High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems
Abstract
:1. Introduction
2. Neurostimulation Devices for Epilepsy Treatment
2.1. Vagus Nerve Stimulation
2.2. Deep Brain Stimulation
2.3. Responsive Nerve Stimulation
2.4. Comparison of Device Treatments
3. TinyML: Advantages and Technologies
Current Research
4. System and Model Presentation
4.1. Device Selection
4.2. Dataset Selection
4.3. Platform Selection: Edge Impulse
4.4. Model Development, Implementation, and Infrastructure
4.4.1. Data Preprocessing and Exploration
4.4.2. Comparison and Selection of Model Architecture
5. Model Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TinyML | Tiny Machine Learning |
ML | Machine Learning |
AI | Artificial Intelligence |
EEG | Electroencephalography (signals) |
iEEG | Intracranial Electroencephalography (signals) |
SUDEP | Sudden Unexpected Death of some |
IoT | Internet of Things |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
AUC | Area Under Curve |
ROC-Curve | Receiver Operating Characteristics Curve |
References
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and Incidence of Epilepsy: A Systematic Review and Meta-Analysis of International Studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Begley, C.E.; Beghi, E. The Economic Cost of Epilepsy: A Review of the Literature. Epilepsia 2002, 43, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Falco-Walter, J. Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-Adjusted Life Years (DALYs) for 291 Diseases and Injuries in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Farooq, M.S.; Zulfiqar, A.; Riaz, S. Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges. Diagnostics 2023, 13, 1058. [Google Scholar] [CrossRef]
- Gabeff, V.; Teijeiro, T.; Zapater, M.; Cammoun, L.; Rheims, S.; Ryvlin, P.; Atienza, D. Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG Signals. Artif. Intell. Med. 2021, 117, 102084. [Google Scholar] [CrossRef]
- Singh, G.; Sander, J.W. The Global Burden of Epilepsy Report: Implications for Low- and Middle-Income Countries. Epilepsy Behav. 2020, 105, 106949. [Google Scholar] [CrossRef]
- Shorvon, S. Tonic Clonic Status Epilepticus. J. Neurol. Neurosurg. Psychiatry 1993, 56, 125–134. [Google Scholar] [CrossRef]
- Nashef, L. Sudden Unexpected Death in Epilepsy: Terminology and Definitions. Epilepsia 1997, 38, S6–S8. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Early Identification of Refractory Epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef]
- Cross, J.H.; Jayakar, P.; Nordli, D.; Delalande, O.; Duchowny, M.; Wieser, H.G.; Guerrini, R.; Mathern, G.W. Proposed Criteria for Referral and Evaluation of Children for Epilepsy Surgery: Recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 2006, 47, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Schuele, S.U.; Lüders, H.O. Intractable Epilepsy: Management and Therapeutic Alternatives. Lancet Neurol. 2008, 7, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Panov, F.; Ganaha, S.; Haskell, J.; Fields, M.; La Vega-Talbott, M.; Wolf, S.; McGoldrick, P.; Marcuse, L.; Ghatan, S. Safety of Responsive Neurostimulation in Pediatric Patients with Medically Refractory Epilepsy. J. Neurosurg. Pediatr. 2020, 26, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodulation in Epilepsy: State-of-the-Art Approved Therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef]
- Grampurohit, S.; Sagarnal, C. Disease Prediction Using Machine Learning Algorithms. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–7. [Google Scholar]
- Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022, 10, 541. [Google Scholar] [CrossRef]
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. ArtifIntell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef]
