A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases
Abstract
:1. Introduction
2. Difficulties in Disease Mechanism Investigation and Biomarker Discovery
2.1. Mutation Detection or Prediction
2.2. AI in Tumor Identification
2.3. Genotype–Phenotype Integration
2.4. Omics Data Integration for Disease Characterization
2.5. Disease Mechanisms and Research Models
3. Diagnosis
4. Prognosis
5. Therapeutic Approach
6. Methods
7. Discussion and Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Hajat, C.; Stein, E. The global burden of multiple chronic conditions: A narrative review. Prev. Med. Rep. 2018, 12, 284–293. [Google Scholar] [CrossRef]
- Haque, M.; Islam, T.; A Rahman, N.A.; McKimm, J.; Abdullah, A.; Dhingra, S. Strengthening primary health-care services to help prevent and control long-term (chronic) non-communicable diseases in low- and middle-income countries. Risk Manag. Health Policy 2020, 13, 409–426. [Google Scholar] [CrossRef]
- CDC. Health and Economic Costs of Chronic Diseases. Available online: https://www.cdc.gov/chronicdisease/about/costs/index.htm#ref1C (accessed on 6 December 2023).
- Slebodnik, M. Orphanet: The portal for rare diseases and orphan drugs. Ref. Rev. 2009, 23, 45–46. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Rare Diseases at FDA. Available online: https://www.fda.gov/patients/rare-diseases-fda (accessed on 2 March 2024).
- Medicines for Rare Diseases—Orphan Drugs. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/medicines-for-rare-diseases-orphan-drugs.html (accessed on 1 December 2023).
- Richter, T.; Nestler-Parr, S.; Babela, R.; Khan, Z.M.; Tesoro, T.; Molsen, E.; Hughes, D.A. Rare disease terminology and definitions—A systematic global review: Report of the ISPOR rare disease special interest group. Value Health 2015, 18, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.C.; Wu, H.-C.; Feng, W.-C.; Chou, C.-H.; Lai, E.C.-C.; Lu, C.Y. Disease and economic burden for rare diseases in Taiwan: A longitudinal study using Taiwan’s national health insurance research database. PLoS ONE 2018, 13, e0204206. [Google Scholar] [CrossRef] [PubMed]
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Murphy, D.; Le Cam, Y.; Rath, A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cintina, I.; Pariser, A.; Oehrlein, E.; Sullivan, J.; Kennedy, A. The national economic burden of rare disease in the united states in 2019. Orphanet J. Rare Dis. 2022, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, A.; Cutillo, C.M.; Nathan, R.; Russo, P.; Laraway, B.; Haendel, M.; Nowak, D.; Hasche, C.; Chan, C.-H.; Griese, E.; et al. The IDeaS initiative: Pilot study to assess the impact of rare diseases on patients and healthcare systems. Orphanet J. Rare Dis. 2021, 16, 429. [Google Scholar] [CrossRef] [PubMed]
- Nestler-Parr, S.; Korchagina, D.; Toumi, M.; Pashos, C.L.; Blanchette, C.; Molsen, E.; Morel, T.; Simoens, S.; Kaló, Z.; Gatermann, R.; et al. Challenges in research and health technology assessment of rare disease technologies: Report of the ispor rare disease special interest group. Value Health 2018, 21, 493–500. [Google Scholar] [CrossRef]
- Stoller, J.K. The Challenge of Rare Diseases. Chest 2018, 153, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- NORD Rare Insights. Barriers to Rare Disease Diagnosis, Care and Treatment in the US: A 30-Year Comparative Analysis; RareInsights: Washington, DC, USA, 2020. [Google Scholar]
- Ahmed, M.A.; Okour, M.; Brundage, R.; Kartha, R.V. Orphan drug development: The increasing role of clinical pharmacology. J. Pharmacokinet. Pharmacodyn. 2019, 46, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Handfield, R.; Feldstein, J. Insurance companies’ perspectives on the orphan drug pipeline. Am. Health Drug Benefits 2013, 6, 589–598. [Google Scholar] [PubMed]
