the data. This will speed up the management process and improve efficiency by rapidly expediting the diagnostic process and analyzing data faster than manual methods [108]. Additionally, reducing wait times and alleviating patient anxiety.
11.2. Patient–Physician Interaction
- AI aids communication, facilitating informed discussions between patients and physicians.
- Time-efficient AI tools allow physicians to focus on meaningful interactions, contributing to better decision-making.
- AI algorithms reduce clinician burden and decrease fatigue by expediting the diagnostic process.
11.3. Patient Outcomes
- Early detection, personalized care pathways, and remote monitoring enhance patient well-being.
- Continuous monitoring and follow-up optimize long-term health.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horowitz, J.D.; Nguyen, T.H. Differentiating Tako-tsubo cardiomyopathy from myocardial infarction. Eur. Soc. Cardiol. 2014, 13, N7. [Google Scholar]
- Amin, H.Z.; Amin, L.Z.; Pradipta, A. Takotsubo Cardiomyopathy: A Brief Review. J. Med. Life 2020, 13, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ojha, N.; Dhamoon, A.S.; Chapagain, R. Myocardial Infarction (Nursing). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33760446 (accessed on 18 July 2023).
- Samul-Jastrzębska, J.; Roik, M.; Wretowski, D.; Łabyk, A.; Ślubowska, A.; Bizoń, A.; Paczyńska, M.; Kurnicka, K.; Pruszczyk, P.; Ciurzyński, M. Evaluation of the InterTAK Diagnostic Score in differentiating Takotsubo syndrome from acute coronary syndrome. A single center experience. Cardiol. J. 2021, 28, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Y-Hassan, S.; Tornvall, P. Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin. Auton. Res. 2018, 28, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Khan, H.; Gamble, D.T.; Scally, C.; Newby, D.E.; Dawson, D. Takotsubo Syndrome: Pathophysiology, Emerging Concepts, and Clinical Implications. Circulation 2022, 145, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-P.; Zhang, P. Takotsubo cardiomyopathy misdiagnosed as acute myocardial infarction under the Chest Pain Center model: A case report. World J. Clin. Cases 2022, 10, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Carita, P.; Fazio, G. Takotsubo cardiomyopathy. Counc. Cardiol. Pract. 2010, 8. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-8/Takotsubo-cardiomyopathy (accessed on 17 July 2023).
- Hinojos, A.; Vanhecke, T.E.; Enright, S.; Elg, N.; Gifft, K.; Marengo, B.; Rao, S. Takotsubo Cardiomyopathy and Non-ST-Segment Elevation Myocardial Infarction: Predictors of Left Ventricular Dysfunction. Clin. Med. Insights Cardiol. 2017, 11, 117954681771610. [Google Scholar] [CrossRef] [PubMed]
- Dahal, S.; Budoff, M.J.; Roy, S.K. Coronary Computed Tomography Angiography for Evaluation of Chest Pain in the Emergency Department. Tex. Heart Inst. J. 2022, 49, e217550. [Google Scholar] [CrossRef]
- Frangieh, A.H.; Obeid, S.; Ghadri, J.; Imori, Y.; D’Ascenzo, F.; Kovac, M.; Ruschitzka, F.; Lüscher, T.F.; Duru, F.; Templin, C.; et al. ECG Criteria to Differentiate Between Takotsubo (Stress) Cardiomyopathy and Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e003418. [Google Scholar] [CrossRef]
- Templin, C.; Ghadri, J.R.; Diekmann, J.; Napp, L.C.; Bataiosu, D.R.; Jaguszewski, M.; Cammann, V.L.; Sarcon, A.; Geyer, V.; Neumann, C.A.; et al. Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N. Engl. J. Med. 2015, 373, 929–938. [Google Scholar] [CrossRef]
