Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties
Abstract
:1. Introduction
2. Material and Methods
2.1. Amaranth Samples
2.2. Proximate Analysis
2.3. Starch Content
2.4. Mineral Composition
2.5. Fatty Acid Composition
2.6. Statistical Analyses
3. Results
3.1. Proximate Analysis
3.2. Mineral Composition
3.3. Fatty Acid Composition
3.4. PCA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Repo-Carrasco-Valencia, R.; Peña, J.; Kallio, H.; Salminen, S. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J. Cereal Sci. 2009, 49, 219–224. [Google Scholar] [CrossRef]
- Rojas, W.; Pinto, M.; Soto, J.L. Distribución geográfica y variabilidad genética. In Granos Andinos: Avances, Logros y Experiencias Desarrolladas en Quinoa, Cañahua y Amaranto en Bolivia; Rojas, W., Soto, J.L., Pinto, M., Jager, M., Padulosi, S., Eds.; Bioversity Internacional: Roma, Italia, 2010; pp. 11–23. [Google Scholar]
- Nascimento, A.C.; Mota, C.; Coelho, I.; Gueifão, S.; Santos, M.; Matos, A.S.; Gimenez, A.; Lobo, M.; Samman, N.; Castanheira, I. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem. 2014, 148, 420–426. [Google Scholar] [CrossRef]
- Di Fabio, A.; Parraga, G. Origin, production and utilization of pseudocereals. In Pseudocereals: Chemistry and Technology; Haros, C.M.S.R., Ed.; Jhon Wiley: Hoboken, NJ, USA, 2017; pp. 1–27. [Google Scholar]
- Ikeda, S.; Yamashita, Y.; Tomura, K.; Kreft, I. Nutritional comparison in mineral characteristics between buckwheat and cereals. Fagopyrum 2006, 23, 61–65. [Google Scholar]
- Mustafa, A.F.; Seguin, P.; Gélinas, B. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes. Int. J. Food Sci. Nutr. 2011, 62, 750–754. [Google Scholar] [CrossRef]
- Bressani, R.; Gonzáles, J.M.; Zúñiga, J.; Breuner, M.; Elías, L.G. Yield, selected chemical composition and nutritive value of 14 selections of amaranth grain representing four species. J. Sci. Food Agric. 1987, 38, 347–356. [Google Scholar] [CrossRef]
- Bressani, R. Composition and nutritional properties of amaranth. In Amaranth-Biology, Chemistry and Technology, 1st ed.; Taylor & Francis Group: Oxford, UK, 1994; pp. 185–205. [Google Scholar]
- Berganza, B.E.; Moran, A.W.; Rodríguez, G.M.; Coto, N.M.; Santamaría, M.; Bressani, R. Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods Hum. Nutr. 2003, 58, 1–6. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.A.M. Dietary Fibre and Bioactive Compounds of Kernels. In Psedocereals: Chemistry and Techonology; Scgoenlechner, C.M.H.a.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 71–93. [Google Scholar]
- Fuentes, W.; Calle, C. Manejo del Cultivo del Amaranto; Latincrop—PROINPA: La Paz, Bolivia, 2017; p. 28. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Rockville, MD, USA, 2019. [Google Scholar]