- Althobaiti, H.; Seoane-Vazquez, E.; Brown, L.M.; Fleming, M.L.; Rodriguez-Monguio, R. Disentangling the cost of orphan drugs marketed in the united states. Healthcare 2023, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, F.; Sadoway, T.; Yin, Y.; Ali, Q.Z.; Nguyen, C.M.; Shum, N.; Backstrom, I.; Marques, P.T.; Tabarestani, S.; Munhoz, R.P.; et al. Genome sequencing identifies rare tandem repeat expansions and copy number variants in Lennox–Gastaut syndrome. Brain Commun. 2021, 3, fcab207. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Li, Q.; Chen, J.; Chen, D.; Ye, C.; Dai, X.; Wang, Y.; Li, X.; Rong, X.; Cheng, F.; et al. Molecular subgroups of intrahepatic cholangiocarcinoma discovered by single-cell RNA sequencing–assisted multiomics analysis. Cancer Immunol. Res. 2022, 10, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Dionnet, E.; Defour, A.; Da Silva, N.; Salvi, A.; Lévy, N.; Krahn, M.; Bartoli, M.; Puppo, F.; Gorokhova, S. Splicing impact of deep exonic missense variants in capn3 explored systematically by minigene functional assay. Hum. Mutat. 2020, 41, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape. Electronics 2024, 13, 498. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated omics: Tools, advances and future approaches. J. Mol. Endocrinol. 2019, 62, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [PubMed]
- Morales, E.F.; Escalante, H.J. A brief introduction to supervised, unsupervised, and reinforcement learning. In Biosignal Processing and Classification Using Computational Learning and Intelligence; Elsevier: Amsterdam, The Netherlands, 2022; pp. 111–129. [Google Scholar]
- Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting splicing from primary sequence with deep learning. Cell 2019, 176, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying mendelian disease genes with the variant effect scoring tool. BMC Genom. 2013, 14, S3. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-F.; Ding, X.-F.; Chen, L.; Mat, W.-K.; Xu, M.Z.; Chen, J.-F.; Wang, J.-M.; Xu, L.; Poon, W.-S.; Kwong, A.; et al. Copy number variation analysis based on AluScan sequences. J. Clin. Bioinform. 2014, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- López-Rivera, J.J.; Rodríguez-Salazar, L.; Soto-Ospina, A.; Estrada-Serrato, C.; Serrano, D.; Chaparro-Solano, H.M.; Londoño, O.; Rueda, P.A.; Ardila, G.; Villegas-Lanau, A.; et al. Structural protein effects underpinning cognitive developmental delay of the pura p. phe233del mutation modelled by artificial intelligence and the hybrid quantum mechanics–molecular mechanics framework. Brain Sci. 2022, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, Y.; Yang, Y.; Huang, Y.; Zhao, S.; Zhao, H.; Yu, C.; Dong, X.; Zhang, Y.; Wang, L.; et al. PhenoApt leverages clinical expertise to prioritize candidate genes via machine learning. Am. J. Hum. Genet. 2022, 109, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Quinodoz, M.; Royer-Bertrand, B.; Cisarova, K.; Di Gioia, S.A.; Superti-Furga, A.; Rivolta, C. DOMINO: Using machine learning to predict genes associated with dominant disorders. Am. J. Hum. Genet. 2017, 101, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Arif, M.; Song, X.; Uhlén, M.; Mardinoglu, A. Machine learning analysis reveals biomarkers for the detection of neurological diseases. Front. Mol. Neurosci. 2022, 15, 889728. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Gao, J.; Guo, Y.; Li, X.; Yuan, E.; Yuan, E.; Song, L.; Shi, Q.; Yu, H.; Zhao, D.; et al. Allelic phenotype prediction of phenylketonuria based on the machine learning method. Hum. Genom. 2023, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Pirhaji, L.; Milani, P.; Leidl, M.; Curran, T.; Avila-Pacheco, J.; Clish, C.B.; White, F.M.; Saghatelian, A.; Fraenkel, E. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat. Methods 2016, 13, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Trevino, A.E.; Müller, F.; Andersen, J.; Sundaram, L.; Kathiria, A.; Shcherbina, A.; Farh, K.; Chang, H.Y.; Pașca, A.M.; Kundaje, A.; et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 2021, 184, 5053–5069. [Google Scholar] [CrossRef] [PubMed]
