Ensemble of HMMs for Sequence Prediction on Multivariate Biomedical Data
Abstract
:1. Introduction
1.1. Use Case
1.2. Related Work
2. Background
2.1. Markov Chains
2.2. From Markov Chain Model to Hidden Markov Model
- row-stochastic state transition matrix , where the element denotes the state transition probability from state to state .An alternative notation for denoting the state transition from to is given by .
- row-stochastic state emission matrix where the element denotes the probability of observing emission signal at time step t under the hidden state .An alternative notation for denoting the observation of signal from the hidden state is given by .
- initial state distribution vector π, where .An alternative notation for denoting the initial state probability for hidden state is given by .
2.3. Three Basic Problems for HMMs
- Problem 1: Given an observation sequence , as well as a fully parameterized model , how do we calculate the probability in an efficient manner?
- Problem 2: Given an observation sequence as well as a fully parameterized model , how do we find the state sequence best explaining the seen observation?
- Problem 3: Given a model , how do we train the model, changing its parameters to maximize ?
2.3.1. Solution to Problem 1
- Initialization:
- Induction:
- Termination:
2.3.2. Solution to Problem 2
- Initialization:
- Induction:
- Initialization:
- Recursion:
- Termination:
- Backtracking: ,
2.3.3. Solution to Problem 3
2.4. Machine Learning Metrics
3. Method
3.1. Notation
3.2. Model Overview
3.3. Pipeline Description
3.3.1. User Input
3.3.2. Pre-Processing
3.3.3. Feature Extraction
3.3.4. Model Validation and Query
- Posteriors for each hidden state for observationGiven a Query , compute the posterior distribution for each hidden state of for every time step t given the trails . The result will be a weighted sum (according to the weights defined in ) of the individually computed posteriors.
- Distribution over hidden states followingGiven a Query , predict the distribution over the hidden states of for possibly many time steps following the observation. This yields an approximation to a stationary distribution of the state transition matrix for . The kind of stationary distribution is dependent on the initial state distribution given by the observation sequence .
- Optimal state sequenceGiven a Query , compute the optimal state sequence of “best explaining” the trails using the Viterbi Algorithm.
3.3.5. Controller
3.3.6. Hyperparameter Optimization
3.4. Data
3.4.1. Data Generation
- , a marker whose state indicates the subject’s ability to solve tasks using their hands.
- , a marker whose state indicates the subject’s state of mobility, e.g., still being able to walk freely without the need of walking aids or the need to use a wheelchair.
- , a marker whose state indicates the subject’s ability to solve mental tasks.
- , a marker whose state indicates the diagnosis given by an expert for a subject at a certain time step.
3.4.2. Background and Description of the Biomedical Dataset
4. Results
4.1. Evaluation 1: Random Data
4.2. Evaluation 2: Biomedical Data
4.2.1. First Experiment
4.2.2. Second Experiment
5. Discussion
5.1. Strengths, Weaknesses and Improvements
5.2. Model Capabilities and Usecases
- Posteriors for states of a hidden marker: The prediction tool is able to predict and plot posteriors for the states of a hidden marker . For a given observation sequence, the model predicts for every state i and every time step t of the observation sequence. This enables the user to produce a simple visualization of how likely the model thinks a certain hidden state for the given time step of the observation. A domain expert can see at a glance in which direction the states of evolve.
- Approximation of the stationary distribution: Additionally, the model can give a rough estimate of the “future” posteriors of the states of beyond the given observation sequence. In other words, it can give an estimate about how the distribution over the probability for the states of will evolve over future time steps. It should be added that this estimate is a visualization of the approximation of the stationary distribution of the state transition matrix of the underlying Hidden Markov Model.
- Optimal state sequence prediction: The most valuable prediction capability might be the prediction of optimal state sequences given an observation sequence. This allows for “double-checking” already-found observation sequences, and might be used for data augmentation in the case of missing data or that a malfunctioning sensor gives back erroneous measurements. Predicting an optimal sequence of states for a hidden marker “diagnosis” might be of help to a medical professional, who wants to verify their given diagnosis.