- Fuentes, C.; Perez-Rea, D.; Bergenståhl, B.; Carballo, S.; Sjöö, M.; Nilsson, L. Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. Int. J. Biol. Macromol. 2019, 125, 829–838. [Google Scholar] [CrossRef]
- Perez-Rea, D.; Bergenståhl, B.; Nilsson, L. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part I: Dissolution of amylopectin. Anal. Bioanal. Chem. 2015, 407, 4315–4326. [Google Scholar] [CrossRef]
- Holm, J.; Björck, I.; Drews, A.; Asp, N.G. A Rapid Method for the Analysis of Starch. Starch Stärke 1986, 38, 224–226. [Google Scholar] [CrossRef]
- Lazarte, C.E.; Carlsson, N.-G.; Almgren, A.; Sandberg, A.-S.; Granfeldt, Y. Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. J. Food Compos. Anal. 2015, 39, 111–119. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 14th ed.; AOAC: Washington, DC, USA, 1984. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.; Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Ce 2—66: Preparation of Methyl Esters of Fatty Acids, 5th ed.; Oil Chemists’ Society: Champaign, IL, USA, 1998. [Google Scholar]
- Golay, P.-A.; Moulin, J. Determination of labeled fatty acids content in milk products, infant formula, and adult/pediatric nutritional formula by capillary gas chromatography: Collaborative study, final action 2012.13. J. AOAC Int. 2016, 99, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Derkanosova, N.; Stakhurlova, A.; Pshenichnaya, I.; Ponomareva, I.; Peregonchaya, O.; Sokolova, S. Amaranth as a bread enriching ingredient. Foods Raw Mater. 2020, 8, 223–231. [Google Scholar] [CrossRef]
- El-Soda, M.; Malosetti, M.; Zwaan, B.J.; Koornneef, M.; Aarts, M.G. Genotype× environment interaction QTL mapping in plants: Lessons from Arabidopsis. Trends Plant Sci. 2014, 19, 390–398. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Villacrés, E.; Pástor, G.; Quelal, M.B.; Zambrano, I.; Morales, S. Effect of processing on the content of fatty acids, tocopherols and sterols in the oils of quinoa (Chenopodium quinoa Willd), lupine (Lupinus mutabilis Sweet), amaranth (Amaranthus caudatus L.) and sangorache (Amaranthus quitensis L.). Glob. Adv. Res. J. Food Sci. Technol. 2013, 2, 44–53. [Google Scholar]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- Bhattacharya, S. Raw materials for extrusion of foods. In Advances in Food Extrusion Technology; Medeni Maskan, A.A., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Becker, R.; Wheleer, E.L.; Lorenz, K.; Stafford, A.E.; Grosjean, O.K.; Betschart, A.A.; Saunders, R.M. A Compositional Study of Amaranth Grain. J. Food Sci. 1981, 46, 1175–1180. [Google Scholar] [CrossRef]