- Willscher, E.; Hopp, L.; Kreuz, M.; Schmidt, M.; Hakobyan, S.; Arakelyan, A.; Hentschel, B.; Jones, D.T.W.; Pfister, S.M.; Loeffler, M.; et al. High-resolution cartography of the transcriptome and methylome landscapes of diffuse gliomas. Cancers 2021, 13, 3198. [Google Scholar] [CrossRef] [PubMed]
- Loeffler-Wirth, H.; Hopp, L.; Schmidt, M.; Zakharyan, R.; Arakelyan, A.; Binder, H. The transcriptome and methylome of the developing and aging brain and their relations to gliomas and psychological disorders. Cells 2022, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-K.; Wong, S.Z.H.; Pather, S.R.; Nguyen, P.T.; Zhang, F.; Zhang, D.Y.; Zhang, Z.; Lu, L.; Fang, W.; Chen, L.; et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021, 28, 1657–1670.e10. [Google Scholar] [CrossRef] [PubMed]
- Agus, F.; Crespo, D.; Myers, R.H.; Labadorf, A. The caudate nucleus undergoes dramatic and unique transcriptional changes in human prodromal Huntington’s disease brain. BMC Med. Genom. 2019, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Chiocchetti, A.; Haslinger, D.; Stein, J.; La Torre-Ubieta, L.; Cocchi, E.; Rothämel, T.; Lindlar, S.; Waltes, R.; Fulda, S.; Geschwind, D.; et al. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders. Transl. Psychiatry 2016, 6, 864. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Drago, R.; Custódio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum. Genet. 2017, 136, 1093–1111. [Google Scholar] [CrossRef] [PubMed]
- Zuallaert, J.; Godin, F.; Kim, M.; Soete, A.; Saeys, Y.; De Neve, W. SpliceRover: Interpretable convolutional neural networks for improved splice site prediction. Bioinformatics 2018, 34, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Hiraide, T.; Shimizu, K.; Okumura, Y.; Miyamoto, S.; Nakashima, M.; Ogata, T.; Saitsu, H. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome. J. Hum. Genet. 2023, 68, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef]
- Giunti, L.; Pantaleo, M.; Sardi, I.; Provenzano, A.; Magi, A.; Cardellicchio, S.; Castiglione, F.; Tattini, L.; Novara, F.; Buccoliero, A.M.; et al. Genome-wide copy number analysis in pediatric glioblastoma multiforme. Am. J. Cancer Res. 2014, 4, 293–303. [Google Scholar] [PubMed]
- Ma, J.; Hong, Y.; Chen, W.; Li, D.; Tian, K.; Wang, K.; Yang, Y.; Zhang, Y.; Chen, Y.; Song, L.; et al. High copy-number variation burdens in cranial meningiomas from patients with diverse clinical phenotypes characterized by hot genomic structure changes. Front. Oncol. 2020, 10, 1382. [Google Scholar] [CrossRef]
- Mirchia, K.; Sathe, A.A.; Walker, J.M.; Fudym, Y.; Galbraith, K.; Viapiano, M.S.; Corona, R.J.; Snuderl, M.; Xing, C.; Hatanpaa, K.J.; et al. Total copy number variation as a prognostic factor in adult astrocytoma subtypes. Acta Neuropathol. Commun. 2019, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Chun, S.-M.; Shim, J.; Oh, J.-H.; Cho, E.J.; Hwang, H.S.; Lee, J.-Y.; Kim, D.; Jang, S.J.; Nam, S.J.; et al. Detection of chromosome structural variation by targeted next-generation sequencing and a deep learning application. Sci. Rep. 2019, 9, 3644. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with alphafold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Dickson, D.W.; Baker, M.C.; Jackson, J.L.; DeJesus-Hernandez, M.; Finch, N.A.; Tian, S.; Heckman, M.G.; Pottier, C.; Gendron, T.F.; Murray, M.E.; et al. Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathol. Commun. 2019, 7, 150. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.B.; Park, J.S.; Chung, J.W.; Yoo, T.K.; Kim, D.W. Multicategory classification of 11 neuromuscular diseases based on microarray data using support vector machine. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3460–3463. [Google Scholar]