- Holmes, J.; Sacchi, L.; Bellazzi, R. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334–338. [Google Scholar]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill series in Computer Science; Nachdr.; McGraw-Hill: New York, NY, USA, 2013; ISBN 978-0-07-042807-2. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Corrected at 12th Printing 2017; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Petegrosso, R.; Li, Z.; Kuang, R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief. Bioinform. 2019, 21, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Pruneski, J.A.; Pareek, A.; Kunze, K.N.; Martin, R.K.; Karlsson, J.; Oeding, J.F.; Kiapour, A.M.; Nwachukwu, B.U.; Williams, R.J. Supervised machine learning and associated algorithms: Applications in orthopedic surgery. Knee Surg. Sports Traumatol. Arthrosc. 2022, 31, 1196–1202. [Google Scholar] [CrossRef]
- Eraslan, G.; Avsec, Ž.; Gagneur, J.; Theis, F.J. Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet. 2019, 20, 389–403. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, X. Unsupervised and semi-supervised learning: The next frontier in machine learning for plant systems biology. Plant J. 2022, 111, 1527–1538. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Gao, J.; Zhao, D. A review of the application of deep learning in medical image classification and segmentation. Ann. Transl. Med. 2020, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Assad, J.; Femia, G.; Pender, P.; Badie, T.; Rajaratnam, R. Takotsubo Syndrome: A Review of Presentation, Diagnosis and Management. Clin. Med. Insights Cardiol. 2022, 16, 117954682110657. [Google Scholar] [CrossRef] [PubMed]
- Doyen, D.; Moceri, P.; Chiche, O.; Schouver, E.; Cerboni, P.; Chaussade, C.; Mansencal, N.; Ferrari, E. Cardiac biomarkers in Takotsubo cardiomyopathy. Int. J. Cardiol. 2014, 174, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Neil, C.J.; Sverdlov, A.L.; Mahadavan, G.; Chirkov, Y.Y.; Kucia, A.M.; Stansborough, J.; Beltrame, J.F.; Selvanayagam, J.B.; Zeitz, C.J.; et al. N-Terminal Pro-Brain Natriuretic Protein Levels in Takotsubo Cardiomyopathy. Am. J. Cardiol. 2011, 108, 1316–1321. [Google Scholar] [CrossRef]
- Pilgrim, T.M.; Wyss, T.R. Takotsubo cardiomyopathy or transient left ventricular apical ballooning syndrome: A systematic review. Int. J. Cardiol. 2008, 124, 283–292. [Google Scholar] [CrossRef]
- Fröhlich, G.M.; Schoch, B.; Schmid, F.; Keller, P.; Sudano, I.; Lüscher, T.F.; Noll, G.; Ruschitzka, F.; Enseleit, F. Takotsubo cardiomyopathy has a unique cardiac biomarker profile: NT-proBNP/myoglobin and NT-proBNP/troponin T ratios for the differential diagnosis of acute coronary syndromes and stress induced cardiomyopathy. Int. J. Cardiol. 2012, 154, 328–332. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Morrow, D.A. Defining a Role for Novel Biomarkers in Acute Coronary Syndromes. Clin. Chem. 2008, 54, 1424–1431. [Google Scholar] [CrossRef]
- Akashi, Y.J.; Nef, H.M.; Möllmann, H.; Ueyama, T. Stress Cardiomyopathy. Annu. Rev. Med. 2010, 61, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Hannam, S.; Rysz, J.; Michalska, M.; Akashi, Y.J.; Banach, M. Takotsubo cardiomyopathy—The current state of knowledge. Int. J. Cardiol. 2010, 142, 120–125. [Google Scholar] [CrossRef]
- Randhawa, M.S.; Dhillon, A.S.; Taylor, H.C.; Sun, Z.; Desai, M.Y. Diagnostic Utility of Cardiac Biomarkers in Discriminating Takotsubo Cardiomyopathy from Acute Myocardial Infarction. J. Card. Fail. 2014, 20, 2–8. [Google Scholar] [CrossRef]
- Topf, A.; Mirna, M.; Bacher, N.; Paar, V.; Motloch, L.J.; Ohnewein, B.; Larbig, R.; Grueninger, J.; Hoppe, U.C.; Lichtenauer, M.; et al. Analysis of Selected Cardiovascular Biomarkers in Takotsubo Cardiomyopathy and the Most Frequent Cardiomyopathies. Front. Cardiovasc. Med. 2021, 8, 700169. [Google Scholar] [CrossRef]