- Kiani-Pouya, A.; Roessner, U.; Jayasinghe, N.S.; Lutz, A.; Rupasinghe, T.; Bazihizina, N.; Bohm, J.; Alharbi, S.; Hedrich, R.; Shabala, S. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ. 2017, 40, 1900–1915. [Google Scholar] [CrossRef] [Green Version]
- Toderich, K.; Mamadrahimov, A.; Khaitov, B.; Karimov, A.; Soliev, A.; Nanduri, K.; Shuyskaya, E. Differential Impact of Salinity Stress on Seeds Minerals, Storage Proteins, Fatty Acids, and Squalene Composition of New Quinoa Genotype, Grown in Hyper-Arid Desert Environments. Front. Plant Sci. 2020, 11, 607102. [Google Scholar] [CrossRef]
- FAO. Nutrición humana en el mundo en desarrollo. In De las Naciones Unidas para la Agricultura y la Alimentación; Latham, M.C., Ed.; FAO: Rome, Italy, 2002. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. J. Sci. Food Agric. 2001, 81, 1094–1100. [Google Scholar] [CrossRef]
- Iba, K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 2002, 53, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Coultate, T. Food: The Chemistry of Its Components, 6th ed.; The Royal Society of Chemistry: London, UK, 2016. [Google Scholar]
- Peiretti, P.; Meineri, G.; Longato, E.; Tassone, S. Chemical composition, in vitro digestibility and fatty acid profile of Amaranthus caudatus herbage during its growth cycle. Anim. Nutr. Feed. Technol. 2018, 18, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell 1995, 7, 957. [Google Scholar]
Variety | Origin (Locality, Province, Department) | Altitude | Growth Cycle | Yield |
---|---|---|---|---|
(masl) | (days) | (T/ha) | ||
Oscar Blanco | Mojocoya, Zudañes, Chuquisaca | 2339 | 150–180 | 1.5–2.0 |
Pucara | Padilla, Tomina, Chuquisaca | 2102 | 90–110 | 1.0–1.5 |
Tomina | Padilla, Tomina, Chuquisaca | 2102 | 120–130 | 1.4–1.6 |
Cotahuasi | Tomina, Tomina, Chuquisaca | 2300 | 139–143 | 1.3–1.5 |
Barbechos | Tomina, Tomina, Chuquisaca | 2300 | 133–143 | 1.1–1.3 |
Guindo Criollo | Tomina, Tomina, Chuquisaca | 2300 | 140–148 | 1.3–1.45 |
Varieties | ||||||
---|---|---|---|---|---|---|
Oscar Blanco | Pucara | Tomina | Cotahuasi | Barbechos | Guindo Criollo | |
Proximate (g/100 g) | ||||||
Protein | 14.5 ± 0.69 bc | 14.8 ± 0.33 c | 13.1 ± 0.25 a | 15.4 ± 0.66 c | 13.4 ± 0.14 ab | 14.9 ± 0.08 c |
Fat | 8.35 ± 0.20 a | 8.13 ± 0.14 a | 8.08 ± 0.13 a | 8.37 ± 0.13 a | 9.50 ± 0.08 c | 9.01 ± 0.02 b |
Ash | 2.50 ± 0.02 ab | 2.72 ± 0.02 cd | 2.64 ± 0.15 bc | 2.61 ± 0.09 bc | 2.83 ± 0.07 d | 2.39 ± 0.03 a |
Crude Fiber | 4.48 ± 0.22 cd | 4.59 ± 0.12 d | 3.83 ± 0.14 ab | 3.83 ± 0.13 ab | 4.07 ± 0.1 bc | 3.60 ± 0.08 a |
Carbohydrates | 70.1 ± 1.1 a | 69.8 ± 0.45 a | 72.6 ± 0.49 b | 69.8 ± 0.90 a | 70.0 ± 0.20 a | 70.1 ± 0.15 a |
Starch * | 60.0 ± 0.34 a | 60.9 ± 0.43 ab | 64.7 ± 1.4 c | 62.9 ± 1.3 bc | 62.8 ± 0.57 bc | 64.0 ± 0.79 c |
Macro-minerals (mg/100 g) | ||||||