- Caputo, V.; Megalizzi, D.; Fabrizio, C.; Termine, A.; Colantoni, L.; Bax, C.; Gimenez, J.; Monforte, M.; Tasca, G.; Ricci, E.; et al. D4z4 methylation levels combined with a machine learning pipeline highlight single CpG sites as discriminating biomarkers for fshd patients. Cells 2022, 11, 4114. [Google Scholar] [CrossRef] [PubMed]
- Dabin, L.C.; Guntoro, F.; Campbell, T.; Bélicard, T.; Smith, A.R.; Smith, R.G.; Raybould, R.; Schott, J.M.; Lunnon, K.; Sarkies, P.; et al. Altered DNA methylation profiles in blood from patients with sporadic creutzfeldt–jakob disease. Acta Neuropathol. 2020, 140, 863–879. [Google Scholar] [CrossRef] [PubMed]
- Jabari, S.; Kobow, K.; Pieper, T.; Hartlieb, T.; Kudernatsch, M.; Polster, T.; Bien, C.G.; Kalbhenn, T.; Simon, M.; Hamer, H.; et al. DNA methylation-based classification of malformations of cortical development in the human brain. Acta Neuropathol. 2022, 143, 93–104. [Google Scholar] [CrossRef]
- Bjornevik, K.; Zhang, Z.; O’Reilly, É.J.; Berry, J.D.; Clish, C.B.; Deik, A.; Jeanfavre, S.; Kato, I.; Kelly, R.S.; Kolonel, L.N.; et al. Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis. Neurology 2019, 92, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Lawton, K.A.; Brown, M.V.; Alexander, D.; Li, Z.; Wulff, J.E.; Lawson, R.; Jaffa, M.; Milburn, M.V.; Ryals, J.A.; Bowser, R.; et al. Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Thistlethwaite, L.R.; Li, X.; Burrage, L.C.; Riehle, K.; Hacia, J.G.; Braverman, N.; Wangler, M.F.; Miller, M.J.; Elsea, S.H.; Milosavljevic, A. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci. Rep. 2022, 12, 6556. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, Y.; Ma, W. Molecular landscape of IDH-mutant astrocytoma and oligodendroglioma grade 2 indicate tumor purity as an underlying genomic factor. Mol. Med. 2022, 28, 34. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA methylation-based classification of central nervous system tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, G.; Parvathy, R.; Vikas, V.; Chandrasekharan, K.; Nair, S. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Neuroradiol. J. 2015, 28, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, C.; Zhang, Y.; Huang, Z.; Wang, H.; Li, R.; Xu, J. Differentiation between germinoma and craniopharyngioma using radiomics-based machine learning. J. Pers. Med. 2022, 12, 45. [Google Scholar] [CrossRef]
- Wang, C.; You, L.; Zhang, X.; Zhu, Y.; Zheng, L.; Huang, W.; Guo, D.; Dong, Y. A radiomics-based study for differentiating parasellar cavernous hemangiomas from meningiomas. Sci. Rep. 2022, 12, 15509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chang, K.; Ramkissoon, S.; Tanguturi, S.; Bi, W.L.; Reardon, D.A.; Ligon, K.L.; Alexander, B.M.; Wen, P.Y.; Huang, R.Y. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology 2017, 19, 109–117. [Google Scholar] [CrossRef]
- Kandalgaonkar, P.; Sahu, A.; Saju, A.C.; Joshi, A.; Mahajan, A.; Thakur, M.; Sahay, A.; Epari, S.; Sinha, S.; Dasgupta, A.; et al. Predicting IDH sub-type of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach. Front. Oncol. 2022, 12, 879376. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.S.; Greer, B.T.; Westermann, F.; Steinberg, S.M.; Son, C.-G.; Chen, Q.-R.; Whiteford, C.C.; Bilke, S.; Krasnoselsky, A.L.; Cenacchi, N.; et al. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res. 2004, 64, 6883–6891. [Google Scholar] [CrossRef]
- Tranchevent, L.-C.; Azuaje, F.; Rajapakse, J.C. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients. BMC Med. Genom. 2019, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Francescatto, M.; Chierici, M.; Rezvan Dezfooli, S.; Zandonà, A.; Jurman, G.; Furlanello, C. Multi-omics integration for neuroblastoma clinical endpoint prediction. Biol. Direct 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Sugino, R.P.; Ohira, M.; Mansai, S.P.; Kamijo, T. Comparative epigenomics by machine learning approach for neuroblastoma. BMC Genom. 2022, 23, 852. [Google Scholar] [CrossRef] [PubMed]