- Mooney, S.J.; Pejaver, V. Big Data in Public Health: Terminology, Machine Learning, and Privacy. Annu. Rev. Public Health 2018, 39, 95–112. [Google Scholar] [CrossRef]
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M. Towards the Science of Security and Privacy in Machine Learning. arXiv 2016, arXiv:1611.03814. [Google Scholar]
- Xue, M.; Yuan, C.; Wu, H.; Zhang, Y.; Liu, W. Machine Learning Security: Threats, Countermeasures, and Evaluations. IEEE Access 2020, 8, 74720–74742. [Google Scholar] [CrossRef]
- Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A Comprehensive Survey on TinyML. IEEE Access 2023, 11, 96892–96922. [Google Scholar] [CrossRef]
- Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines 2022, 13, 851. [Google Scholar] [CrossRef]
- Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al. Benchmarking TinyML Systems: Challenges and Direction. arXiv 2021, arXiv:2003.04821. [Google Scholar]
- Kallimani, R.; Pai, K.; Raghuwanshi, P.; Iyer, S.; López, O.L.A. TinyML: Tools, Applications, Challenges, and Future Research Directions. Multimed. Tools Appl. 2023, 83, 29015–29045. [Google Scholar] [CrossRef]
- Ficco, M.; Guerriero, A.; Milite, E.; Palmieri, F.; Pietrantuono, R.; Russo, S. Federated Learning for IoT Devices: Enhancing TinyML with on-Board Training. Inf. Fusion 2024, 104, 102189. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Medeiros, T.; Amaral, M.; Targino, M.; Silva, M.; Silva, I.; Sisinni, E.; Ferrari, P. TinyML Custom AI Algorithms for Low-Power IoT Data Compression: A Bridge Monitoring Case Study. In Proceedings of the 2023 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Brescia, Italy, 6–8 June 2023; IEEE: Brescia, Italy, 2023; pp. 54–59. [Google Scholar] [CrossRef]
- Tsoukas, V.; Boumpa, E.; Giannakas, G.; Kakarountas, A. A Review of Machine Learning and TinyML in Healthcare. In Proceedings of the 25th Pan-Hellenic Conference on Informatics, Volos, Greece, 26–28 November 2021; ACM: Volos, Greece, 2021; pp. 69–73. [Google Scholar] [CrossRef]
- Shafique, M.; Theocharides, T.; Reddy, V.J.; Murmann, B. TinyML: Current Progress, Research Challenges, and Future Roadmap. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; IEEE: San Francisco, CA, USA, 2021; pp. 1303–1306. [Google Scholar] [CrossRef]
- Behnam, P.; Tong, J.; Khare, A.; Chen, Y.; Pan, Y.; Gadikar, P.; Bambhaniya, A.; Krishna, T.; Tumanov, A. Hardware–Software Co-Design for Real-Time Latency–Accuracy Navigation in Tiny Machine Learning Applications. IEEE Micro 2023, 43, 93–101. [Google Scholar] [CrossRef]
- Giordano, M.; Baumann, N.; Crabolu, M.; Fischer, R.; Bellusci, G.; Magno, M. Design and Performance Evaluation of an Ultralow-Power Smart IoT Device with Embedded TinyML for Asset Activity Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 2510711. [Google Scholar] [CrossRef]
- Heim, L.; Biri, A.; Qu, Z.; Thiele, L. Measuring What Really Matters: Optimizing Neural Networks for TinyML. arXiv 2021, arXiv:2104.10645. [Google Scholar]
- Ray, P.P. A Review onTinyML: State-of-the-Art and Prospects. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1595–1623. [Google Scholar] [CrossRef]
- Toffa, D.H.; Touma, L.; El Meskine, T.; Bouthillier, A.; Nguyen, D.K. Learnings from 30 Years of Reported Efficacy and Safety of Vagus Nerve Stimulation (VNS) for Epilepsy Treatment: A Critical Review. Seizure 2020, 83, 104–123. [Google Scholar] [CrossRef] [PubMed]
- Guberman, A. Vagus Nerve Stimulation in the Treatment of Epilepsy. Can. Med. Assoc. J. 2004, 171, 1165–1166. [Google Scholar] [CrossRef] [PubMed]
- Afra, P.; Adamolekun, B.; Aydemir, S.; Watson, G.D.R. Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy. Front. Med. Technol. 2021, 3, 696543. [Google Scholar] [CrossRef] [PubMed]
