Understanding and Therapeutic Application of Immune Response in Major Histocompatibility Complex (MHC) Diversity Using Multimodal Artificial Intelligence
Abstract
1. Introduction
2. Major Histocompatibility Complex (MHC)
2.1. Vaccine and MHC
2.2. SP Vaccine Therapy
2.3. LP Vaccine Therapy
2.4. Cancer Antigen Vaccine Therapy Using DC and Neoantigen
3. Computer-Based Inference of HLA Gene Sequences Related to Immune Function
4. Multimodal AI
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Armony, G.; Heck, A.J.R.; Wu, W. Extracellular crosslinking mass spectrometry reveals HLA class I—HLA class II interactions on the cell surface. Mol. Immunol. 2021, 136, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bos, N.A.; Verschuuren, E.A.M.; van Baarle, D.; Westra, J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front. Immunol. 2022, 13, 902093. [Google Scholar] [CrossRef] [PubMed]
- Neuchel, C.; Gowdavally, S.; Tsamadou, C.; Platzbecker, U.; Sala, E.; Wagner-Drouet, E.; Valerius, T.; Kröger, N.; Wulf, G.; Einsele, H.; et al. Higher risk for chronic graft-versus-host disease (GvHD) in HLA-G mismatched transplants following allogeneic hematopoietic stem cell transplantation: A retrospective study. HLA 2022, 100, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Arrieta-Bolaños, E.; Hernández-Zaragoza, D.I.; Barquera, R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front. Genet. 2023, 14, 866407. [Google Scholar] [CrossRef] [PubMed]
- Do, M.D.; Le, L.G.H.; Nguyen, V.T.; Dang, T.N.; Nguyen, N.H.; Vu, H.A.; Mai, T.P. High-Resolution HLA Typing of HLA-A, -B, -C, -DRB1, and -DQB1 in Kinh Vietnamese by Using Next-Generation Sequencing. Front. Genet. 2020, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Crocchiolo, R.; Rombolà, G. Human Leucocyte Antigen System and Selection of Unrelated Hematopoietic Stem Cell Donors: Impact of Patient-Donor (Mis)matching and New Challenges with the Current Technologies. J. Clin. Med. 2023, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Little, A.M.; Akbarzad-Yousefi, A.; Anand, A.; Diaz Burlinson, N.; Dunn, P.P.J.; Evseeva, I.; Latham, K.; Poulton, K.; Railton, D.; Vivers, S.; et al. BSHI guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int. J. Immunogenet. 2021, 48, 75–109. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Legarda, L.Y.; Khakoo, S.I. Conserved and variable natural killer cell receptors: Diverse approaches to viral infections. Immunology 2019, 156, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Pende, D.; Falco, M.; Vitale, M.; Cantoni, C.; Vitale, C.; Munari, E.; Bertaina, A.; Moretta, F.; Del Zotto, G.; Pietra, G.; et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front. Immunol. 2019, 10, 1179. [Google Scholar] [CrossRef] [PubMed]
- Tichauer, J.E.; Arellano, G.; Acuña, E.; González, L.F.; Kannaiyan, N.R.; Murgas, P.; Panadero-Medianero, C.; Ibañez-Vega, J.; Burgos, P.I.; Loda, E.; et al. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front. Immunol. 2023, 14, 1191838. [Google Scholar] [CrossRef] [PubMed]
- Saline, M.; Rödström, K.E.; Fischer, G.; Orekhov, V.Y.; Karlsson, B.G.; Lindkvist-Petersson, K. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat. Commun. 2010, 1, 119. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, 20, 636. [Google Scholar] [CrossRef] [PubMed]
- Carnicer-Lombarte, A.; Chen, S.T.; Malliaras, G.G.; Barone, D.G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. [Google Scholar] [CrossRef] [PubMed]
- Carlé, C.; Degboe, Y.; Ruyssen-Witrand, A.; Arleevskaya, M.I.; Clavel, C.; Renaudineau, Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. Int. J. Mol. Sci. 2023, 24, 4296. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.E.; Tello-Lafoz, M.; Guo, A.J.; de Jesus, M.; Elbanna, Y.A.; Winer, B.Y.; Budhu, S.; Chan, E.; Rosiek, E.; Kondo, T.; et al. Apoptotic contraction drives target cell release by cytotoxic T cells. Nat. Immunol. 2023, 24, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.; Huse, M. How cytotoxic T cells release their dying targets. Nat. Immunol. 2023, 24, 1413–1414. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front. Immunol. 2020, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lih, T.M.; Pan, J.; Höti, N.; Dong, M.; Cao, L.; Hu, Y.; Cho, K.C.; Chen, S.Y.; Eguez, R.V.; et al. Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J. Hematol. Oncol. 2020, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Abd Hamid, M.; Peng, Y.; Dong, T. Human cancer germline antigen-specific cytotoxic T cell-what can we learn from patient. Cell. Mol. Immunol. 2020, 17, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Weigelin, B.; den Boer, A.T.; Wagena, E.; Broen, K.; Dolstra, H.; de Boer, R.J.; Figdor, C.G.; Textor, J.; Friedl, P. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. 2021, 12, 5217. [Google Scholar] [CrossRef] [PubMed]
- Leko, V.; Rosenberg, S.A. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 2020, 38, 454–472. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, A.E.R.; Prakash, M.D.; Cox, M.; Wilson, K.; Boer, J.C.; Cauchi, J.A.; Plebanski, M. Therapeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Front. Immunol. 2019, 9, 3109. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, H.; Zhang, W.; Li, Z.; Gao, J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact. Mater. 2022, 22, 491–517. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Wu, X.L.; Sun, Y.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Khodadoust, M.S.; Olsson, N.; Wagar, L.E.; Fast, E.; Liu, C.L.; Muftuoglu, Y.; Sworder, B.J.; Diehn, M.; Levy, R.; et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 2019, 37, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Wendorff, M.; Garcia Alvarez, H.M.; Østerbye, T.; ElAbd, H.; Rosati, E.; Degenhardt, F.; Buus, S.; Franke, A.; Nielsen, M. Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction. Front. Immunol. 2020, 11, 1705. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Al-Haidari, A.; Sun, J.; Kazi, J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021, 6, 412. [Google Scholar] [CrossRef] [PubMed]
- Mørch, A.M.; Bálint, Š.; Santos, A.M.; Davis, S.J.; Dustin, M.L. Coreceptors and TCR Signaling—The Strong and the Weak of It. Front. Cell Dev. Biol. 2020, 8, 597627. [Google Scholar] [CrossRef] [PubMed]
- Colbert, J.D.; Cruz, F.M.; Rock, K.L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 2020, 64, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weigelin, B.; Friedl, P. T cell-mediated additive cytotoxicity—Death by multiple bullets. Trends Cancer 2022, 8, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023, 20, 432–447. [Google Scholar] [CrossRef] [PubMed]
- Marciscano, A.E.; Anandasabapathy, N. The role of dendritic cells in cancer and anti-tumor immunity. Semin. Immunol. 2021, 52, 101481. [Google Scholar] [CrossRef] [PubMed]