- Mekonnen, G.; Corban, M.T.; Hung, O.Y.; Eshtehardi, P.; Eapen, D.J.; Al-Kassem, H.; Rasoul-Arzrumly, E.; Gogas, B.D.; McDaniel, M.C.; Pielak, T.; et al. Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis 2015, 239, 55–60. [Google Scholar] [CrossRef]
- Olson, F.J.; Thurison, T.; Ryndel, M.; Høyer-Hansen, G.; Fagerberg, B. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability. Clin. Biochem. 2010, 43, 124–130. [Google Scholar] [CrossRef]
- Ye, X.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Vatner, S.F.; Peppas, A.P.; Yang, G.; Kudej, R.K. Cardiac nerves affect myocardial stunning through reactive oxygen and nitric oxide mechanisms. Circ. Res. 2003, 93, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Scally, C.; Abbas, H.; Ahearn, T.; Srinivasan, J.; Mezincescu, A.; Rudd, A.; Spath, N.; Yucel-Finn, A.; Yuecel, R.; Oldroyd, K.; et al. Myocardial and Systemic Inflammation in Acute Stress-Induced (Takotsubo) Cardiomyopathy. Circulation 2019, 139, 1581–1592. [Google Scholar] [CrossRef]
- George, M.; Jena, A.; Srivatsan, V.; Muthukumar, R.; Dhandapani, V. GDF 15—A Novel Biomarker in the Offing for Heart Failure. Curr. Cardiol. Rev. 2016, 12, 37–46. [Google Scholar] [CrossRef]
- Stiermaier, T.; Adams, V.; Just, M.; Blazek, S.; Desch, S.; Schuler, G.; Thiele, H.; Eitel, I. Growth differentiation factor-15 in Takotsubo cardiomyopathy: Diagnostic and prognostic value. Int. J. Cardiol. 2014, 173, 424–429. [Google Scholar] [CrossRef]
- Alquézar-Arbé, A.; Sanchís, J.; Guillén, E.; Bardají, A.; Miró, Ò.; Ordóñez-Llanos, J. Cardiac troponin measurement and interpretation in the diagnosis of acute myocardial infarction in the emergency department: A consensus statement. Emerg. Rev. Soc. Espanola Med. Emerg. 2018, 30, 336–349. [Google Scholar]
- Perera, M.; Aggarwal, L.; Scott, I.A.; Logan, B. Received care compared to ADP-guided care of patients admitted to hospital with chest pain of possible cardiac origin. Int. J. Gen. Med. 2018, 11, 345–351. [Google Scholar] [CrossRef]
- Riley, R.F.; Miller, C.D.; Russell, G.B.; Soliman, E.Z.; Hiestand, B.C.; Herrington, D.M.; Mahler, S.A. Usefulness of Serial 12-Lead Electrocardiograms in Predicting 30-Day Outcomes in Patients with Undifferentiated Chest Pain (the ASAP CATH Study). Am. J. Cardiol. 2018, 122, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.T.; Prasad, A.; Askew, J.W.; Sengupta, P.P.; Tajik, A.J. Takotsubo cardiomyopathy: A unique cardiomyopathy with variable ventricular morphology. JACC Cardiovasc. Imaging 2010, 3, 641–649. [Google Scholar] [CrossRef]
- Yoshikawa, T. Takotsubo cardiomyopathy, a new concept of cardiomyopathy: Clinical features and pathophysiology. Int. J. Cardiol. 2015, 182, 297–303. [Google Scholar] [CrossRef]
- Ghadri, J.-R.; Wittstein, I.S.; Prasad, A.; Sharkey, S.; Dote, K.; Akashi, Y.J.; Cammann, V.L.; Crea, F.; Galiuto, L.; Desmet, W.; et al. International Expert Consensus Document on Takotsubo Syndrome (Part II): Diagnostic Workup, Outcome, and Management. Eur. Heart J. 2018, 39, 2047–2062. [Google Scholar] [CrossRef]
- Kosuge, M.; Ebina, T.; Hibi, K.; Morita, S.; Okuda, J.; Iwahashi, N.; Tsukahara, K.; Nakachi, T.; Kiyokuni, M.; Ishikawa, T.; et al. Simple and accurate electrocardiographic criteria to differentiate takotsubo cardiomyopathy from anterior acute myocardial infarction. J. Am. Coll. Cardiol. 2010, 55, 2514–2516. [Google Scholar] [CrossRef]
- Bybee, K.A.; Motiei, A.; Syed, I.S.; Kara, T.; Prasad, A.; Lennon, R.J.; Murphy, J.G.; Hammill, S.C.; Rihal, C.S.; Wright, R.S. Electrocardiography cannot reliably differentiate transient left ventricular apical ballooning syndrome from anterior ST-segment elevation myocardial infarction. J. Electrocardiol. 2007, 40, 38.e1–38.e6. [Google Scholar] [CrossRef]
- Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459269/ (accessed on 20 July 2023).