- Krahl, S. Vagus Nerve Stimulation for Epilepsy: A Review of the Peripheral Mechanisms. Surg. Neurol. Int. 2012, 3, 47. [Google Scholar] [CrossRef]
- Fisher, R.S. Therapeutic Devices for Epilepsy. Ann. Neurol. 2012, 71, 157–168. [Google Scholar] [CrossRef]
- Mertens, A.; Gadeyne, S.; Lescrauwaet, E.; Carrette, E.; Meurs, A.; De Herdt, V.; Dewaele, F.; Raedt, R.; Miatton, M.; Boon, P.; et al. The Potential of Invasive and Non-Invasive Vagus Nerve Stimulation to Improve Verbal Memory Performance in Epilepsy Patients. Sci. Rep. 2022, 12, 1984. [Google Scholar] [CrossRef]
- Austelle, C.W.; O’Leary, G.H.; Thompson, S.; Gruber, E.; Kahn, A.; Manett, A.J.; Short, B.; Badran, B.W. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodul. Technol. Neural Interface 2022, 25, 309–315. [Google Scholar] [CrossRef]
- George, M.S.; Ward, H.E.; Ninan, P.T.; Pollack, M.; Nahas, Z.; Anderson, B.; Kose, S.; Howland, R.H.; Goodman, W.K.; Ballenger, J.C. A Pilot Study of Vagus Nerve Stimulation (VNS) for Treatment-Resistant Anxiety Disorders. Brain Stimul. 2008, 1, 112–121. [Google Scholar] [CrossRef]
- Zangiabadi, N.; Ladino, L.D.; Sina, F.; Orozco-Hernández, J.P.; Carter, A.; Téllez-Zenteno, J.F. Deep Brain Stimulation and Drug-Resistant Epilepsy: A Review of the Literature. Front. Neurol. 2019, 10, 601. [Google Scholar] [CrossRef]
- Vonck, K.; Sprengers, M.; Carrette, E.; Dauwe, I.; Miatton, M.; Meurs, A.; Goossens, L.; De Herdt, V.; Achten, R.; Thiery, E.; et al. A Decade of Experience with Deep Brain Stimulation for Patients with Refractory Medial Temporal Lobe Epilepsy. Int. J. Neural Syst. 2013, 23, 1250034. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Toyota, E.; Anderson, M.; Abel, T.J.; Donner, E.; Kalia, S.K.; Drake, J.; Rutka, J.T.; Ibrahim, G.M. A Systematic Review of Deep Brain Stimulation for the Treatment of Drug-Resistant Epilepsy in Childhood. J. Neurosurg. Pediatr. 2019, 23, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Klinger, N.; Mittal, S. Deep Brain Stimulation for Seizure Control in Drug-Resistant Epilepsy. Neurosurg. Focus 2018, 45, E4. [Google Scholar] [CrossRef]
- Peltola, J.; Colon, A.J.; Pimentel, J.; Coenen, V.A.; Gil-Nagel, A.; Gonçalves Ferreira, A.; Lehtimäki, K.; Ryvlin, P.; Taylor, R.S.; Ackermans, L.; et al. Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in Drug-Resistant Epilepsy in the MORE Multicenter Patient Registry. Neurology 2023, 100, e1852–e1865. [Google Scholar] [CrossRef] [PubMed]
- Bove, F.; Fraix, V.; Cavallieri, F.; Schmitt, E.; Lhommée, E.; Bichon, A.; Meoni, S.; Pélissier, P.; Kistner, A.; Chevrier, E.; et al. Dementia and Subthalamic Deep Brain Stimulation in Parkinson Disease: A Long-Term Overview. Neurology 2020, 95, e384–e392. [Google Scholar] [CrossRef]
- Wu, Y.; Mo, J.; Sui, L.; Zhang, J.; Hu, W.; Zhang, C.; Wang, Y.; Liu, C.; Zhao, B.; Wang, X.; et al. Deep Brain Stimulation in Treatment-Resistant Depression: A Systematic Review and Meta-Analysis on Efficacy and Safety. Front. Neurosci. 2021, 15, 655412. [Google Scholar] [CrossRef]
- Wu, H.; Hariz, M.; Visser-Vandewalle, V.; Zrinzo, L.; Coenen, V.A.; Sheth, S.A.; Bervoets, C.; Naesström, M.; Blomstedt, P.; Coyne, T.; et al. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder (OCD): Emerging or Established Therapy? Mol. Psychiatry 2021, 26, 60–65. [Google Scholar] [CrossRef]
- Jarosiewicz, B.; Morrell, M. The RNS System: Brain-Responsive Neurostimulation for the Treatment of Epilepsy. Expert Rev. Med. Devices 2021, 18, 129–138. [Google Scholar] [CrossRef]
- Dalkilic, E.B. Neurostimulation Devices Used in Treatment of Epilepsy. Curr. Treat. Opt. Neurol. 2017, 19, 7. [Google Scholar] [CrossRef]
- Skarpaas, T.L.; Jarosiewicz, B.; Morrell, M.J. Brain-Responsive Neurostimulation for Epilepsy (RNS® System). Epilepsy Res. 2019, 153, 68–70. [Google Scholar] [CrossRef]