- Wylie, B.; Macri, C.; Mintern, J.D.; Waithman, J. Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers 2019, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Z.; Wen, C.; Huang, J.; Yang, S.; Liu, J.; Geng, H.; Peng, B.; Li, Z.; Zhang, Y. The safety and anti-tumor effect of multiple peptides-pulsed dendritic cells combined with induced specific cytotoxic T lymphocytes for patients with solid tumors. Front. Immunol. 2023, 14, 1284334. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.H.; Yang, A.; Tsai, Y.; Ferrall, L.; Hung, C.F. Targeted tumor coating with antigenic, CTL-recognizable peptides via Annexin A5 chimeric constructs following chemotherapy redirects adaptive CD8+ T cell immunity for tumor clearance. Cell. Mol. Immunol. 2021, 18, 1578–1580. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.S.; Van Vleet, T.R.; Ciurlionis, R.; Buck, W.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Liguori, M.J. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. Front. Genet. 2019, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, L.; Tagliamonte, M. Peptide-based vaccine for cancer therapies. Front. Immunol. 2023, 14, 1210044. [Google Scholar] [CrossRef] [PubMed]
- Biswas, N.; Chakrabarti, S.; Padul, V.; Jones, L.D.; Ashili, S. Designing neoantigen cancer vaccines, trials, and outcomes. Front. Immunol. 2023, 14, 1105420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Bassani-Sternberg, M. Current perspectives on mass spectrometry-based immunopeptidomics: The computational angle to tumor antigen discovery. J. Immunother. Cancer 2023, 11, e007073. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.P.; Riemer, A.B. The Importance of Being Presented: Target Validation by Immunopeptidomics for Epitope-Specific Immunotherapies. Front. Immunol. 2022, 13, 883989. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, M.G.; Sönmez, L.Ö. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol. Ann. 2019, 11, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zheng, X.; Zhang, S.; Yi, X.; Zhang, T.; Wei, Q.; Li, H.; Ai, J. Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma. Mol. Cancer 2021, 20, 159. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yuan, Z.; Jiang, Y.; Mo, Z. Identification of Five Tumor Antigens for Development and Two Immune Subtypes for Personalized Medicine of mRNA Vaccines in Papillary Renal Cell Carcinoma. J. Pers. Med. 2023, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Miller, C.P.; Warren, E.H.; Tykodi, S.S. Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Hum. Vaccin. Immunother. 2021, 17, 1882–1896. [Google Scholar] [CrossRef] [PubMed]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef] [PubMed]
- Mizukoshi, E.; Nakagawa, H.; Tamai, T.; Kitahara, M.; Fushimi, K.; Nio, K.; Terashima, T.; Iida, N.; Arai, K.; Yamashita, T.; et al. Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nat. Commun. 2022, 13, 3123. [Google Scholar] [CrossRef] [PubMed]
- Stephens, A.J.; Burgess-Brown, N.A.; Jiang, S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front. Immunol. 2021, 12, 696791. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.M.; Kichenadasse, G.; Karapetis, C.S.; Rowland, A.; Sorich, M.J. Early tumor shrinkage identifies long-term disease control and survival in patients with lung cancer treated with atezolizumab. J. Immunother. Cancer 2020, 8, e000500. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xian, X.; Wang, Y.; Qiu, M. Assessing prognostic value of early tumor shrinkage and depth of response in first-line therapy for patients with advanced unresectable pancreatic cancer. BMC Gastroenterol. 2021, 21, 294. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and Regulation of TH Cells: A Balancing Act for Cancer Immunotherapy. Front. Immunol. 2021, 12, 669474. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lozano-Ruiz, B.; Yang, F.M.; Fan, D.D.; Shen, L.; González-Navajas, J.M. The Multifaceted Role of Th1, Th9, and Th17 Cells in Immune Checkpoint Inhibition Therapy. Front. Immunol. 2021, 12, 625667. [Google Scholar] [CrossRef] [PubMed]
- Kumai, T.; Yamaki, H.; Kono, M.; Hayashi, R.; Wakisaka, R.; Komatsuda, H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines 2022, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhang, Y.; Wang, Q.; Zhang, L.; Wang, X.; Wang, Y.; Salahub, D.R.; Xu, Q.; Wamg, J.; Jiang, X.; et al. A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. Nat. Mach. Intell. 2022, 4, 300–311. [Google Scholar] [CrossRef]
- Karnaukhov, V.; Paes, W.; Woodhouse, I.B.; Partridge, T.; Nicastri, A.; Brackenridge, S.; Scherbinin, D.; Chudakov, D.M.; Zvyagin, I.V.; Ternette, N.; et al. HLA binding of self-peptides is biased towards proteins with specific molecular functions. bioRxiv 2021, Preprint. [Google Scholar] [CrossRef] [PubMed]
- Embgenbroich, M.; Burgdorf, S. Current Concepts of Antigen Cross-Presentation. Front. Immunol. 2018, 9, 1643. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol. 2020, 10, 200004. [Google Scholar] [CrossRef] [PubMed]
- Karami Fath, M.; Babakhaniyan, K.; Zokaei, M.; Yaghoubian, A.; Akbari, S.; Khorsandi, M.; Soofi, A.; Nabi-Afjadi, M.; Zalpoor, H.; Jalalifar, F.; et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell. Mol. Biol. Lett. 2022, 27, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, X.; Zhang, F.; Zhang, X.; Tang, F.; Han, Z.; Li, Y. TCR-T Immunotherapy: The Challenges and Solutions. Front. Oncol. 2022, 11, 794183. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.S.; Klebanoff, C.A. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol. Rev. 2019, 290, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Wei, W.; Li, Y. TCR engineered T cells for solid tumor immunotherapy. Exp. Hematol. Oncol. 2022, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Shafer, P.; Kelly, L.M.; Hoyos, V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front. Immunol. 2022, 13, 835762. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, X.; Zhou, W.L.; Huang, Y.; Liang, X.; Jiang, L.; Yang, X.; Sun, J.; Li, Z.; Han, W.D.; et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct. Target. Ther. 2019, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Hazini, A.; Fisher, K.; Seymour, L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J. Immunother. Cancer 2021, 9, e002899. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, H.; Li, L.; Wang, X.; Yu, Z.; Li, J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 2021, 54, e13025. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021, 12, 636568. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, H.; Liu, X.; Wang, X. Biophysics involved in the process of tumor immune escape. iScience 2022, 25, 104124. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Ganguly, A.; Chatterjee, K.; Spada, S.; Mukherjee, S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology 2023, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Garrido, F.; Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 2019, 158, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Sabbatino, F.; Liguori, L.; Polcaro, G.; Salvato, I.; Caramori, G.; Salzano, F.A.; Casolaro, V.; Stellato, C.; Col, J.D.; Pepe, S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int. J. Mol. Sci. 2020, 21, 7295. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Ding, Y.; Sun, S.; Wang, X.; Zhou, Z.; Liu, X.; Li, M.; Chen, X.; Shen, A.; Wu, Y.; et al. Screening HLA-A-restricted T cell epitopes of SARS-CoV-2 and the induction of CD8+ T cell responses in HLA-A transgenic mice. Cell. Mol. Immunol. 2021, 18, 2588–2608. [Google Scholar] [CrossRef] [PubMed]