- Sanchez-Jimenez, E.F. Initial clinical presentation of Takotsubo cardiomyopathy with-a focus on electrocardiographic changes: A literature review of cases. World J. Cardiol. 2013, 5, 228. [Google Scholar] [CrossRef]
- Akkus, Z.; Aly, Y.H.; Attia, I.Z.; Lopez-Jimenez, F.; Arruda-Olson, A.M.; Pellikka, P.A.; Pislaru, S.V.; Kane, G.C.; Friedman, P.A.; Oh, J.K. Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review. J. Clin. Med. 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Zamzmi, G.; Hsu, L.-Y.; Li, W.; Sachdev, V.; Antani, S. Harnessing Machine Intelligence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Directions. IEEE Rev. Biomed. Eng. 2020, 14, 181–203. [Google Scholar] [CrossRef] [PubMed]
- Laumer, F.; Di Vece, D.; Cammann, V.L.; Würdinger, M.; Petkova, V.; Schönberger, M.; Schönberger, A.; Mercier, J.C.; Niederseer, D.; Seifert, B.; et al. Assessment of Artificial Intelligence in Echocardiography Diagnostics in Differentiating Takotsubo Syndrome from Myocardial Infarction. JAMA Cardiol. 2022, 7, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Alsharqi, M.; Woodward, W.J.; Mumith, J.A.; Markham, D.C.; Upton, R.; Leeson, P. Artificial intelligence and echocardiography. Echo Res. Pract. 2018, 5, R115–R125. [Google Scholar] [CrossRef] [PubMed]
- Mansencal, N.; Abbou, N.; Pillière, R.; El Mahmoud, R.; Farcot, J.-C.; Dubourg, O. Usefulness of two-dimensional speckle tracking echocardiography for assessment of tako-tsubo cardiomyopathy. Am. J. Cardiol. 2009, 103, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; Rigo, F.; Ciampi, Q.; D’Andrea, A.; Provenza, G.; Mirra, M.; Giudice, R.; Silvestri, F.; Di Benedetto, G.; Bossone, E. Echocardiographic assessment of regional left ventricular wall motion abnormalities in patients with tako-tsubo cardiomyopathy: Comparison with anterior myocardial infarction. Eur. J. Echocardiogr. 2011, 12, 542–549. [Google Scholar] [CrossRef]
- Kurisu, S.; Sato, H.; Kawagoe, T.; Ishihara, M.; Shimatani, Y.; Nishioka, K.; Kono, Y.; Umemura, T.; Nakamura, S. Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: A novel cardiac syndrome mimicking acute myocardial infarction. Am. Heart J. 2002, 143, 448–455. [Google Scholar] [CrossRef]
- Cummings, K.W.; Bhalla, S.; Javidan-Nejad, C.; Bierhals, A.J.; Gutierrez, F.R.; Woodard, P.K. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. RadioGraphics 2009, 29, 89–103. [Google Scholar] [CrossRef]
- Gerbaud, E.; Montaudon, M.; Leroux, L.; Corneloup, O.; Dos Santos, P.; Jaïs, C.; Coste, P.; Laurent, F. MRI for the diagnosis of left ventricular apical ballooning syndrome (LVABS). Eur. Radiol. 2008, 18, 947–954. [Google Scholar] [CrossRef]
- Hurst, R.T.; Askew, J.W.; Reuss, C.S.; Lee, R.W.; Sweeney, J.P.; Fortuin, F.D.; Oh, J.K.; Tajik, A.J. Transient midventricular ballooning syndrome: A new variant. J. Am. Coll. Cardiol. 2006, 48, 579–583. [Google Scholar] [CrossRef]
- Kumar, G.; Holmes, D.R.; Prasad, A. “Familial” apical ballooning syndrome (Takotsubo cardiomyopathy). Int. J. Cardiol. 2010, 144, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; Navarro, F.; Cordoba, M.; M-Alberca, P.; Farre, J. Tako-tsubo transient left ventricular apical ballooning: Is intravascular ultrasound the key to resolve the enigma? Heart 2005, 91, 102–104. [Google Scholar] [CrossRef]
- Ito, K.; Sugihara, H.; Katoh, S.; Azuma, A.; Nakagawa, M. Assessment of Takotsubo (ampulla) cardiomyopathy using99mTc-tetrofosmin myocardial SPECT—Comparison with acute coronary syndrome. Ann. Nucl. Med. 2003, 17, 115–122. [Google Scholar] [CrossRef]