- Chen, H.; Dugan, P.; Chong, D.J.; Liu, A.; Doyle, W.; Friedman, D. Application of RNS in Refractory Epilepsy: Targeting Insula. Epilepsia Open 2017, 2, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.R. Chronic Electroencephalography in Epilepsy with a Responsive Neurostimulation Device: Current Status and Future Prospects. Expert Rev. Med. Dev. 2021, 18, 1093–1105. [Google Scholar] [CrossRef]
- Sun, F.T.; Morrell, M.J. The RNS System: Responsive Cortical Stimulation for the Treatment of Refractory Partial Epilepsy. Expert Rev. Med. Dev. 2014, 11, 563–572. [Google Scholar] [CrossRef]
- Davis, P.; Gaitanis, J. Neuromodulation for the Treatment of Epilepsy: A Review of Current Approaches and Future Directions. Clin. Ther. 2020, 42, 1140–1154. [Google Scholar] [CrossRef]
- Fahoum, F.; Boffini, M.; Kann, L.; Faini, S.; Gordon, C.; Tzadok, M.; El Tahry, R. VNS Parameters for Clinical Response in Epilepsy. Brain Stimul. 2022, 15, 814–821. [Google Scholar] [CrossRef]
- Wong, S.; Mani, R.; Danish, S. Comparison and Selection of Current Implantable Anti-Epileptic Devices. Neurotherapeutics 2019, 16, 369–380. [Google Scholar] [CrossRef]
- Yadav, S.S.; Agarwal, R.; Bharath, K.; Rao, S.; Thakur, C.S. tinyRadar: mmWave Radar Based Human Activity Classification for Edge Computing. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; IEEE: Austin, TX, USA, 2022; pp. 2414–2417. [Google Scholar] [CrossRef]
- Saha, S.S.; Sandha, S.S.; Srivastava, M. Machine Learning for Microcontroller-Class Hardware: A Review. IEEE Sens. J. 2022, 22, 21362–21390. [Google Scholar] [CrossRef]
- Tsoukas, V.; Gkogkidis, A.; Kakarountas, A. A TinyML-Based System For Smart Agriculture. In Proceedings of the 26th Pan-Hellenic Conference on Informatics, Athens, Greece, 25–27 November 2022; ACM: Athens, Greece, 2022; pp. 207–212. [Google Scholar]
- Gkogkidis, A.; Tsoukas, V.; Papafotikas, S.; Boumpa, E.; Kakarountas, A. A TinyML-Based System for Gas Leakage Detection. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 May 2022; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Sabovic, A.; Aernouts, M.; Subotic, D.; Fontaine, J.; De Poorter, E.; Famaey, J. Towards Energy-Aware tinyML on Battery-Less IoT Devices. Internet Things 2023, 22, 100736. [Google Scholar] [CrossRef]
- David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811. [Google Scholar] [CrossRef]
- Sun, B.; Bayes, S.; Abotaleb, A.M.; Hassan, M. The Case for tinyML in Healthcare: CNNs for Real-Time On-Edge Blood Pressure Estimation. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023; Association for Computing Machinery: New York, NY, USA; pp. 629–638. [Google Scholar] [CrossRef]
- Ahmed, K.; Hassan, M. tinyCare: A tinyML-Based Low-Cost Continuous Blood Pressure Estimation on the Extreme Edge. In Proceedings of the 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI), Rochester, MN, USA, 11–14 June 2022; IEEE: Rochester, MN, USA, 2022; pp. 264–275. [Google Scholar] [CrossRef]
- Bengherbia, B.; AymeneBerkani, M.R.; Achir, Z.; Tobbal, A.; Rebiai, M.; Maazouz, M. Real-Time Smart System for ECG Monitoring Using a One-Dimensional Convolutional Neural Network. In Proceedings of the 2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE), Ankara, Turkey, 29 September–1 October 2022; IEEE: Ankara, Turkey, 2022; pp. 32–37. [Google Scholar] [CrossRef]
- Gibbs, M.; Woodward, K.; Kanjo, E. Combining Multiple tinyML Models for Multimodal Context-Aware Stress Recognition on Constrained Microcontrollers. IEEE Micro 2023, 44, 67–75. [Google Scholar] [CrossRef]
- Mai, N.-D.; Nguyen, H.-T.; Chung, W.-Y. Real-Time On-Chip Machine-Learning-Based Wearable Behind-The-Ear Electroencephalogram Device for Emotion Recognition. IEEE Access 2023, 11, 47258–47271. [Google Scholar] [CrossRef]