- Calmeiro, J.; Carrascal, M.A.; Tavares, A.R.; Ferreira, D.A.; Gomes, C.; Falcão, A.; Cruz, M.T.; Neves, B.M. Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics 2020, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, H.; Cao, W.; Song, Y.; Jiang, Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Firdessa-Fite, R.; Creusot, R.J. Nanoparticles versus Dendritic Cells as Vehicles to Deliver mRNA Encoding Multiple Epitopes for Immunotherapy. Mol. Ther. Methods Clin. Dev. 2019, 16, 50–62. [Google Scholar] [CrossRef] [PubMed]
- de Mey, W.; Locy, H.; De Ridder, K.; De Schrijver, P.; Autaers, D.; Lakdimi, A.; Esprit, A.; Franceschini, L.; Thielemans, K.; Verdonck, M.; et al. An mRNA mix redirects dendritic cells towards an antiviral program, inducing anticancer cytotoxic stem cell and central memory CD8+ T cells. Front. Immunol. 2023, 14, 1111523. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Sayegh, N.; Graciotti, M.; Kandalaft, L.E. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr. Opin. Biotechnol. 2020, 65, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.R.; De Palma, M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 2019, 10, 5408. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.; Mortezaee, K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother. 2023, 164, 114954. [Google Scholar] [CrossRef] [PubMed]
- Kumbhari, A.; Egelston, C.A.; Lee, P.P.; Kim, P.S. Mature Dendritic Cells May Promote High-Avidity Tuning of Vaccine T Cell Responses. Front. Immunol. 2020, 11, 584680. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Szeto, C.; Gras, S. The pockets guide to HLA class I molecules. Biochem. Soc. Trans. 2021, 49, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Nagler, A.; Kalaora, S.; Barbolin, C.; Gangaev, A.; Ketelaars, S.L.C.; Alon, M.; Pai, J.; Benedek, G.; Yahalom-Ronen, Y.; Erez, N.; et al. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep. 2021, 35, 109305. [Google Scholar] [CrossRef] [PubMed]
- Ruangapirom, L.; Sutivijit, N.; Teerapakpinyo, C.; Mutirangura, A.; Doungkamchan, C. Identification of Shared Neoantigens in BRCA1-Related Breast Cancer. Vaccines 2022, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Shimizu, K.; Fujii, S.I. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int. J. Mol. Sci. 2022, 23, 2594. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Chang, C.M.; Liao, H.N.; Chou, W.H.; Guo, C.L.; Yen, Y.; Nakamura, Y.; Chang, W.C. Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals 2023, 16, 392. [Google Scholar] [CrossRef] [PubMed]
- Benlaribi, R.; Gou, Q.; Takaba, H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm. Regen. 2022, 42, 28. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.S.; Ma, J.; Klatt, M.G.; Dündar, F.; Bandlamudi, C.; Razavi, P.; Wen, H.Y.; Weigelt, B.; Zumbo, P.; Fu, S.N.; et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 2022, 28, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Claeys, A.; Luijts, T.; Marchal, K.; Van den Eynden, J. Low immunogenicity of common cancer hot spot mutations resulting in false immunogenic selection signals. PLoS Genet. 2021, 17, e1009368. [Google Scholar] [CrossRef] [PubMed]
- Capietto, A.H.; Jhunjhunwala, S.; Delamarre, L. Cancer neoantigens and immunogenicity: Mutation position matters. Mol. Cell. Oncol. 2020, 7, 1740071. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Schrörs, B.; Löwer, M.; Türeci, Ö.; Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 2022, 21, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; He, X.; Li, X.; Wu, Y. Driving neoantigen-based cancer vaccines for personalized immunotherapy into clinic: A burdensome journey to promising land. Biomed. Pharmacother. 2022, 153, 113464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Warrell, J.; Li, S.; McGillivray, P.D.; Meyerson, W.; Salichos, L.; Harmanci, A.; Martinez-Fundichely, A.; Chan, C.W.Y.; Nielsen, M.M.; et al. Passenger Mutations in More Than 2500 Cancer Genomes: Overall Molecular Functional Impact and Consequences. Cell 2020, 180, 915–927.e16. [Google Scholar] [CrossRef] [PubMed]
- Grodzka, A.; Knopik-Skrocka, A.; Kowalska, K.; Kurzawa, P.; Krzyzaniak, M.; Stencel, K.; Bryl, M. Molecular alterations of driver genes in non-small cell lung cancer: From diagnostics to targeted therapy. EXCLI J. 2023, 22, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Min, H.Y.; Lee, H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Creaney, J.; Redwood, A.; Robinson, B. The Current Lung Cancer Neoantigen Landscape and Implications for Therapy. J. Thorac. Oncol. 2021, 16, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Bakir, M.A.; Moore, D.A.; Hiley, C.T.; Lund, T.; Tanić, M.; Reading, J.L.; Joshi, K.; et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Anichini, A.; Perotti, V.E.; Sgambelluri, F.; Mortarini, R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers 2020, 12, 3605. [Google Scholar] [CrossRef] [PubMed]
- Kherreh, N.; Cleary, S.; Seoighe, C. No evidence that HLA genotype influences the driver mutations that occur in cancer patients. Cancer Immunol. Immunother. 2022, 71, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Filip, I.; Wang, A.; Kravets, O.; Orenbuch, R.; Zhao, J.; Perea-Chamblee, T.E.; Manji, G.A.; López de Maturana, E.; Malats, N.; Olive, K.P.; et al. Pervasiveness of HLA allele-specific expression loss across tumor types. Genome Med. 2023, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Fangazio, M.; Ladewig, E.; Gomez, K.; Garcia-Ibanez, L.; Kumar, R.; Teruya-Feldstein, J.; Rossi, D.; Filip, I.; Pan-Hammarström, Q.; Inghirami, G.; et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2021, 118, e2104504118. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, F.; Priestley, P.; Shale, C.; Baber, J.; Rozemuller, E.; Cuppen, E. Genetic immune escape landscape in primary and metastatic cancer. Nat. Genet. 2023, 55, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Richters, M.M.; Xia, H.; Campbell, K.M.; Gillanders, W.E.; Griffith, O.L.; Griffith, M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.J.W.; Sun, P.D. T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Front. Immunol. 2022, 13, 833017. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, J.; Li, Y.; Wang, K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp. Hematol. Oncol. 2022, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Gurung, H.R.; Heidersbach, A.J.; Darwish, M.; Chan, P.P.F.; Li, J.; Beresini, M.; Zill, O.A.; Wallace, A.; Tong, A.J.; Hascall, D.; et al. Systematic discovery of neoepitope-HLA pairs for neoantigens shared among patients and tumor types. Nat. Biotechnol. 2023, in press. [CrossRef] [PubMed]