- Pineda, A.R.B.; Gudi, T.R.; Montecino, R.M.B.; Cornejo, C.L.G.; Bonilla, F.R.B.; Gonzalez, J.N.; Aggarwal, P.; Chao, A.G.; Pariyar, B.; Robles, P.C.M.; et al. An Overview of Takotsubo Cardiomyopathy, a Potential Mimic of Acute Myocardial Infarction. J. Cardiol. Cardiovasc. Ther. 2023, 18, 555993. [Google Scholar] [CrossRef]
- Ghadri, J.R.; Sarcon, A.; Diekmann, J.; Bataiosu, D.R.; Cammann, V.L.; Jurisic, S.; Napp, L.C.; Jaguszewski, M.; Scherff, F.; Brugger, P.; et al. Happy heart syndrome: Role of positive emotional stress in takotsubo syndrome. Eur. Heart J. 2016, 37, 2823–2829. [Google Scholar] [CrossRef]
- Kosuge, M.; Kimura, K. Electrocardiographic findings of takotsubo cardiomyopathy as compared with those of anterior acute myocardial infarction. J. Electrocardiol. 2014, 47, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Looi, J.-L.; Wong, C.-W.; Lee, M.; Khan, A.; Webster, M.; Kerr, A.J. Usefulness of ECG to differentiate Takotsubo cardiomyopathy from acute coronary syndrome. Int. J. Cardiol. 2015, 199, 132–140. [Google Scholar] [CrossRef]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape. Electronics 2024, 13, 498. [Google Scholar] [CrossRef]
- Gaddam, S.; Nimmagadda, K.C.; Nagrani, T.; Naqi, M.; Wetz, R.V.; Weiserbs, K.F.; McCord, D.; Ghavami, F.; Gala, B.; Lafferty, J.C. Serum lipoprotein levels in takotsubo cardiomyopathy vs. myocardial infarction. Int. Arch. Med. 2011, 4, 14. [Google Scholar] [CrossRef]
- Scally, C.; Choo, W.; Rudd, A.; Neil, C.; Siddiqi, N.; Mezincescu, A.M.; Wilson, H.M.; Frenneaux, M.; Horgan, G.; Broadhurst, P.; et al. The early dynamic of ECG in Takotsubo syndrome presenting with ST-elevation: A comparison with age and gender-matched ST-elevation myocardial infarction. Int. J. Cardiol. 2020, 320, 7–11. [Google Scholar] [CrossRef]
- Rautaharju, P.M.; Mason, J.W.; Akiyama, T. New age- and sex-specific criteria for QT prolongation based on rate correction formulas that minimize bias at the upper normal limits. Int. J. Cardiol. 2014, 174, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Migliore, F.; Zorzi, A.; Perazzolo Marra, M.; Iliceto, S.; Corrado, D. Myocardial edema as a substrate of electrocardiographic abnormalities and life-threatening arrhythmias in reversible ventricular dysfunction of takotsubo cardiomyopathy: Imaging evidence, presumed mechanisms, and implications for therapy. Heart Rhythm. 2015, 12, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Migliore, F.; Zorzi, A.; Marra, M.P.; Basso, C.; Corbetti, F.; De Lazzari, M.; Tarantini, G.; Buja, P.; Lacognata, C.; Thiene, G.; et al. Myocardial edema underlies dynamic T-wave inversion (Wellens’ ECG pattern) in patients with reversible left ventricular dysfunction. Heart Rhythm. 2011, 8, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Perazzolo Marra, M.; Zorzi, A.; Corbetti, F.; De Lazzari, M.; Migliore, F.; Tona, F.; Tarantini, G.; Iliceto, S.; Corrado, D. Apicobasal gradient of left ventricular myocardial edema underlies transient T-wave inversion and QT interval prolongation (Wellens’ ECG pattern) in Tako-Tsubo cardiomyopathy. Heart Rhythm. 2013, 10, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; Piscione, F.; Parodi, G.; Salerno-Uriarte, J.; Bossone, E. Role of echocardiography in takotsubo cardiomyopathy. Heart Fail. Clin. 2013, 9, 157–166. [Google Scholar] [CrossRef]