- Tharian, J.; Nandakrishnan, R.; Sajesh, S.; Arun, A.V.; Jayadas, C.K. Automatic Emotion Recognition System Using tinyML. In Proceedings of the 2022 International Conference on Futuristic Technologies (INCOFT), Karnataka, India, 25–27 November 2022; IEEE: Belgaum, India, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Hashir, M.; Khalid, N.; Mahmood, N.; Rehman, M.A.; Asad, M.; Mehmood, M.Q.; Zubair, M.; Massoud, Y. A TinyML Based Portable, Low-Cost Microwave Head Imaging System for Brain Stroke Detection. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; IEEE: Monterey, CA, USA, 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Tsoukas, V.; Gkogkidis, A.; Boumpa, E.; Kakarountas, A. A Review on the Emerging Technology of TinyML. ACM Comput. Surv. 2024, 56, 1–37. [Google Scholar] [CrossRef]
- Diab, M.S.; Rodriguez-Villegas, E. Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review. IEEE Access 2022, 10, 98450–98474. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Qadir, J.; Sivathamboo, S.; Kwan, P.; Kuhlmann, L.; O’Brien, T.; Razi, A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev. Biomed. Eng. 2021, 14, 139–155. [Google Scholar] [CrossRef]
- Yuan, J.; Ran, X.; Liu, K.; Yao, C.; Yao, Y.; Wu, H.; Liu, Q. Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review. J. Neurosci. Methods 2022, 368, 109441. [Google Scholar] [CrossRef]
- Tragoudaras, A.; Antoniadis, C.; Massoud, Y. TinyML for EEG Decoding on Microcontrollers. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; IEEE: Monterey, CA, USA, 2023; pp. 1–5. [Google Scholar]
- Agrawal, K.; Borthakur, A.; Singh, A.K.; Srikaran, P.; Nandi, D.; Pujari, O. Neural Decision Tree for Bio-TinyML. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS 2024), Xi’an, China, 24–26 October 2024; IEEE: Piscataway, NJ, USA. [Google Scholar] [CrossRef]
- Ponnada, S.; Tak, T.K.; Kshirsagar, P.R.; Rao, P.S.; Dayal, A. Expanding Applications of TinyML in Versatile Assistive Devices: From Navigation Assistance to Health Monitoring System Using Optimized NASNet-XGBoost Transfer Learning. IEEE Access 2024, 12, 168328–168338. [Google Scholar] [CrossRef]
- Aoueileyine, M.O.E. Tiny Machine Learning for IoT and eHealth Applications: Epileptic Seizure Prediction Use Case; Digital Technologies and Applications. ICDTA 2023; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Lee, B.; Zubair, M.N.; Marquez, Y.D.; Lee, D.M.; Kalayjian, L.A.; Heck, C.N.; Liu, C.Y. A Single-Center Experience with the NeuroPace RNS System: A Review of Techniques and Potential Problems. World Neurosurg. 2015, 84, 719–726. [Google Scholar] [CrossRef]
- Mad Kaidi, H.; Izhar, M.A.M.; Ahmad, N.; Dziyauddin, R.A.; Sarip, S.; Jalil, S.Z.A. Rehabilitation Monitoring Prototype: Arduino Nano 35 BLE. J. Phys. Conf. Ser. 2022, 2250, 012009. [Google Scholar] [CrossRef]
- Bouh, Y.; Baslam, M.; Ouhda, M. TinyML on Arduino Nano 33 BLE for Disabled Person. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023); Ezziyyani, M., Kacprzyk, J., Balas, V.E., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 82–88. [Google Scholar] [CrossRef]
- Patel, P.; Gupta, N.; Gajjar, S. Real Time Voice Recognition System Using Tiny ML on Arduino Nano 33 BLE*. In Proceedings of the 2023 IEEE International Symposium on Smart Electronic Systems (iSES), Ahmedabad, India, 18–20 December 2023; IEEE: Ahmedabad, India, 2023; pp. 385–388. [Google Scholar] [CrossRef]
- Hessein, Y. Epileptic Seizure Recognition Dataset. 2021. Kaggle. Available online: https://www.kaggle.com/datasets/yasserhessein/epileptic-seizure-recognition (accessed on 26 February 2025).
- Edge Impulse. Edge Impulse: Machine Learning for TinyML and IoT Devices. 2024. Available online: https://edgeimpulse.com/ (accessed on 26 February 2025).