- Cattaneo, C.M.; Battaglia, T.; Urbanus, J.; Moravec, Z.; Voogd, R.; de Groot, R.; Hartemink, K.J.; Haanen, J.B.A.G.; Voest, E.E.; Schumacher, T.N.; et al. Identification of patient-specific CD4+ and CD8+ T cell neoantigens through HLA-unbiased genetic screens. Nat. Biotechnol. 2023, 41, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Simoni, Y.; Zhuang, S.; Gabel, A.; Ma, S.; Chee, J.; Islas, L.; Cessna, A.; Creaney, J.; Bradley, R.K.; et al. Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies. Proc. Natl. Acad. Sci. USA 2021, 118, e2025570118. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, E.; Lione, L.; Compagnone, M.; Pinto, E.; Conforti, A.; Ciliberto, G.; Aurisicchio, L.; Palombo, F. Neoantigen cancer vaccine augments anti-CTLA-4 efficacy. NPJ Vaccines 2022, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Brightman, S.E.; Becker, A.; Thota, R.R.; Naradikian, M.S.; Chihab, L.; Zavala, K.S.; Ramamoorthy Premlal, A.L.; Griswold, R.Q.; Dolina, J.S.; Cohen, E.E.W.; et al. Neoantigen-specific stem cell memory-like CD4+ T cells mediate CD8+ T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nat. Immunol. 2023, 24, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, Z.; Wang, D.; Jia, L.; Nie, S.; Zeng, X.; Hu, W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol. Cancer 2023, 22, 141. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J.; Zhang, H.; Ye, J.; Moore, C.; Lu, C.; Fang, Y.; Fu, Y.X.; Li, B. Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity. Nat. Cancer 2022, 3, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Dolina, J.S.; Lee, J.; Brightman, S.E.; McArdle, S.; Hall, S.M.; Thota, R.R.; Zavala, K.S.; Lanka, M.; Ramamoorthy Premlal, A.L.; Greenbaum, J.A.; et al. Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. J. Clin. Investig. 2023, 133, e164258. [Google Scholar] [CrossRef] [PubMed]
- Nasti, T.H.; Eberhardt, C.S. Vaccination against Cancer or Infectious Agents during Checkpoint Inhibitor Therapy. Vaccines 2021, 9, 1396. [Google Scholar] [CrossRef] [PubMed]
- Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019, 38, 255. [Google Scholar] [CrossRef] [PubMed]
- Akturk, H.K.; Couts, K.L.; Baschal, E.E.; Karakus, K.E.; Van Gulick, R.J.; Turner, J.A.; Pyle, L.; Robinson, W.A.; Michels, A.W. Analysis of Human Leukocyte Antigen DR Alleles, Immune-Related Adverse Events, and Survival Associated with Immune Checkpoint Inhibitor Use among Patients with Advanced Malignant Melanoma. JAMA Netw. Open 2022, 5, e2246400. [Google Scholar] [CrossRef] [PubMed]
- Correale, P.; Saladino, R.E.; Giannarelli, D.; Sergi, A.; Mazzei, M.A.; Bianco, G.; Giannicola, R.; Iuliano, E.; Forte, I.M.; Calandruccio, N.D.; et al. HLA Expression Correlates to the Risk of Immune Checkpoint Inhibitor-Induced Pneumonitis. Cells 2020, 9, 1964. [Google Scholar] [CrossRef] [PubMed]
- Puig-Saus, C.; Sennino, B.; Peng, S.; Wang, C.L.; Pan, Z.; Yuen, B.; Purandare, B.; An, D.; Quach, B.B.; Nguyen, D.; et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature 2023, 615, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Niemi, J.V.L.; Sokolov, A.V.; Schiöth, H.B. Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers 2022, 14, 5163. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; et al. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer 2019, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.L.; Basu, S.; Soni, V.; Jaiswal, R.K. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol. Biol. Rep. 2022, 49, 9903–9913. [Google Scholar] [CrossRef] [PubMed]
- Posner, A.; Sivakumaran, T.; Pattison, A.; Etemadmoghadam, D.; Thio, N.; Wood, C.; Fisher, K.; Webb, S.; DeFazio, A.; Wilcken, N.; et al. Immune and genomic biomarkers of immunotherapy response in cancer of unknown primary. J. Immunother. Cancer 2023, 11, e005809. [Google Scholar] [CrossRef] [PubMed]
- Pender, A.; Titmuss, E.; Pleasance, E.D.; Fan, K.Y.; Pearson, H.; Brown, S.D.; Grisdale, C.J.; Topham, J.T.; Shen, Y.; Bonakdar, M.; et al. Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Castrillo, S.; Vogrig, A.; Honnorat, J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto. Immun. Highlights 2020, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.D.; Zheng, H.; Dillon, L.W.; Goldman, J.D.; Hourigan, C.S.; Heath, J.R.; Khatri, P. Prediction of HLA genotypes from single-cell transcriptome data. Front. Immunol. 2023, 14, 1146826. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Suzuki, K.; Hirata, J.; Kamatani, Y.; Matsuda, K.; Toda, T.; Okada, Y. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat. Commun. 2021, 12, 1639. [Google Scholar] [CrossRef] [PubMed]
- Geffard, E.; Limou, S.; Walencik, A.; Daya, M.; Watson, H.; Torgerson, D.; Barnes, K.C.; Cesbron Gautier, A.; Gourraud, P.A.; Vince, N. Easy-HLA: A validated web application suite to reveal the full details of HLA typing. Bioinformatics 2020, 36, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Corona, L.F.; Hernández-Doño, S.; Rodríguez-Reyna, T.S.; García-Silva, R.; Jakez, J.; Escamilla-Tilch, M.; Lima, G.; Llorente, L.; Pineda, C.; Yunis, E.; et al. Aspartic acid70 in the HLA-DRB1 chain and shared epitope alleles partially explain the high prevalence of autoimmunity in Mexicans. J. Transl. Autoimmun. 2020, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.A.; Valdes, A.M. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diab Rep. 2011, 11, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Alfredsson, L. The increased risk of multiple sclerosis associated with HLA-DRB1*15:01 and smoking is modified by alcohol consumption. Sci. Rep. 2021, 11, 21237. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, A.; Kusumawati, P.A.; Kawamura, Y.; Kondo, Y.; Kusaoi, M.; Amano, H.; Kusanagi, Y.; Itoh, K.; Fujimoto, T.; Tamura, N.; et al. Genetic dissection of HLA-DRB1*15:01 and XL9 region variants in Japanese patients with systemic lupus erythematosus: Primary role for HLA-DRB1*15:01. RMD Open 2023, 9, e003214. [Google Scholar] [CrossRef] [PubMed]