- Extraction of model parameters: Finally, a user can extract the model parameters themselves, as they can give us critical information about the general transition probabilities of a model. A domain expert might ask about a rough estimate of the probability for state transitions, which they could immediately obtain by extracting the state transition probability matrix from the model.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Wang, F.; Zhang, P.; Hu, J. Risk prediction with electronic health records: A deepearning approach. In Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; SIAM: Philadelphia, PA, USA, 2016; pp. 432–440. [Google Scholar]
- Ferreira, M.I.A.; Barbieri, F.A.; Moreno, V.C.; Penedo, T.; Tavares, J.M.R. Machineearning models for Parkinson’s disease detection and stage classification based on spatial-temporal gait parameters. Gait Posture 2022, 98, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Nash, C.; Nair, R.; Naqvi, S.M. Machineearning and ADHD mental health detection—A short survey. In Proceedings of the 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar]
- Placido, D.; Yuan, B.; Hjaltelin, J.X.; Zheng, C.; Haue, A.D.; Chmura, P.J.; Yuan, C.; Kim, J.; Umeton, R.; Antell, G.; et al. A deepearning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat. Med. 2023, 29, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Mall, S.; Srivastava, A.; Mazumdar, B.D.; Mishra, M.; Bangare, S.L.; Deepak, A. Implementation of machineearning techniques for disease diagnosis. Mater. Today Proc. 2022, 51, 2198–2201. [Google Scholar] [CrossRef]
- Liu, S.; Masurkar, A.V.; Rusinek, H.; Chen, J.; Zhang, B.; Zhu, W.; Fernandez-Granda, C.; Razavian, N. Generalizable deepearning model for early Alzheimer’s disease detection from structural MRIs. Sci. Rep. 2022, 12, 17106. [Google Scholar] [CrossRef] [PubMed]
- Adler, D.A.; Wang, F.; Mohr, D.C.; Choudhury, T. Machineearning for passive mental health symptom prediction: Generalization across differentongitudinal mobile sensing studies. PLoS ONE 2022, 17, e0266516. [Google Scholar] [CrossRef] [PubMed]
- Barough, S.S.; Safavi-Naini, S.A.A.; Siavoshi, F.; Tamimi, A.; Ilkhani, S.; Akbari, S.; Ezzati, S.; Hatamabadi, H.; Pourhoseingholi, M.A. Generalizable machineearning approach for COVID-19 mortality risk prediction using on-admission clinical andaboratory features. Sci. Rep. 2023, 13, 2399. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.; Schaprian, T.; Berkan, K.; Reetz, K.; França, M.C., Jr.; de Rezende, T.J.R.; Hong, J.; Liao, W.; van de Warrenburg, B.; van Gaalen, J.; et al. Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. Mov. Disord. 2021, 36, 2273–2281. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.; Haas, E.; Reetz, K.; Faber, J.; Garcia-Moreno, H.; Santana, M.M.; van de Warrenburg, B.; Hengel, H.; Lima, M.; Filla, A.; et al. Neurofilaments in spinocerebellar ataxia type 3: Blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Mol. Med. 2020, 12, e11803. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, H.; Prudencio, M.; Thomas-Black, G.; Solanky, N.; Jansen-West, K.R.; Hanna Al-Shaikh, R.; Heslegrave, A.; Zetterberg, H.; Santana, M.M.; Pereira de Almeida, L.; et al. Tau and neurofilamentight-chain as fluid biomarkers in spinocerebellar ataxia type 3. Eur. J. Neurol. 2022, 29, 2439–2452. [Google Scholar] [CrossRef]
- Hubener-Schmid, J.; Kuhlbrodt, K.; Peladan, J.; Faber, J.; Santana, M.M.; Hengel, H.; Jacobi, H.; Reetz, K.; Garcia-Moreno, H.; Raposo, M.; et al. Polyglutamine-Expanded Ataxin-3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood. Mov. Disord. 2021, 36, 2675–2681. [Google Scholar] [CrossRef]
- Ashizawa, T.; Öz, G.; Paulson, H.L. Spinocerebellar ataxias: Prospects and challenges for therapy development. Nat. Rev. Neurol. 2018, 14, 590–605. [Google Scholar] [CrossRef]
- Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 2019, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Baker, J. The DRAGON system–An overview. IEEE Trans. Acoust. Speech Signal Process. 1975, 23, 24–29. [Google Scholar] [CrossRef]
- Nilsson, M.; Ejnarsson, M. Speech Recognition Using Hidden Markov Model. 2002. Available online: https://www.diva-portal.org/smash/get/diva2:831263/FULLTEXT01.pdf (accessed on 26 March 2024).