- Situnayake, D.; Plunkett, J. AI at the Edge. 2024. O’Reilly Media, Inc.. Available online: https://www.oreilly.com/library/view/ai-atthe/9781098120191/ (accessed on 26 February 2025).
- Hymel, S.; Banbury, C.; Situnayake, D.; Elium, A.; Ward, C.; Kelcey, M.; Baaijens, M.; Majchrzycki, M.; Plunkett, J.; Tischler, D.; et al. Edge Impulse: An MLOps Platform for Tiny Machine Learning. arXiv 2023, arXiv:2212.03332. [Google Scholar]
- Mihigo, I.N.; Zennaro, M.; Uwitonze, A.; Rwigema, J.; Rovai, M. On-Device IoT-Based Predictive Maintenance Analytics Model: Comparing TinyLSTM and TinyModel from Edge Impulse. Sensors 2022, 22, 5174. [Google Scholar] [CrossRef]
- Diab, M.S.; Rodriguez-Villegas, E. Performance Evaluation of Embedded Image Classification Models Using Edge Impulse for Application on Medical Images. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; IEEE: Glasgow, UK, 2022; pp. 2639–2642. [Google Scholar] [CrossRef]
- Ryvlin, P.; Jehi, L.E. Neuromodulation for Refractory Epilepsy. Epilepsy Curr. 2022, 22, 11–17. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of Drug Resistant Epilepsy: Consensus Proposal by the Ad Hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Heck, C.N.; King-Stephens, D.; Massey, A.D.; Nair, D.R.; Jobst, B.C.; Barkley, G.L.; Salanova, V.; Cole, A.J.; Smith, M.C.; Gwinn, R.P.; et al. Two-Year Seizure Reduction in Adults with Medically Intractable Partial-Onset Epilepsy Treated with Responsive Neurostimulation: Final Results of the RNS System Pivotal Trial. Epilepsia 2014, 55, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Nune, G.; Desai, S.A.; Razavi, B.; Agostini, M.A.; Bergey, G.K.; Herekar, A.A.; Hirsch, L.J.; Lee, R.W.; Rutecki, P.A.; Srinivasan, S.; et al. Treatment of Drug-Resistant Epilepsy in Patients with Periventricular Nodular Heterotopia Using RNS System: Efficacy and Description of Chronic Electrophysiological Recordings. Clin. Neurophysiol. 2019, 130, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Parfyonov, M.; Tiefenbach, J.; Hogue, O.; Nero, N.; Jehi, L.; Serletis, D.; Bingaman, W.; Gupta, A.; Rammo, R. Predictors of Therapeutic Response Following Thalamic Neuromodulation for Drug-Resistant Pediatric Epilepsy: A Systematic Review and Individual Patient Data Meta-Analysis. Epilepsia 2024, 65, 542–555. [Google Scholar]
- Ryvlin, P.; Cross, J.H.; Rheims, S. Epilepsy Surgery in Children and Adults. Lancet Neurol. 2014, 13, 1114–1126. [Google Scholar] [CrossRef]
- Kokkinos, V.; Sisterson, N.D.; Wozny, T.A.; Richardson, R.M. Association of Closed-Loop Brain Stimulation Neurophysiological Features With Seizure Control Among Patients with Focal Epilepsy. JAMA Neurol. 2019, 76, 800. [Google Scholar] [CrossRef]
- Wang, A.J.; Bick, S.K.; Williams, Z.M. Vagus Nerve Stimulation versus Responsive Neurostimulator System in Patients with Temporal Lobe Epilepsy. Stereotact. Funct. Neurosurg. 2020, 98, 21–29. [Google Scholar] [CrossRef]
- Ellens, N.R.; Elisevich, K.; Burdette, D.E.; Patra, S.E. A Comparison of Vagal Nerve Stimulation and Responsive Neurostimulation for the Treatment of Medically Refractory Complex Partial Epilepsy. Stereotact. Funct. Neurosurg. 2018, 96, 259–263. [Google Scholar] [CrossRef]
- Park, H.R.; Choi, S.J.; Joo, E.Y.; Seo, D.-W.; Hong, S.B.; Lee, J.-I.; Hong, S.-C.; Lee, S.; Shon, Y.-M. The Role of Anterior Thalamic Deep Brain Stimulation as an Alternative Therapy in Patients with Previously Failed Vagus Nerve Stimulation for Refractory Epilepsy. Stereotact. Funct. Neurosurg. 2019, 97, 176–182. [Google Scholar] [CrossRef]