- Miglioranza Scavuzzi, B.; van Drongelen, V.; Kaur, B.; Fox, J.C.; Liu, J.; Mesquita-Ferrari, R.A.; Kahlenberg, J.M.; Farkash, E.A.; Benavides, F.; Miller, F.W.; et al. The lupus susceptibility allele DRB1*03:01 encodes a disease-driving epitope. Commun. Biol. 2022, 5, 751. [Google Scholar] [CrossRef] [PubMed]
- Dashti, N.; Mahmoudi, M.; Aslani, S.; Jamshidi, A. HLA-B*27 subtypes and their implications in the pathogenesis of ankylosing spondylitis. Gene 2018, 670, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Karell, K.; Louka, A.S.; Moodie, S.J.; Ascher, H.; Clot, F.; Greco, L.; Ciclitira, P.J.; Sollid, L.M.; Partanen, J.; European Genetics Cluster on Celiac Disease. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: Results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 2003, 64, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [PubMed]
- Goyette, P.; Boucher, G.; Mallon, D.; Ellinghaus, E.; Jostins, L.; Huang, H.; Ripke, S.; Gusareva, E.S.; Annese, V.; Hauser, S.L.; et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 2015, 47, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, B.M. Role of HLA typing on Crohn’s disease pathogenesis. Ann. Med. Surg. 2015, 4, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, F.; Mayr, G.; Wendorff, M.; Boucher, G.; Ellinghaus, E.; Ellinghaus, D.; ElAbd, H.; Rosati, E.; Hübenthal, M.; Juzenas, S.; et al. Transethnic analysis of the human leukocyte antigen region for ulcerative colitis reveals not only shared but also ethnicity-specific disease associations. Hum. Mol. Genet. 2021, 30, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Asquith, M.; Sternes, P.R.; Costello, M.E.; Karstens, L.; Diamond, S.; Martin, T.M.; Li, Z.; Marshall, M.S.; Spector, T.D.; le Cao, K.A.; et al. HLA Alleles Associated with Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome. Arthritis Rheumatol. 2019, 71, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Nagafuchi, Y.; Ota, M.; Tsuchiya, H.; Tateishi, S.; Kanda, H.; Fujio, K. Carriers of HLA-DRB1*04:05 have a better clinical response to abatacept in rheumatoid arthritis. Sci. Rep. 2023, 13, 15250. [Google Scholar] [CrossRef] [PubMed]
- Al Naqbi, H.; Mawart, A.; Alshamsi, J.; Al Safar, H.; Tay, G.K. Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics 2021, 73, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Tay, G.K.; Al Naqbi, H.; Mawart, A.; Baalfaqih, Z.; Almaazmi, A.; Deeb, A.; Alsafar, H. Segregation Analysis of Genotyped and Family-Phased, Long Range MHC Classical Class I and Class II Haplotypes in 5 Families With Type 1 Diabetes Proband in the United Arab Emirates. Front. Genet. 2021, 12, 670844. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Khalid, K.E.; Mohammed, S.E.; Akhtar, M.S.; Saeed, O.K. Association of Human Leukocyte Antigen (HLA) class II (DRB1 and DQB1) alleles and haplotypes with Rheumatoid Arthritis in Sudanese patients. Front. Immunol. 2023, 14, 1178546. [Google Scholar] [CrossRef] [PubMed]
- van Gerven, N.M.; de Boer, Y.S.; Zwiers, A.; Verwer, B.J.; Drenth, J.P.; van Hoek, B.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; den Ouden, J.W.; et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015, 16, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.R.W.; Drenkard, C.; Falasinnu, T.; Hoi, A.; Mak, A.; Kow, N.Y.; Svenungsson, E.; Peterson, J.; Clarke, A.E.; Ramsey-Goldman, R. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2021, 17, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Kigo, S.N.; Omondi, E.O.; Omolo, B.O. Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Sci. Rep. 2023, 13, 17315. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D.; Papadopoulos, T. Examining the impact of deep learning technology capability on manufacturing firms: Moderating roles of technology turbulence and top management support. Ann. Oper. Res. 2022, 30, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, T.; Bileschi, M.L.; Belanger, D.; Colwell, L.J. ProteInfer, deep neural networks for protein functional inference. Elife. 2023, 12, e80942. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jiang, G.; Yu, T.; Liu, Y.; Vo, L.; Ding, H.; Su, Y.; Qian, W.W.; Zhao, H.; Peng, J. ECNet is an evolutionary context-integrated deep learning framework for protein engineering. Nat. Commun. 2021, 12, 5743. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.W.; Huh, J.; Park, J.W. Deep learning program to predict protein functions based on sequence information. MethodsX 2022, 9, 101622. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, L.; Wei, F.; Li, J. DeepNetBim: Deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information. BMC Bioinform. 2021, 22, 231. [Google Scholar] [CrossRef] [PubMed]
- Debebe, B.J.; Boelen, L.; Lee, J.C.; IAVI Protocol C Investigators; Thio, C.L.; Astemborski, J.; Kirk, G.; Khakoo, S.I.; Donfield, S.M.; Goedert, J.J.; et al. Identifying the immune interactions underlying HLA class I disease associations. Elife 2020, 9, e54558. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Chen, L.; Xiao, Y.; Zhao, Z.; Su, X. Investigations of sequencing data and sample type on HLA class Ia typing with different computational tools. Brief. Bioinform. 2021, 22, bbaa143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Mimori, T.; Khor, S.S.; Gervais, O.; Kawai, Y.; Hitomi, Y.; Tokunaga, K.; Nagasaki, M. HLA-VBSeq v2: Improved HLA calling accuracy with full-length Japanese class-I panel. Hum. Genome Var. 2019, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zheng, C.; Ji, H.; Huang, R.; Wei, D.; Annis, S.; Drummond, F. A deep multi-task learning approach to identifying mummy berry infection sites, the disease stage, and severity. Front. Plant Sci. 2024, 15, 1340884. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, D.; Herold, A.; Perkonigg, M.; Beer, L.; Bastati, N.; Sablatnig, A.; Ba-Ssalamah, A.; Langs, G. Improving Vessel Segmentation with Multi-Task Learning and Auxiliary Data Available Only during Model Training. Comput. Med. Imaging Graph. 2024, 114, 102369. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Petoukhov, I.; van den Ende, I.; Meyer, K.B.; Guryev, V.; Vonk, J.M.; Carpaij, O.; Banchero, M.; Hendriks, R.W.; van den Berge, M.; et al. FastCAR: Fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets. BMC Genom. 2023, 24, 722. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.J.; Mentzer, A.; Knight, J.C. Host genetics and infectious disease: New tools, insights and translational opportunities. Nat. Rev. Genet. 2021, 22, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Fu, C.; Zhao, S.; Li, K.; Sun, X.; Xu, T.; Chen, E. A Survey on Multimodal Large Language Models. arXiv 2023, arXiv:2306.13549. [Google Scholar] [CrossRef]