- Citro, R.; Pontone, G.; Pace, L.; Zito, C.; Silverio, A.; Bossone, E.; Piscione, F. Contemporary Imaging in Takotsubo Syndrome. Heart Fail. Clin. 2016, 12, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; Okura, H.; Ghadri, J.R.; Izumi, C.; Meimoun, P.; Izumo, M.; Dawson, D.; Kaji, S.; Eitel, I.; Kagiyama, N.; et al. Multimodality imaging in takotsubo syndrome: A joint consensus document of the European Association of Cardiovascular Imaging (EACVI) and the Japanese Society of Echocardiography (JSE). J. Echocardiogr. 2020, 18, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Lerman, A.; Rihal, C.S. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): A mimic of acute myocardial infarction. Am. Heart J. 2008, 155, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; Lyon, A.R.; Meimoun, P.; Omerovic, E.; Redfors, B.; Buck, T.; Lerakis, S.; Parodi, G.; Silverio, A.; Eitel, I.; et al. Standard and advanced echocardiography in takotsubo (stress) cardiomyopathy: Clinical and prognostic implications. J. Am. Soc. Echocardiogr. 2015, 28, 57–74. [Google Scholar] [CrossRef]
- Citro, R.; Rigo, F.; D’Andrea, A.; Ciampi, Q.; Parodi, G.; Provenza, G.; Piccolo, R.; Mirra, M.; Zito, C.; Giudice, R.; et al. Echocardiographic correlates of acute heart failure, cardiogenic shock, and in-hospital mortality in tako-tsubo cardiomyopathy. JACC Cardiovasc. Imaging 2014, 7, 119–129. [Google Scholar] [CrossRef]
- Citro, R.; Bossone, E.; Parodi, G.; Rigo, F.; Nardi, F.; Provenza, G.; Zito, C.; Novo, G.; Vitale, G.; Prota, C.; et al. Independent Impact of RV Involvement on In-Hospital Outcome of Patients with Takotsubo Syndrome. JACC Cardiovasc. Imaging 2016, 9, 894–895. [Google Scholar] [CrossRef]
- El Mahmoud, R.; Mansencal, N.; Pilliére, R.; Leyer, F.; Abbou, N.; Michaud, P.; Nallet, O.; Digne, F.; Lacombe, P.; Cattan, S.; et al. Prevalence and characteristics of left ventricular outflow tract obstruction in Tako-Tsubo syndrome. Am. Heart J. 2008, 156, 543–548. [Google Scholar] [CrossRef]
- Parodi, G.; Del Pace, S.; Salvadori, C.; Carrabba, N.; Olivotto, I.; Gensini, G.F. Left ventricular apical ballooning syndrome as a novel cause of acute mitral regurgitation. J. Am. Coll. Cardiol. 2007, 50, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, M.; Piatkowski, R.; Scislo, P.; Kochanowski, J.; Filipiak, K.J.; Opolski, G. Real-time three-dimensional echocardiography in transient left apical ballooning syndrome. Int. J. Cardiol. 2008, 129, e69–e70. [Google Scholar] [CrossRef] [PubMed]
- Kudaiberdiev, T.; Akhmedova, I.; Imanalieva, G.; Abdildaev, I.; Jooshev, K.; Ashimov, J.; Mirzabekov, A.; Gaybildaev, J. Surgical treatment of left ventricular wall rupture, regarded as a consequence of Takotsubo cardiomyopathy. SAGE Open Med. Case Rep. 2017, 5, 2050313X1668921. [Google Scholar] [CrossRef]
- Iskander, M.; Abugroun, A.; Shehata, K.; Iskander, F.; Iskander, A. Takotsubo Cardiomyopathy-Induced Cardiac Free Wall Rupture: A Case Report and Review of Literature. Cardiol. Res. 2018, 9, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Berti, M.; Pernigo, M.; Dinatolo, E.; Cozza, F.; Cuccia, C. Differentiating typical Tako-tsubo syndrome from extensive anterior STEMI: Look behind the anterior wall. Echocardiography 2022, 39, 1299–1306. [Google Scholar] [CrossRef]
- Available online: http://petrieflom.law.harvard.edu/resources/article/petrie-flom-center-launches-pmail-project (accessed on 17 February 2024).