- Giwa, A.; Rossouw, S.C.; Fatai, A.; Gamieldien, J.; Christoffels, A.; Bendou, H. Predicting amplification of MYCN using CpG methylation biomarkers in neuroblastoma. Future Oncol. 2021, 17, 4769–4783. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lue, W.; Kaalia, R.; Kumar, P.; Rajapakse, J.C. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma. Sci. Rep. 2022, 12, 15425. [Google Scholar] [CrossRef] [PubMed]
- Oyefiade, A.; Erdman, L.; Goldenberg, A.; Malkin, D.; Bouffet, E.; Taylor, M.D.; Ramaswamy, V.; Scantlebury, N.; Law, N.; Mabbott, D.J. PPAR and GST polymorphisms may predict changes in intellectual functioning in medulloblastoma survivors. J. Neuro-Oncol. 2019, 142, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Mihaylov, I.; Kańduła, M.; Krachunov, M.; Vassilev, D. A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models. Biol. Direct 2019, 14, 22. [Google Scholar] [CrossRef]
- Bratulic, S.; Limeta, A.; Dabestani, S.; Birgisson, H.; Enblad, G.; Stålberg, K.; Hesselager, G.; Häggman, M.; Höglund, M.; Simonson, O.E.; et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc. Natl. Acad. Sci. USA 2022, 119, e2115328119. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R.; Al-Chalabi, A.; Chio, A.; Hardiman, O.; Kiernan, M.C.; Rohrer, J.D.; Rowe, J.; Seeley, W.; Talbot, K. Genetic screening in sporadic ALS and FTD. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1042–1044. [Google Scholar] [CrossRef] [PubMed]
- Placek, K.; Benatar, M.; Wuu, J.; Rampersaud, E.; Hennessy, L.; Van Deerlin, V.M.; Grossman, M.; Irwin, D.J.; Elman, L.; McCluskey, L.; et al. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol. Med. 2021, 13, e12595. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Pei, Q.; Zhang, J.; Lin, P.; Li, B.; Yin, H.; Sun, J.; Su, D.; Qu, X.; Yin, D. Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and stress cardiomyopathy. Front. Immunol. 2023, 14, 1078731. [Google Scholar] [CrossRef]
- Stapleton, C.J.; Acharjee, A.; Irvine, H.J.; Wolcott, Z.C.; Patel, A.B.; Kimberly, W.T. High-throughput metabolite profiling: Identification of plasma taurine as a potential biomarker of functional outcome after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 133, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.S.; Ning, S.; Eschbacher, J.M.; Gaw, N.; Dueck, A.C.; Smith, K.A.; Nakaji, P.; Plasencia, J.; Ranjbar, S.; Price, S.J.; et al. Multi-parametric mri and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS ONE 2015, 10, e0141506. [Google Scholar] [CrossRef] [PubMed]
- Bijari, S.; Jahanbakhshi, A.; Hajishafiezahramini, P.; Abdolmaleki, P. Differentiating glioblastoma multiforme from brain metastases using multidimensional radiomics features derived from MRI and multiple machine learning models. BioMed Res. Int. 2022, 2022, 2016006. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Hostin, M.-A.; Ogier, A.C.; Michel, C.P.; Le Fur, Y.; Guye, M.; Attarian, S.; Fortanier, E.; Bellemare, M.-E.; Bendahan, D. The impact of fatty infiltration on MRI segmentation of lower limb muscles in neuromuscular diseases: A comparative study of deep learning approaches. J. Magn. Reson. Imaging 2023, 58, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.W.; Arbab, M.; Hsu, J.Y.; Worstell, D.; Culbertson, S.J.; Krabbe, O.; Cassa, C.A.; Liu, D.R.; Gifford, D.K.; Sherwood, R.I. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 2018, 563, 646–651. [Google Scholar] [CrossRef]
- Nishida, A.; Kataoka, N.; Takeshima, Y.; Yagi, M.; Awano, H.; Ota, M.; Itoh, K.; Hagiwara, M.; Matsuo, M. Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat. Commun. 2011, 2, 308. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Zhao, W.; Yang, J.; Wang, H.; Zhang, H. Integrative Analysis of Biomarkers and Mechanisms in Adamantinomatous Craniopharyngioma. Front. Genet. 2022, 13, 830793. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Han, Y.-P.; Zhang, Y.-C.; Zhao, Y.; Yan, S.; Li, Q.-F.; Wang, B.-C.; Wang, J.-J.; Meng, W.; Yang, J.; et al. Integrative analysis of gene expression and DNA methylation through one-class logistic regression machine learning identifies stemness features in medulloblastoma. Mol. Oncol. 2019, 13, 2227–2245. [Google Scholar] [CrossRef]