- Qureshi, M.N.I.; Oh, J.; Cho, D.; Jo, H.J.; Lee, B. Multimodal Discrimination of Schizophrenia Using Hybrid Weighted Feature Concatenation of Brain Functional Connectivity and Anatomical Features with an Extreme Learning Machine. Front. Neuroinform. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, E.; Jung, K.; Fries, J.A.; Corbin, C.K.; Pfohl, S.R.; Shah, N.H. Language models are an effective representation learning technique for electronic health record data. J. Biomed. Inform. 2021, 113, 103637. [Google Scholar] [CrossRef] [PubMed]
- Ofer, D.; Brandes, N.; Linial, M. The language of proteins: NLP, machine learning & protein sequences. Comput. Struct. Biotechnol. J. 2021, 19, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Ferruz, N.; Schmidt, S.; Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 2022, 13, 4348. [Google Scholar] [CrossRef] [PubMed]
- Valentini, G.; Malchiodi, D.; Gliozzo, J.; Mesiti, M.; Soto-Gomez, M.; Cabri, A.; Reese, J.; Casiraghi, E.; Robinson, P.N. The promises of large language models for protein design and modeling. Front. Bioinform. 2023, 3, 1304099. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.; Karmakar, S.; Saha, S. Graph-BERT and language model-based framework for protein-protein interaction identification. Sci. Rep. 2023, 13, 5663. [Google Scholar] [CrossRef] [PubMed]
- Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and function. Bioinformatics 2022, 38, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, M.; Wang, Y.; Zou, Q. Editorial: Machine learning for biological sequence analysis. Front. Genet. 2023, 14, 1150688. [Google Scholar] [CrossRef] [PubMed]
- Detlefsen, N.S.; Hauberg, S.; Boomsma, W. Learning meaningful representations of protein sequences. Nat. Commun. 2022, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Zhou, D.; Nie, R.; Guo, Y. Predictions of Apoptosis Proteins by Integrating Different Features Based on Improving Pseudo-Position-Specific Scoring Matrix. Biomed. Res. Int. 2020, 2020, 4071508. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Nie, R.; You, Z.; Cao, C.; Li, J. Using discriminative vector machine model with 2DPCA to predict interactions among proteins. BMC Bioinform. 2019, 20, 694. [Google Scholar] [CrossRef] [PubMed]
- Sgarbossa, D.; Lupo, U.; Bitbol, A.F. Generative power of a protein language model trained on multiple sequence alignments. Elife. 2023, 12, e79854. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Krause, B.; Greene, E.R.; Subramanian, S.; Mohr, B.P.; Holton, J.M.; Olmos, J.L., Jr.; Xiong, C.; Sun, Z.Z.; Socher, R.; et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 2023, 41, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wu, L.; Radev, D.; Xu, J.; Li, S.Z. Integration of pre-trained protein language models into geometric deep learning networks. Commun. Biol. 2023, 6, 876. [Google Scholar] [CrossRef] [PubMed]
- McWhite, C.D.; Armour-Garb, I.; Singh, M. Leveraging protein language models for accurate multiple sequence alignments. Genome Res. 2023, 33, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Goo, S.; Lee, H.; Chae, J.W.; Yun, H.Y.; Jung, S. Fine-tuning of BERT Model to Accurately Predict Drug-Target Interactions. Pharmaceutics 2022, 14, 1710. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, Y. ProtPlat: An efficient pre-training platform for protein classification based on FastText. BMC Bioinform. 2022, 23, 66. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.R.; Mahbub, S.; Rahman, M.S.; Bayzid, M.S. SAINT: Self-attention augmented inception-inside-inception network improves protein secondary structure prediction. Bioinformatics 2020, 36, 4599–4608. [Google Scholar] [CrossRef] [PubMed]
- Wiemers, E.A.; Redick, T.S. The influence of thought probes on performance: Does the mind wander more if you ask it? Psychon. Bull. Rev. 2019, 26, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Robison, M.K.; Miller, A.L.; Unsworth, L. Examining the effects of probe frequency, response options, and framing within the thought-probe method. Behav. Res. Methods. 2019, 51, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhang, T.; Wu, C.; Liang, Y.; Shi, X. Refined Contact Map Prediction of Peptides Based on GCN and ResNet. Front. Genet. 2022, 1, 859626. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, T.; Guo, Z.; Cheng, J. Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction. Proteins 2021, 89, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Zhou, J.; Wang, F.; Liu, X.; Dou, D. Structure-aware protein self-supervised learning. Bioinformatics 2023, 39, btad189. [Google Scholar] [CrossRef] [PubMed]
- Konc, J.; Janežič, D. Protein binding sites for drug design. Biophys. Rev. 2022, 14, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hou, J.; Shi, X.; Yang, H.; Birchler, J.A.; Cheng, J. DeepGRN: Prediction of transcription factor binding site across cell-types using attention-based deep neural networks. BMC Bioinform. 2021, 22, 38. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanic, A.; Bowman, G.R.; Juarez-Jimenez, J.; Michel, J.; Gervasio, F.L. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Acc. Chem. Res. 2020, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Guterres, H.; Lee, H.S.; Im, W. Ligand-Binding-Site Structure Refinement Using Molecular Dynamics with Restraints Derived from Predicted Binding Site Templates. J. Chem. Theory Comput. 2019, 15, 6524–6535. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Zahiri, J. Posttranslational modifications in proteins: Resources, tools and prediction methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef] [PubMed]
- Pascovici, D.; Wu, J.X.; McKay, M.J.; Joseph, C.; Noor, Z.; Kamath, K.; Wu, Y.; Ranganathan, S.; Gupta, V.; Mirzaei, M. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. Int. J. Mol. Sci. 2018, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, D.; Xin, R.; Soriano, R.A.; Ng, D.C.M.; Wang, W.; Ping, P. Protocol for the prediction, interpretation, and mutation evaluation of post-translational modification using MIND-S. STAR Protoc. 2023, 4, 102682. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Wang, Z.; Luo, F.; Shuai, J.; Huang, Y. Protein Secondary Structure Prediction With a Reductive Deep Learning Method. Front. Bioeng. Biotechnol. 2021, 9, 687426. [Google Scholar] [CrossRef] [PubMed]
- Braghetto, A.; Orlandini, E.; Baiesi, M. Interpretable Machine Learning of Amino Acid Patterns in Proteins: A Statistical Ensemble Approach. J. Chem. Theory Comput. 2023, 19, 6011–6022. [Google Scholar] [CrossRef] [PubMed]
- ElAbd, H.; Bromberg, Y.; Hoarfrost, A.; Lenz, T.; Franke, A.; Wendorff, M. Amino acid encoding for deep learning applications. BMC Bioinform. 2020, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Tünnermann, L.; Löfstedt, T.; Gratz, R. Transformer-based deep learning for predicting protein properties in the life sciences. Elife 2023, 12, e82819. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.; Lobos, C.A.; Nguyen, A.T.; Gras, S. TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int. J. Mol. Sci. 2020, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef] [PubMed]