- Lee, H.K.; Kim, J.H. An HMM-based threshold model approach for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 961–973. [Google Scholar]
- Frasconi, P.; Soda, G.; Vullo, A. Text categorization for multi-page documents: A hybrid naive Bayes HMM approach. In Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, VA, USA, 24–28 June 2001; pp. 11–20. [Google Scholar]
- Vairavan, S.; Eshelman, L.; Haider, S.; Flower, A.; Seiver, A. Prediction of mortality in an intensive care unit usingogistic regression and a hidden Markov model. In Proceedings of the 2012 Computing in Cardiology, Krakow, Poland, 9–12 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 393–396. [Google Scholar]
- Antonucci, A.; De Rosa, R.; Giusti, A.; Cuzzolin, F. Robust classification of multivariate time series by imprecise hidden Markov models. Int. J. Approx. Reason. 2015, 56, 249–263. [Google Scholar] [CrossRef]
- Pei, W.; Dibeklioğlu, H.; Tax, D.M.; van der Maaten, L. Multivariate time-series classification using the hidden-unit ogistic model. IEEE Trans. Neural Networks Learn. Syst. 2017, 29, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Ghassempour, S.; Girosi, F.; Maeder, A. Clustering multivariate time series using hidden Markov models. Int. J. Environ. Res. Public Health 2014, 11, 2741–2763. [Google Scholar] [CrossRef]
- Dörpinghaus, J.; Schaaf, S.; Jacobs, M. Soft document clustering using a novel graph covering approach. BioData Min. 2018, 11, 11. [Google Scholar] [CrossRef]
- Li, J.; Pedrycz, W.; Jamal, I. Multivariate time series anomaly detection: A framework of Hidden Markov Models. Appl. Soft Comput. 2017, 60, 229–240. [Google Scholar] [CrossRef]
- Li, J.; Pedrycz, W.; Wang, X.; Liu, P. A Hidden Markov Model-based fuzzy modeling of multivariate time series. Soft Comput. 2023, 27, 837–854. [Google Scholar] [CrossRef]
- Petropoulos, A.; Chatzis, S.P.; Xanthopoulos, S. A hidden Markov model with dependence jumps for predictive modeling of multidimensional time-series. Inf. Sci. 2017, 412, 50–66. [Google Scholar] [CrossRef]
- Dörpinghaus, J.; Jacobs, M. Semantic Knowledge Graph Embeddings for biomedical Research: Data Integration using Linked Open Data. In Proceedings of the SEMANTiCS (Posters & Demos), Karlsruhe, Germany, 9–12 September 2019. [Google Scholar]
- Dörpinghaus, J.; Stefan, A. Knowledge extraction and applications utilizing context data in knowledge graphs. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 1–4 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 265–272. [Google Scholar]
- Dörpinghaus, J.; Stefan, A.; Schultz, B.; Jacobs, M. Context mining and graph queries on giant biomedical knowledge graphs. Knowl. Inf. Syst. 2022, 64, 1239–1262. [Google Scholar] [CrossRef]
- Dörpinghaus, J.; Klein, J.; Darms, J.; Madan, S.; Jacobs, M. SCAIView-A Semantic Search Engine for Biomedical Research Utilizing a Microservice Architecture. In Proceedings of the SEMANTiCS (Posters & Demos), Vienna, Austria, 10–13 September 2018. [Google Scholar]