- Gilard, V.; Ferey, J.; Marguet, F.; Fontanilles, M.; Ducatez, F.; Pilon, C.; Lesueur, C.; Pereira, T.; Basset, C.; Schmitz-Afonso, I.; et al. Integrative metabolomics reveals deep tissue and systemic metabolic remodeling in glioblastoma. Cancers 2021, 13, 5157. [Google Scholar] [CrossRef] [PubMed]
- De Jong, J.; Cutcutache, I.; Page, M.; Elmoufti, S.; Dilley, C.; Fröhlich, H.; Armstrong, M. Towards realizing the vision of precision medicine: AI based prediction of clinical drug response. Brain A J. Neurol. 2021, 144, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, M.; Singleton, S.S.; David, J.A.; Basuchoudhary, A.; Wickström, R.; Mazumder, R.; Prast-Nielsen, S. Higher levels of bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine 2022, 80, 104061. [Google Scholar] [CrossRef]
- Kurkiewicz, A.; Cooper, A.; McIlwaine, E.; Cumming, S.A.; Adam, B.; Krahe, R.; Puymirat, J.; Schoser, B.; Timchenko, L.; Ashizawa, T.; et al. Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial. PLoS ONE 2020, 15, e0231000. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, S.S.; Mangon, R.; Sikkens, J.J.; Teeuw, M.E.E.; Cornel, M.C. [Orphanet: A European database for rare diseases]. Ned. Tijdschr. Geneeskd. 2008, 152, 518–519. [Google Scholar] [PubMed]
- Kebaili, A.; Lapuyade-Lahorgue, J.; Ruan, S. Deep learning approaches for data augmentation in medical imaging: A review. J. Imaging 2023, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Garbulowski, M.; Smolinska, K.; Diamanti, K.; Pan, G.; Maqbool, K.; Feuk, L.; Komorowski, J. Interpretable machine learning reveals dissimilarities between subtypes of autism spectrum disorder. Front. Genet. 2021, 12, 618277. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef]
- Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.-M.; Zhang, B. Artificial intelligence and machine learning-aided drug discov- ery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef] [PubMed]
- Mitani, A.A.; Haneuse, S. Small data challenges of studying rare diseases. JAMA Netw. Open 2020, 3, e201965. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, L.; Xu, Y.; Yang, J. Machine learning meets omics: Applications and perspectives. Brief. Bioinform. 2022, 23, bbab460. [Google Scholar] [CrossRef]
- Marouf, M.; Machart, P.; Bansal, V.; Kilian, C.; Magruder, D.S.; Krebs, C.F.; Bonn, S. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 2020, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Hallowell, N.; Parker, M.; Nellåker, C. Big data phenotyping in rare diseases: Some ethical issues. Anesth. Analg. 2019, 21, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.P.; Cutillo, C.M.; Lau, L.P.; Jonker, A.H.; Rath, A.; Julkowska, D.; Thomson, D.; Terry, S.F.; de Montleau, B.; Ardigò, D.; et al. Future of rare diseases research 2017–2027: An IRDiRC perspective. Clin. Transl. Sci. 2018, 11, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Price, W.N.; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
- McCradden, M.D.; Baba, A.; Saha, A.; Ahmad, S.; Boparai, K.; Fadaiefard, P.; Cusimano, M.D. Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: A qualitative study. Can. Med. Assoc. Open Access J. 2020, 8, E90–E95. [Google Scholar] [CrossRef] [PubMed]
- Blasimme, A.; Vayena, E. The ethics of AI in biomedical research, patient care, and public health. In The Oxford Handbook of Ethics of AI; Oxford Academic: Oxford, UK, 2020. [Google Scholar]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Larson, D.B.; Magnus, D.C.; Lungren, M.P.; Shah, N.H.; Langlotz, C.P. Ethics of using and sharing clinical imaging data for artificial intelligence: A proposed framework. Radiology 2020, 295, 675–682. [Google Scholar] [CrossRef]