- Rouet, R.; Henry, J.Y.; Johansen, M.D.; Sobti, M.; Balachandran, H.; Langley, D.B.; Walker, G.J.; Lenthall, H.; Jackson, J.; Ubiparipovic, S.; et al. Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients. Nat. Commun. 2023, 14, 687. [Google Scholar] [CrossRef] [PubMed]
- Røgen, P. Quantifying steric hindrance and topological obstruction to protein structure superposition. Algorithms Mol. Biol. 2021, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, F.; Corbeil, C.R.; Sulea, T. Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2. Sci. Rep. 2023, 13, 15107. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.H.; Jain, A.; Haq, E.; Mehbodniya, A.; Webber, J. Machine Learning Techniques for the Prediction of B-Cell and T-Cell Epitopes as Potential Vaccine Targets with a Specific Focus on SARS-CoV-2 Pathogen: A Review. Pathogens 2022, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shi, K.; Li, W. Deep learning methods improve linear B-cell epitope prediction. BioData Min. 2020, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, W.; Wang, B.; Liu, H.; Zhou, D. DeepACLSTM: Deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction. BMC Bioinform. 2019, 20, 341. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.C.; You, Z.H.; Zhou, X.; Cheng, L.; Li, X.; Jiang, T.H.; Chen, Z.H. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation. Mol. Ther. Nucleic Acids 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; He, C.; Xiao, C.; Liu, Y.; Qin, X.; Yu, Z. Long-distance dependency combined multi-hop graph neural networks for protein-protein interactions prediction. BMC Bioinform. 2022, 23, 521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y. OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction. PLoS ONE 2021, 16, e0245982. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.R.; Zhang, M.M.; Gross, M.L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2020, 120, 4355–4454. [Google Scholar] [CrossRef] [PubMed]
- Murgas, K.A.; Saucan, E.; Sandhu, R. Hypergraph geometry reflects higher-order dynamics in protein interaction networks. Sci. Rep. 2022, 12, 20879. [Google Scholar] [CrossRef] [PubMed]
- Al Mughram, M.H.; Herrington, N.B.; Catalano, C.; Kellogg, G.E. Systematized analysis of secondary structure dependence of key structural features of residues in soluble and membrane-bound proteins. J. Struct. Biol. X 2021, 5, 100055. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Liu, Y.; Yao, Y.; Huang, G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals 2022, 15, 707. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Mi, X.; Shukla, D. Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction. arXiv 2023, arXiv:2310.18249. [Google Scholar] [CrossRef] [PubMed]
- Boehm, K.M.; Bhinder, B.; Raja, V.J.; Dephoure, N.; Elemento, O. Predicting peptide presentation by major histocompatibility complex class I: An improved machine learning approach to the immunopeptidome. BMC Bioinform. 2019, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gao, R.; Zhang, Y.; De Marinis, Y. PTPD: Predicting therapeutic peptides by deep learning and word2vec. BMC Bioinform. 2019, 20, 456. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.C.; Huang, H.Y.; Cerezo, M.; Sharma, K.; Sornborger, A.; Cincio, L.; Coles, P.J. Generalization in quantum machine learning from few training data. Nat. Commun. 2022, 13, 4919. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big Bird: Transformers for Longer Sequences. arXiv 2021, arXiv:2007.14062. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, F.; Meng, Z.; Lan, T.; Shu, L.; Shareghi, E.; Collier, N. TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning. arXiv 2022, arXiv:2111.04198. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Tikhonova, I.G.; Gigoux, V.; Fourmy, D. Understanding Peptide Binding in Class A G Protein-Coupled Receptors. Mol. Pharmacol. 2019, 96, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Bashore, C.; Prakash, S.; Johnson, M.C.; Conrad, R.J.; Kekessie, I.A.; Scales, S.J.; Ishisoko, N.; Kleinheinz, T.; Liu, P.S.; Popovych, N.; et al. Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol. 2023, 19, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Huang, J.; Wang, G.; Wang, Z.; Zhang, C.; Han, J. Unsupervised Word Embedding Learning by Incorporating Local and Global Contexts. Front. Big Data 2020, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, M.C.; Mahajan, S.; Peters, B.; Nielsen, M.; Marcatili, P. Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes. Front. Immunol. 2019, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wei, Z.; Yuan, Q.; Chen, S.; Yu, W.; Lu, Y.; Gao, J.; Yang, Y. Identifying B-cell epitopes using AlphaFold2 predicted structures and pretrained language model. Bioinformatics 2023, 39, btad187. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Waury, K.; Gogishvili, D.; Feenstra, K.A. Ten quick tips for sequence-based prediction of protein properties using machine learning. PLoS Comput. Biol. 2022, 18, e1010669. [Google Scholar] [CrossRef] [PubMed]
- Ras-Carmona, A.; Lehmann, A.A.; Lehmann, P.V.; Reche, P.A. Prediction of B cell epitopes in proteins using a novel sequence similarity-based method. Sci. Rep. 2022, 12, 13739. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, Y.; Ma, Q.; Nan, X.; Zhang, S. Structure-Based B-cell Epitope Prediction Model Through Combing Local and Global Features. Front. Immunol. 2022, 13, 890943. [Google Scholar] [CrossRef] [PubMed]
- Noumi, T.; Inoue, S.; Fujita, H.; Sadamitsu, K.; Sakaguchi, M.; Tenma, A.; Nakagami, H. Epitope Prediction of Antigen Protein using Attention-Based LSTM Network. J. Inf. Process. 2020, 29, 321–327. [Google Scholar] [CrossRef]
- Syrlybaeva, R.; Strauch, E.M. Deep learning of protein sequence design of protein-protein interactions. Bioinformatics 2023, 39, btac733. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Manna, S.; Pathak, B. Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit. ACS Appl. Mater. Interfaces 2022, 14, 51645–51655. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-H.; Lin, P.-C.; Chou, H.-H.; Shen, M.-R.; Hsieh, S.-Y. Pathogenicity Prediction of Single Amino Acid Variants With Machine Learning Model Based on Protein Structural Energies. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 606–615. [Google Scholar] [CrossRef]
- Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci. Rep. 2021, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jin, J.; Cui, Y.; Xiong, Z.; Nariri, A.; Zhao, Y.; Hu, J. DeepSeqPanII: An Interpretable Recurrent Neural Network Model with Attention Mechanism for Peptide-HLA Class II Binding Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 2188–2196. [Google Scholar] [CrossRef]