- Dörpinghaus, J.; Hübenthal, T.; Faber, J. A novelink prediction approach on clinical knowledge graphs utilising graph structures. In Proceedings of the 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), Sofia, Bulgaria, 4–7 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 43–52. [Google Scholar]
- Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Viterbi, A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 1967, 13, 260–269. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximumikelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Knuth, D.E. Backus normal form vs. backus naur form. Commun. ACM 1964, 7, 735–736. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Klockgether, T.; Ludtke, R.; Kramer, B.; Abele, M.; Burk, K.; Schols, L.; Riess, O.; Laccone, F.; Boesch, S.; Lopes-Cendes, I.; et al. The natural history of degenerative ataxia: A retrospective study in 466 patients. Brain 1998, 121 Pt 4, 589–600. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.S.; et al. Scale for the assessment and rating of ataxia. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef]
- Jacobi, H.; Rakowicz, M.; Rola, R.; Fancellu, R.; Mariotti, C.; Charles, P.; Durr, A.; Kuper, M.; Timmann, D.; Linnemann, C.; et al. Inventory of Non-Ataxia Signs (INAS): Validation of a new clinical assessment instrument. Cerebellum 2013, 12, 418–428. [Google Scholar] [CrossRef]
- Reetz, K.; Dogan, I.; Hilgers, R.D.; Giunti, P.; Mariotti, C.; Durr, A.; Boesch, S.; Klopstock, T.; de Rivera, F.J.R.; Schols, L.; et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): A 2 year cohort study. Lancet Neurol. 2016, 15, 1346–1354. [Google Scholar] [CrossRef]
-Scores for 10-Fold Cross Validation () | |||||
---|---|---|---|---|---|
Diagnosis | ADL Score | INAS Score | SARA Score | ||
Layers | |||||
0.75 ± 0.04 | 0.22 ± 0.06 | 0.13 ± 0.04 | 0.19 ± 0.06 | ||
0.75 ± 0.03 | 0.23 ± 0.03 | 0.16 ± 0.04 | - | ||
0.6 ± 0.06 | 0.11 ± 0.04 | - | 0.13 ± 0.04 | ||
0.72 ± 0.08 | - | 0.19 ± 0.05 | 0.24 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fechner, R.; Dörpinghaus, J.; Rockenfeller, R.; Faber, J. Ensemble of HMMs for Sequence Prediction on Multivariate Biomedical Data. BioMedInformatics 2024, 4, 1672-1691. https://doi.org/10.3390/biomedinformatics4030090
Fechner R, Dörpinghaus J, Rockenfeller R, Faber J. Ensemble of HMMs for Sequence Prediction on Multivariate Biomedical Data. BioMedInformatics. 2024; 4(3):1672-1691. https://doi.org/10.3390/biomedinformatics4030090
Chicago/Turabian StyleFechner, Richard, Jens Dörpinghaus, Robert Rockenfeller, and Jennifer Faber. 2024. "Ensemble of HMMs for Sequence Prediction on Multivariate Biomedical Data" BioMedInformatics 4, no. 3: 1672-1691. https://doi.org/10.3390/biomedinformatics4030090
APA StyleFechner, R., Dörpinghaus, J., Rockenfeller, R., & Faber, J. (2024). Ensemble of HMMs for Sequence Prediction on Multivariate Biomedical Data. BioMedInformatics, 4(3), 1672-1691. https://doi.org/10.3390/biomedinformatics4030090