- Ghadri, J.-R.; Wittstein, I.S.; Prasad, A.; Sharkey, S.; Dote, K.; Akashi, Y.J.; Cammann, V.L.; Crea, F.; Galiuto, L.; Desmet, W.; et al. International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. Eur. Heart J. 2018, 39, 2032–2046. [Google Scholar] [CrossRef]
- Tavakol, M.; Ashraf, S.; Brener, S.J. Risks and complications of coronary angiography: A comprehensive review. Glob. J. Health Sci. 2011, 4, 65–93. [Google Scholar] [CrossRef]
- Sirajuddin, A.; Mirmomen, S.M.; Kligerman, S.J.; Groves, D.W.; Burke, A.P.; Kureshi, F.; White, C.S.; Arai, A.E. Ischemic Heart Disease: Noninvasive Imaging Techniques and Findings. RadioGraphics 2021, 41, E990–E1021. [Google Scholar] [CrossRef]
- Manrai, A.K.; Patel, C.J.; Ioannidis, J.P.A. In the Era of Precision Medicine and Big Data, Who Is Normal? JAMA 2018, 319, 1981–1982. [Google Scholar] [CrossRef]
- Buzaev, I.V.; Plechev, V.V.; Nikolaeva, I.E.; Galimova, R.M. Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chronic Dis. Transl. Med. 2016, 2, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Du, M.; Chang, S.; Chen, Z. Artificial intelligence in echocardiography: Detection, functional evaluation, and disease diagnosis. Cardiovasc. Ultrasound 2021, 19, 29. [Google Scholar] [CrossRef]
- Seetharam, K.; Shrestha, S.; Sengupta, P.P. Artificial Intelligence in Cardiovascular Medicine. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 25. [Google Scholar] [CrossRef]
- Chang, Y.; Paul, A.K.; Kim, N.; Baek, J.H.; Choi, Y.J.; Ha, E.J.; Lee, K.D.; Lee, H.S.; Shin, D.; Kim, N. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments: CAD for malignancy of thyroid nodules on ultrasound images. Med. Phys. 2016, 43, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Appen, What Is Training Data? Appen. Available online: https://www.appen.com/blog/training-data (accessed on 17 February 2024).
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. ISBN 978-0-12-818438-7. [Google Scholar]
- European Commission. Regulatory Framework Proposal on Artificial Intelligence; European Commission: Brussels, Belgium, 2022.
- Food and Drug Administration (United States). Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). April, 2019. Available online: https://apo.org.au/node/228371 (accessed on 17 February 2024).
- Innovation at ACC|The Future of AI: Fight, Flight, or Lead? American College of Cardiology. Available online: https://www.acc.org/latest-incardiology/articles/2020/02/01/24/42/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2020%2f02%2f01%2f24%2f42%2finnovation-at-acc-the-future-of-ai-fight-flight-or-lead (accessed on 17 February 2024).
