Previous Issue
Volume 4, June
 
 

BioMedInformatics, Volume 4, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4357 KiB  
Article
Harnessing Immunoinformatics for Precision Vaccines: Designing Epitope-Based Subunit Vaccines against Hepatitis E Virus
by Elijah Kolawole Oladipo, Emmanuel Oluwatobi Dairo, Comfort Olukemi Bamigboye, Ayodeji Folorunsho Ajayi, Olugbenga Samson Onile, Olumuyiwa Elijah Ariyo, Esther Moradeyo Jimah, Olubukola Monisola Oyawoye, Julius Kola Oloke, Bamidele Abiodun Iwalokun, Olumide Faith Ajani and Helen Onyeaka
BioMedInformatics 2024, 4(3), 1620-1637; https://doi.org/10.3390/biomedinformatics4030088 (registering DOI) - 26 Jun 2024
Viewed by 85
Abstract
Background/Objectives: Hepatitis E virus (HEV) is an RNA virus recognized to be spread mainly by fecal-contaminated water. Its infection is known to be a serious threat to public health globally, mostly in developing countries, in which Africa is one of the regions sternly [...] Read more.
Background/Objectives: Hepatitis E virus (HEV) is an RNA virus recognized to be spread mainly by fecal-contaminated water. Its infection is known to be a serious threat to public health globally, mostly in developing countries, in which Africa is one of the regions sternly affected. An African-based vaccine is necessary to actively prevent HEV infection. Methods: This study developed an in silico epitope-based subunit vaccine, incorporating CTL, HTL, and BL epitopes with suitable linkers and adjuvants. Results: The in silico-designed vaccine construct proved immunogenic, non-allergenic, and non-toxic and displayed appropriate physicochemical properties with high solubility. The 3D structure was modeled and subjected to protein docking with Toll-like receptors 2, 3, 4, 6, 8, and 9, which showed a stable binding efficacy, and the dynamics simulation indicated steady interaction. Furthermore, the immune simulation predicted that the designed vaccine would instigate immune responses when administered to humans. Lastly, using a codon adaptation for the E. coli K12 bacterium produced optimum GC content and a high CAI value, which was followed by in silico integration into a pET28 b (+) cloning vector. Conclusions: Generally, these results propose that the design of an epitope-based subunit vaccine can function as an outstanding preventive vaccine candidate against HEV, although validation techniques via in vitro and in vivo approaches are required to justify this statement. Full article
Show Figures

Figure 1

31 pages, 1405 KiB  
Article
AR Platform for Indoor Navigation: New Potential Approach Extensible to Older People with Cognitive Impairment
by Luigi Bibbò, Alessia Bramanti, Jatin Sharma and Francesco Cotroneo
BioMedInformatics 2024, 4(3), 1589-1619; https://doi.org/10.3390/biomedinformatics4030087 - 24 Jun 2024
Viewed by 328
Abstract
Abstract: Background: Cognitive loss is one of the biggest health problems for older people. The incidence of dementia increases with age, so Alzheimer’s disease (AD), the most prevalent type of dementia, is expected to increase. Patients with dementia find it difficult [...] Read more.
Abstract: Background: Cognitive loss is one of the biggest health problems for older people. The incidence of dementia increases with age, so Alzheimer’s disease (AD), the most prevalent type of dementia, is expected to increase. Patients with dementia find it difficult to cope with their daily activities and resort to family members or caregivers. However, aging generally leads to a loss of orientation and navigation skills. This phenomenon creates great inconvenience for autonomous walking, especially in individuals with Mild Cognitive Impairment (MCI) or those suffering from Alzheimer’s disease. The loss of orientation and navigation skills is most felt when old people move from their usual environments to nursing homes or residential facilities. This necessarily involves a person’s constant presence to prevent the patient from moving without a defined destination or incurring dangerous situations. Methods: A navigation system is a support to allow older patients to move without resorting to their caregivers. This application meets the need for helping older people to move without incurring dangers. The aim of the study was to verify the possibility of applying the technology normally used for video games for the development of an indoor navigation system. There is no evidence of this in the literature. Results: We have developed an easy-to-use solution that can be extended to patients with MCI, easing the workload of caregivers and improving patient safety. The method applied was the use of the Unity Vuforia platform, with which an augmented reality APK application was produced on a smartphone. Conclusion: The model differs from traditional techniques because it does not use arrows or labels to identify the desired destination. The solution was tested in the laboratory with staff members. No animal species have been used. The destinations were successfully reached, with an error of 2%. A test was conducted against some evaluation parameters on the use of the model. The values are all close to the maximum expected value. Future developments include testing the application with a predefined protocol in a real-world environment with MCI patients. Full article
Previous Issue
Back to TopTop