- Murphy, K.; Di Ruggiero, E.; Upshur, R.; Willison, D.J.; Malhotra, N.; Cai, J.C.; Malhotra, N.; Lui, V.; Gibson, J. Artificial intelligence for good health: A scoping review of the ethics literature. BMC Med. Ethics 2021, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, I. AI in healthcare: Ethical and privacy challenges. In Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, 26–29 June 2019; Proceedings 17; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
Study Reference | Study Name | AI Model | Study Findings | Study Data Source | Study Source Code |
---|---|---|---|---|---|
[27] | SpliceAI | 32-layer deep convolutional neural network | Predicts splice junctions, identifies ASD mutations | E-MTAB-7351 | https://github.com/Illumina/SpliceAI (accessed on 2 March 2024) |
[28] | VEST | Random forest | Prioritizes rare, disease-causing gene variants | Human Gene Mutation Database (HGMD), https://www.hgmd.cf.ac.uk/ac/index.php (accessed on 2 March 2024) | https://www.cravat.us/CRAVAT/ (accessed on 2 March 2024) |
[29] | AluScanCNV | Machine learning-based selection for CNV features | Identifies glioma copy number losses in cancer tissue | https://static-content.springer.com/esm/art%3A10.1186%2Fs13336-014-0015-z/MediaObjects/13336_2014_15_MOESM2_ESM.xlsx (accessed on 2 March 2024) | https://static-content.springer.com/esm/art%3A10.1186%2Fs13336-014-0015-z/MediaObjects/13336_2014_15_MOESM3_ESM.zip (accessed on 2 March 2024) |
[30] | PURA Syndrome Study | Exome sequencing, AI algorithms, quantum mechanics-based molecular models | Identifies PURA syndrome mutations, AI-aided structural analysis | Not available | https://github.com/google-deepmind/alphafold (accessed on 2 March 2024) |
[31] | PhenoApt | ML-based graph embedding techniques | Accelerates Mendelian diagnosis via gene identification | https://github.com/phenoapt/phenoapt (accessed on 2 March 2024) | https://github.com/phenoapt/phenoapt (accessed on 2 March 2024) |
[32] | DOMINO | Linear discriminant analysis | Evaluates gene dominance in Mendelian disorders | https://www.cell.com/ajhg/fulltext/S0002-9297(17)30368-3#supplementaryMaterial (accessed on 2 March 2024) | https://domino.iob.ch/ (accessed on 2 March 2024) |
[33] | Neurological Disease ML Study | Multinomial linear model | Predicts neurological disorders using clinical data | https://github.com/SimonLammmm/ukbb-ndd-ml (accessed on 2 March 2024) | https://cran.r-project.org/web/packages/nnet/index.html (accessed on 2 March 2024) |
[34] | PPML | Random forest classifier | Classifies PKU phenotype based on PAH gene mutations | http://www.bioinfogenetics.info/PPML/ (accessed on 2 March 2024) | http://www.bioinfogenetics.info/PPML/ (accessed on 2 March 2024) |
[35] | PIUMet | Network-based algorithm (ML, statistical analysis, network optimization) | Identified Huntington’s disrupted metabolites | https://fraenkel-nsf.csbi.mit.edu/piumet2/ (accessed on 2 March 2024) | https://fraenkel-nsf.csbi.mit.edu/piumet2/ (accessed on 2 March 2024) |
[36] | Trevino et al.—Human Corticogenesis | Deep learning model derived from BP-Net | Predicted ASD mutations in corticogenesis | GSE162170 | https://github.com/GreenleafLab/Brain_ASD (accessed on 2 March 2024) |
[37] | Wilscher et al.—Grade I–IV Gliomas | Self-organizing maps (SOMs) | Mapped gene patterns in gliomas | GSE61374 GSE129477 GSE53733 | https://www.izbi.uni-leipzig.de/opossom-browser/ (accessed on 2 March 2024) |
[38] | Loeffler-Wirth et al.—Brain Transcriptome and Methylome | Self-organizing maps (SOMs) | Identified aging gene sets in gliomas | GSE11512 | https://bioconductor.org/packages/release/bioc/html/oposSOM.html (accessed on 2 March 2024) |
[39] | Huang et al.—Arcuate Organoids | ML-based analysis on single-cell RNA sequencing | Explored arcuate nucleus dysregulation in Prader–Willi syndrome | GSE164101 GSE164102 | https://bioconductor.org/packages/release/bioc/html/oposSOM.html (accessed on 2 March 2024) |