- Sisterson, N.D.; Wozny, T.A.; Kokkinos, V.; Constantino, A.; Richardson, R.M. Closed-Loop Brain Stimulation for Drug-Resistant Epilepsy: Towards an Evidence-Based Approach to Personalized Medicine. Neurotherapeutics 2019, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, P.; Sneider, D.; Danish, M.; Sisterson, N.D.; Zaher, N.; Urban, A.; Grover, P.; Richardson, R.M.; Kokkinos, V. Quantifying a Frequency Modulation Response Biomarker in Responsive Neurostimulation. J. Neural Eng. 2021, 18, 046017. [Google Scholar] [CrossRef]
- Constantino, A.C.; Sisterson, N.D.; Zaher, N.; Urban, A.; Richardson, R.M.; Kokkinos, V. Expert-Level Intracranial Electroencephalogram Ictal Pattern Detection by a Deep Learning Neural Network. Front. Neurol. 2021, 12, 603868. [Google Scholar] [CrossRef]
- Jobst, B.C.; Kapur, R.; Barkley, G.L.; Bazil, C.W.; Berg, M.J.; Bergey, G.K.; Boggs, J.G.; Cash, S.S.; Cole, A.J.; Duchowny, M.S.; et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 2017, 58, 1005–1014. [Google Scholar] [CrossRef]
- Geller, E.B. Responsive Neurostimulation: Review of Clinical Trials and Insights into Focal Epilepsy. Epilepsy Behav. 2018, 88, 11–20. [Google Scholar] [CrossRef]
- Geller, E.B.; Skarpaas, T.L.; Gross, R.E.; Goodman, R.R.; Barkley, G.L.; Bazil, C.W.; Berg, M.J.; Bergey, G.K.; Cash, S.S.; Cole, A.J.; et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017, 58, 994–1004. [Google Scholar] [CrossRef]
- Piazza, M.G.; Varga, G.; Welch, W.; Abel, T.J. The Utility of Responsive Neurostimulation for the Treatment of Pediatric Drug-Resistant Epilepsy. Brain Sci. 2023, 13, 1455. [Google Scholar] [CrossRef]
- Vissani, M.; Nanda, P.; Bush, A.; Neudorfer, C.; Dougherty, D.; Richardson, R.M. Toward Closed-Loop Intracranial Neurostimulation in Obsessive-Compulsive Disorder. Biol. Psychiatry 2023, 93, e43–e46. [Google Scholar] [CrossRef]
- Marangell, L.B.; Martinez, M.; Jurdi, R.A.; Zboyan, H. Neurostimulation therapies in depression: A review of new modalities. Acta Psychiatr Scand. 2007, 116, 174–181. [Google Scholar] [CrossRef]
- Wu, H.; Adler, S.; Azagury, D.E.; Bohon, C.; Safer, D.L.; Barbosa, D.A.N.; Bhati, M.T.; Williams, N.R.; Dunn, L.B.; Tass, P.A.; et al. Brain-Responsive Neurostimulation for Loss of Control Eating: Early Feasibility Study. Neurosurgery 2020, 87, 1277–1288. [Google Scholar] [CrossRef]
- Balanou, E.; van Gils, M.; Vanhala, T. State-of-the-art of wearable EEG for personalized health applications. Stud. Health Technol. Inform. 2013, 189, 119–124. [Google Scholar] [PubMed]
- Cannard, C.; Brandmeyer, T.; Wahbeh, H.; Delorme, A. Self-health monitoring and wearable neurotechnologies. Handb. Clin. Neurol. 2020, 168, 207–232. [Google Scholar]
- Rubel, P.; Fayn, J.; Simon-Chautemps, L.; Atoui, H.; Ohlsson, M.; Telisson, D.; Adami, S.; Arod, S.; Forlini, M.C.; Malossi, C.; et al. New paradigms in telemedicine: Ambient intelligence, wearable, pervasive and personalized. Stud Health Technol. Inform. 2004, 108, 123–132. [Google Scholar]
- Manor, E.; Greenberg, S. Custom Hardware Inference Accelerator for TensorFlow Lite for Microcontrollers. IEEE Access 2022, 10, 73484–73493. [Google Scholar] [CrossRef]
- Ahmed, Z.; Amizadeh, S.; Bilenko, M.; Carr, R.; Chin, W.-S.; Dekel, Y.; Dupre, X.; Eksarevskiy, V.; Filipi, S.; Finley, T.; et al. Machine Learning at Microsoft with ML.NET. In In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: Anchorage, AK, USA, 2019; pp. 2448–2458. [Google Scholar] [CrossRef]