- Wasserlauf, J.; You, C.; Patel, R.; Valys, A.; Albert, D.; Passman, R. Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2019, 12, e006834. [Google Scholar] [CrossRef]
- Karakuş, G.; Değirmencioğlu, A.; Nanda, N.C. Artificial intelligence in echocardiography: Review and limitations including epistemological concerns. Echocardiography 2022, 39, 1044–1053. [Google Scholar] [CrossRef]
Diagnostic Method | Findings in MI | Findings in TTC | Notes |
---|---|---|---|
Troponin, CK, CK-MB, Myoglobin | Elevated levels of troponin, CK-MB, myoglobin | Modest elevation, typically lower than MI | Biomarkers lack specificity, useful in high-risk bleeding patients. May not be solely relied upon to distinguish between the two conditions. |
NT-proBNP | Variable levels | Significantly elevated levels noted in acute phase | Can be used as an additional tool to distinguish between ACS and TTC in early stages. |
sST2 | Elevated | Elevated | Measurement of sST2 used for risk stratification |
suPAR | Elevated | No notable distinction. | Elevated levels associated with atherosclerotic lesions and plaque destabilization. |
H-FABP | Elevated | Not Elevated | Useful in distinguishing CMP and TTC |
GDF-15 | Elevated | Significantly Elevated | Useful in differentiating CMP AND TTC |
Electrocardiography (ECG) | ST-segment elevation more extensive. Obtain posterior leads V7 to V9 for posterior infarction, pathologic Q waves frequently noted. | Diffuse ST elevation in lead aVR is noted frequently. T-wave inversion in anterior and lateral leads seen more commonly. Pathologic Q waves are uncommon. | Highly specific for MI (95–97%) but lacks sensitivity (30%). ECG can be used to identify location of infarct. ECG in 80% TTC patients show nonspecific findings. ST-segment shift in leads aVR and V1 may help differentiate between TTC and anterior AMI. Not a sole reliable criterion to differentiate |
Echocardiography | Detects Wall motion abnormalities based on area of infarct, cavity size, EF, and associated conditions and complications. | Reveals distinct LV shape resembling a Japanese octopus pot. Mid-ventricular hypokinesis is seen | Most-employed noninvasive imaging technique for differentiation |
Cardiac MRI | Late enhancement on delayed contrast Most patients exhibit evidence of necrosis in the wall | Absence of late enhancement No evidence of necrosis | Absence of late enhancement on MRI is a key differentiating factor for TTC. |
Coronary Angiography | Significant coronary artery blockages | No coronary artery stenosis | Rule out coronary artery blockages, helping diagnose TTC from MI. |
InterTak Score | A score of ≤31 | A score of ≥50 | Sensitivity 75%, specificity 95%. Rapidly determined in ER using clinical parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moideen Sheriff, S.; Sethi, A.; Sood, D.; Bansal, S.; Goudel, A.; Murlidhar, M.; Damani, D.N.; Kulkarni, K.; Arunachalam, S.P. Perspectives on Resolving Diagnostic Challenges between Myocardial Infarction and Takotsubo Cardiomyopathy Leveraging Artificial Intelligence. BioMedInformatics 2024, 4, 1308-1328. https://doi.org/10.3390/biomedinformatics4020072
Moideen Sheriff S, Sethi A, Sood D, Bansal S, Goudel A, Murlidhar M, Damani DN, Kulkarni K, Arunachalam SP. Perspectives on Resolving Diagnostic Challenges between Myocardial Infarction and Takotsubo Cardiomyopathy Leveraging Artificial Intelligence. BioMedInformatics. 2024; 4(2):1308-1328. https://doi.org/10.3390/biomedinformatics4020072
Chicago/Turabian StyleMoideen Sheriff, Serin, Aaftab Sethi, Divyanshi Sood, Sourav Bansal, Aastha Goudel, Manish Murlidhar, Devanshi N. Damani, Kanchan Kulkarni, and Shivaram P. Arunachalam. 2024. "Perspectives on Resolving Diagnostic Challenges between Myocardial Infarction and Takotsubo Cardiomyopathy Leveraging Artificial Intelligence" BioMedInformatics 4, no. 2: 1308-1328. https://doi.org/10.3390/biomedinformatics4020072