[40] | Huntington’s Disease Gene Expression Study | Random forest classifier | Identified early-onset genes in Huntington’s disease | GSE64810 GSE129473 | https://bitbucket.org/bubfnexus/asymptomatic_hd_mrnaseq (accessed on 2 March 2024) |
[41] | ConTeXT Framework—Neurodevelopmental Disorders | CoNTeXT framework | Linked ASD to neurodevelopmental disorders | GSE69838 | https://context.semel.ucla.edu/ (accessed on 2 March 2024) |
Challenge Name | Challenge Description | Impact on RNDs | Available Solutions |
---|---|---|---|
Mutation Detection | Difficulty in detecting pathogenic deep intronic variants using traditional sequencing methods. | Delays in diagnosing RNDs, affecting patient treatment and care. | ML tools like SpliceAI for splice junction prediction are enhancing mutation detection accuracy in RNDs. |
AI in Tumor Identification | Detecting genetic mutations and CNVs that contribute to tumor progression. | Improves accuracy in tumor classification, diagnosis, and understanding of tumor biology, leading to better-targeted treatments for neurological conditions. | Tools like AluScanCNV for efficient CNV calling in glioma samples. Use of one-dimensional convolutional neural networks to analyze CNVs from NGS data, aiding in detection of genetic abnormalities like 1p/19q co-deletion. Employment of advanced techniques such as exome sequencing, Alpha Fold, and QM-MM analyses to identify and understand mutations at molecular level. |
Genotype–Phenotype Integration | Integrating genomic data with phenotypic and clinical features to predict outcomes and identify biomarkers, with challenges in gene prioritization and mutation identification. | Enhances understanding of disease heritability, aids in accurate diagnosis, and informs treatment strategies by linking genetic mutations to clinical manifestations. | ML tools like PhenoApt for gene prioritization using data from HPO, OMIM, and Orphanet. |
Omics Data Integration for Disease Characterization | Challenges in omics data integration and how to differentiate pathological and genetic features in diseases with overlapping symptoms. | Accurate metabolite identification and disease characterization are crucial in understanding biochemical activity and developing targeted treatments. | Implement network-based algorithms like PIUMet for metabolite identification from LC-MS data, integrating protein–metabolite interactions. Use ML models like LASSO and random forest to analyze RNA seq data, highlighting biologically relevant genes and pathways in diseases like ALS and FTD. |
Disease Mechanisms and Research Models | Utilizing ML and omics to link gene variants, phenotypes, and clinical features for understanding of pathogenesis and development of models. | Enhances understanding of disease mechanisms, facilitates development of experimental models, and aids in early diagnosis and prognosis. | Apply deep learning models, like BP-Net, for gene-regulatory circuit mapping in corticogenesis, revealing ASD-related mutations. Use self-organizing maps (SOMs) for detailed molecular mapping in gliomas and brain development studies, identifying potential biomarkers. Develop organoids, such as ARCOs, to model neurodevelopmental disorder pathogenesis, aiding in understanding disease mechanisms and identifying therapeutic targets. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alganmi, N. A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases. BioMedInformatics 2024, 4, 1329-1347. https://doi.org/10.3390/biomedinformatics4020073
Alganmi N. A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases. BioMedInformatics. 2024; 4(2):1329-1347. https://doi.org/10.3390/biomedinformatics4020073
Chicago/Turabian StyleAlganmi, Nofe. 2024. "A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases" BioMedInformatics 4, no. 2: 1329-1347. https://doi.org/10.3390/biomedinformatics4020073
APA StyleAlganmi, N. (2024). A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases. BioMedInformatics, 4(2), 1329-1347. https://doi.org/10.3390/biomedinformatics4020073