- da Silva, L.T.; Souza, V.M.; Batista, G.E. EmbML Tool: Supporting the Use of Supervised Learning Algorithms in Low-Cost Embedded Systems. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; IEEE: Piscataway, NJ, USA; pp. 1633–1637. [Google Scholar] [CrossRef]
- Tsutsui Da Silva, L.; Souza, V.M.A.; Batista, G.E.A.P.A. An Open-Source Tool for Classification Models in Resource-Constrained Hardware. IEEE Sens. J. 2022, 22, 544–554. [Google Scholar] [CrossRef]
- Hegde, M.; Chiong, W.; Rao, V.R. New Ethical and Clinical Challenges in “Closed-Loop” Neuromodulation. Neurology 2021, 96, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Shlobin, N.A.; Campbell, J.M.; Rosenow, J.M.; Rolston, J.D. Ethical Considerations in the Surgical and Neuromodulatory Treatment of Epilepsy. Epilepsy Behav. 2022, 127, 108524. [Google Scholar] [CrossRef]
- Simpson, H.D.; Schulze-Bonhage, A.; Cascino, G.D.; Fisher, R.S.; Jobst, B.C.; Sperling, M.R.; Lundstrom, B.N. Practical Considerations in Epilepsy Neurostimulation. Epilepsia 2022, 63, 2445–2460. [Google Scholar] [CrossRef]
Vagus Nerve Stimulation | Deep Brain Stimulation | Responsive Nerve Stimulation |
---|---|---|
Open-loop operation: does not record or act on the patient’s iEEG signals. | Open-loop operation: does not record or act on the patient’s iEEG signals. | Closed-loop operation: records and acts on the patient’s iEEG signals, thus offers further data accessibility. |
Fixed intermittent stimulation protocol. | Fixed intermittent stimulation protocol. | Stimulation activation by detected seizure activity. |
Approved only for stimulation of the vagus nerve. | Approved only for the stimulation of the anterior thalami. | Approved for seizure onset anywhere in the central nervous system. |
Less complex surgical placement. | Demanding surgical placement. | Highly demanding surgical placement. |
Negligible risk of implantation-related intracranial hemorrhage. | Considerable risk of implantation-related intracranial hemorrhage. | Higher risk of implantation-related intracranial hemorrhage. |
Architecture | Accuracy | F1-Score for Label 0 | F1-Score for Labels 1 |
---|---|---|---|
Architecture 1 | 87% | 0.90 | 0.81 |
Architecture 2 | 92% | 0.94 | 0.90 |
Architecture 3 | 97% | 0.97 | 0.96 |
Architecture 4 | 98% | 0.98 | 0.98 |
Architecture | Accuracy | F1-Score for Label 0 | F1-Score for Labels 1 |
---|---|---|---|
Architecture 1 | 87% | 0.90 | 0.81 |
Architecture 2 | 92% | 0.94 | 0.90 |
Architecture 3 | 97% | 0.97 | 0.96 |
Architecture 4 | 99% | 0.99 | 0.99 |
Label 0 | Label 1 | |
---|---|---|
Label 0 | 98.05% | 1.5% |
Label 1 | 2.0% | 98.0% |
F1-Score | 0.98% | 0.98% |
Label 0 | Label 1 | |
---|---|---|
Label 0 | 99.02% | 0.4% |
Label 1 | 1.2% | 97.1% |
F1-Score | 0.99% | 0.98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakanika, E.; Tsoukas, V.; Kakarountas, A.; Kokkinos, V. High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems. BioMedInformatics 2025, 5, 14. https://doi.org/10.3390/biomedinformatics5010014
Tsakanika E, Tsoukas V, Kakarountas A, Kokkinos V. High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems. BioMedInformatics. 2025; 5(1):14. https://doi.org/10.3390/biomedinformatics5010014
Chicago/Turabian StyleTsakanika, Evangelia, Vasileios Tsoukas, Athanasios Kakarountas, and Vasileios Kokkinos. 2025. "High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems" BioMedInformatics 5, no. 1: 14. https://doi.org/10.3390/biomedinformatics5010014
APA StyleTsakanika, E., Tsoukas, V., Kakarountas, A., & Kokkinos, V. (2025). High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems. BioMedInformatics, 5(1), 14. https://doi.org/10.3390/biomedinformatics5010014