- Elbasani, E.; Njimbouom, S.N.; Oh, T.J.; Kim, E.H.; Lee, H.; Kim, J.D. GCRNN: Graph convolutional recurrent neural network for compound-protein interaction prediction. BMC Bioinform. 2022, 22, 616. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Feng, S.H.; Xia, Y.; Pan, X.; Shen, H.B. Fast protein structure comparison through effective representation learning with contrastive graph neural networks. PLoS Comput. Biol. 2022, 18, e1009986. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.; Saha, S.; Singh, H. Prediction of protein-protein interaction using graph neural networks. Sci. Rep. 2022, 12, 8360. [Google Scholar] [CrossRef] [PubMed]
- Réau, M.; Renaud, N.; Xue, L.C.; Bonvin, A.M.J.J. DeepRank-GNN: A graph neural network framework to learn patterns in protein-protein interfaces. Bioinformatics 2023, 39, btac759. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, K.; Abram, F.; Howley, E. Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding. J. Proteome Res. 2023, 22, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Li, C.; Bi, Y.; Wang, Z.; Gasser, R.B.; Purcell, A.W.; Akutsu, T.; Webb, G.I.; Imoto, S.; Song, J. PFresGO: An attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships. Bioinformatics 2023, 39, btad094. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, N.; Thomas, N.; Rao, R.; Dauparas, J.; Koo, P.K.; Baker, D.; Song, Y.S.; Ovchinnikov, S. Interpreting Potts and Transformer Protein Models through the Lens of Simplified Attention. Pac. Symp. Biocomput. 2022, 27, 34–45. [Google Scholar] [PubMed]
- Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. NPJ Comput. Mater. 2023, 9, 4. [Google Scholar] [CrossRef]
- Nielsen, M.; Andreatta, M.; Peters, B.; Buus, S. Immunoinformatics: Predicting Peptide-MHC Binding. Annu. Rev. Biomed. Data Sci. 2020, 3, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023, 28, 5169. [Google Scholar] [CrossRef] [PubMed]
- Myronov, A.; Mazzocco, G.; Król, P.; Plewczynski, D. BERTrand-peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing. Bioinformatics 2023, 39, btad468. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Bendjama, K.; Rittner, K.; Malone, B. BERTMHC: Improved MHC-peptide class II interaction prediction with transformer and multiple instance learning. Bioinformatics 2021, 37, 4172–4179. [Google Scholar] [CrossRef] [PubMed]
- Guntuboina, C.; Das, A.; Mollaei, P.; Kim, S.; Barati Farimani, A. PeptideBERT: A Language Model Based on Transformers for Peptide Property Prediction. J. Phys. Chem. Lett. 2023, 14, 10427–10434. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jin, J.; Zou, Q.; NAkai, K.; Wei, L. Predicting protein-peptide binding residues via interpretable deep learning. Bioinformatics 2022, 38, 3351–3360. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, Z.; Liu, H.; Davuluri, R.V. DNABERT: Pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome. Bioinformatics 2021, 37, 2112–2120. [Google Scholar] [CrossRef]
- Sanchez, C.; Zhang, Z. The Effects of In-domain Corpus Size on pre-training BERT. arXiv 2022, arXiv:2212.07914. [Google Scholar] [CrossRef]
- Tejani, A.S.; Ng, Y.S.; Xi, Y.; Fielding, J.R.; Browning, T.G.; Rayan, J.C. Performance of Multiple Pretrained BERT Models to Automate and Accelerate Data Annotation for Large Datasets. Radiol. Artif. Intell. 2022, 4, e220007. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Pang, R.Y.; Zhou, T.; Wu, Y.; Song, X.; Song, X.; Zhou, D. Token Dropping for Efficient BERT Pretraining. arXiv 2022, arXiv:2203.13240. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, J.; Wang, X.; Zhang, Y.; Zheng, B.; Liu, S.; Zhang, Y.; Liu, C.; Wan, Y.; Xiang, D.; et al. IUP-BERT: Identification of Umami Peptides Based on BERT Features. Foods 2022, 11, 3742. [Google Scholar] [CrossRef] [PubMed]
- Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021, 37, 2556–2562. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ding, H.; Tang, M.; Gandhi, P.; Zhang, Z.; He, Z. Attention Mechanism with BERT for Content Annotation and Categorization of Pregnancy-Related Questions on a Community Q&A Site. Proc. IEEE Int. Conf. Bioinform. Biomed. 2020, 2020, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wu, X.; Wu, X.; Wang, K. Sentiment analysis algorithm using contrastive learning and adversarial training for POI recommendation. Soc. Netw. Anal. Min. 2023, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Liu, C.; Zhang, M.; Fu, J.; Wang, B.; Cheng, S.; Ma, L.; Quilodrán-Casas, C.; Arcucci, R. Med-UniC: Unifying Cross-Lingual Medical Vision-Language Pre-Training by Diminishing Bias. arXiv 2024, arXiv:2305.19894. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Cheng, S.; Arcucci, R.; Hong, S. Frozen Language Model Helps ECG Zero-Shot Learning. arXiv 2023, arXiv:2303.12311. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, T.M.; Deng, C.M.; Zhang, W.L.; He, Y.Q.; Xue, W.Q.; Liao, Y.; Yang, D.W.; Zheng, M.Q.; Jia, W.H. Association of HLA diversity with the risk of 25 cancers in the UK Biobank. EBioMedicine 2023, 92, 104588. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, S.; Hosomichi, K.; Hirata, J.; Nakaoka, H.; Yamazaki, K.; Yawata, M.; Yawata, N.; Naito, T.; Umeno, J.; Kawaguchi, T.; et al. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. Cell Genom. 2022, 2, 100101. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.K.; et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Roelofsen, L.M.; Kaptein, P.; Thommen, D.S. Multimodal predictors for precision immunotherapy. Immunooncol Technol. 2022, 14, 100071. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Yashiro, R. Understanding and Therapeutic Application of Immune Response in Major Histocompatibility Complex (MHC) Diversity Using Multimodal Artificial Intelligence. BioMedInformatics 2024, 4, 1835-1864. https://doi.org/10.3390/biomedinformatics4030101
Matsuzaka Y, Yashiro R. Understanding and Therapeutic Application of Immune Response in Major Histocompatibility Complex (MHC) Diversity Using Multimodal Artificial Intelligence. BioMedInformatics. 2024; 4(3):1835-1864. https://doi.org/10.3390/biomedinformatics4030101
Chicago/Turabian StyleMatsuzaka, Yasunari, and Ryu Yashiro. 2024. "Understanding and Therapeutic Application of Immune Response in Major Histocompatibility Complex (MHC) Diversity Using Multimodal Artificial Intelligence" BioMedInformatics 4, no. 3: 1835-1864. https://doi.org/10.3390/biomedinformatics4030101
APA StyleMatsuzaka, Y., & Yashiro, R. (2024). Understanding and Therapeutic Application of Immune Response in Major Histocompatibility Complex (MHC) Diversity Using Multimodal Artificial Intelligence. BioMedInformatics, 4(3), 1835-1864. https://doi.org/10.3390/biomedinformatics4030101