P | 463 ± 2.3 c | 480 ± 2.6 d | 446 ± 5.1 b | 458 ± 1.1 c | 577 ± 2.7 e | 339 ± 2.9 a |
Na | 3.50 ± 0.14 c | 2.60 ± 0.09 b | 2.71 ± 0.10 b | 2.62 ± 0.09 b | 2.80 ± 0.11 b | 1.82 ± 0.01 a |
K | 531 ± 4.4 d | 494 ± 5.2 b | 519 ± 2.8 c | 482 ± 2.0 a | 509 ± 3.0 c | 509 ± 5.7 c |
Ca | 63.9 ± 0.70 a | 108 ± 1.9 d | 81.1 ± 0.42 b | 79.1 ± 3.3 b | 88.4 ± 3.6 c | 76.8 ± 1.3 b |
Mg | 236 ± 0.91 b | 278 ± 3.8 c | 237 ± 0.39 b | 208 ± 1.5 a | 294 ± 5.3 d | 206 ± 2.5 a |
Micro-minerals (mg/100 g) | ||||||
Zn | 3.47 ± 0.08 a | 4.23 ± 0.06 c | 4.67 ± 0.03 d | 3.94 ± 0.15 b | 3.84 ± 0.09 b | 4.35 ± 0.07 c |
Mn | 2.72 ± 0.05 b | 4.06 ± 0.06 c | 5.90 ± 0.15 d | 1.88 ± 0.03 a | 2.53 ± 0.02 b | 3.99 ± 0.07 c |
Fe | 7.52 ± 0.11 a | 11.2 ± 0.08 d | 9.13 ± 0.21 bc | 9.85 ± 0.13 c | 8.77 ± 0.21 b | 14.8 ± 0.71 e |
Cu | 0.83 ± 0.01 b | 1.04 ± 0.02 c | 1.03 ± 0.04 c | 0.74 ± 0.01 a | 0.76 ± 0.01 ab | 1.23 ± 0.05 d |
Varieties | ||||||
---|---|---|---|---|---|---|
Oscar Blanco | Pucara | Tomina | Cotahuasi | Barbechos | Guindo Criollo | |
Palmitic C16:0 | 17.2 ± 0.94 a | 17.4 ± 0.42 a | 17.1 ± 1.4 a | 17.2 ± 0.54 a | 16.2 ± 0.50 a | 17.5 ± 0.64 a |
Stearic C18:0 | 2.64 ± 0.42 a | 3.51 ± 0.38 ab | 2.99 ± 0.62 a | 2.89 ± 0.11 a | 2.72 ± 0.43 a | 4.10 ± 0.08 b |
Oleic C18:1 (MUFA) | 29.1 ± 0.90 bc | 29.1 ± 0.34 bc | 29.3 ± 1.2 c | 26.8 ± 0.58 a | 34.6 ± 0.26 d | 27.2 ± 0.18 ab |
Linoleic C18:2 (ω6) | 46.2 ± 1.3 b | 45.3 ± 1.0 b | 45.6 ± 1.0 b | 49.1 ± 0.70 c | 41.3 ± 0.99 a | 46.1 ± 0.34 b |
Linolenic C18:3 (ω3) | 0.48 ± 000 a | - | 0.50 ± 0.06 a | 0.57 ± 0.02 a | 0.58 ± 0.07 a | 0.40 ± 0.16 a |
Araquidic C20:0 | 0.74 ± 0.03 c | 0.18 ± 0.31 a | 0.77 ± 0.12 c | 0.43 ± 0.37 ab | 0.68 ± 0.03 ab | 0.80 ± 0.09 c |
Behenic C22:0 | - | - | - | - | 0.25 ± 0.02 a | 0.31 ± 0.02 a |
Erusic C22:1 | - | - | - | - | - | - |
Tricosanic C23:0 | 3.63 ± 0.20 a | 4.24 ± 0.21 b | 3.75 ± 0.19 ab | 3.21 ± 0.20 a | 3.75 ± 0.09 ab | 3.58 ± 0.35 a |
Lignoceric C24:0 | - | - | - | - | - | 0.16 ± 0.02 |
SFA | 20.6 ± 0.58 a | 21.1 ± 0.68 ab | 20.8 ± 1.0 ab | 20.5 ± 0.78 b | 19.8 ± 0.69 a | 22.7 ± 0.30 b |
PUFA | 46.7 ± 1.3 b | 45.4 ± 0.85 b | 46.1 ± 1.0 b | 49.7 ± 0.38 c | 41.9 ± 1.0 a | 46.5 ± 0.36 b |
UFA | 75.8 ± 0.38 b | 74.4 ± 0.86 ab | 75.4 ± 0.82 ab | 76.2 ± 0.94 b | 76.5 ± 0.76 b | 73.7 ± 0.43 a |
ω6/ω3 | 96.3 ±2.7 d | - | 91.9 ± 9.0 c | 85.5 ± 0.32 b | 72.3 ± 8.2 a | 128 ± 27 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mérida-López, J.; Pérez, S.J.; Bergenståhl, B.; Purhagen, J.; Rojas, C.C. Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties. Crops 2023, 3, 78-87. https://doi.org/10.3390/crops3010008
Mérida-López J, Pérez SJ, Bergenståhl B, Purhagen J, Rojas CC. Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties. Crops. 2023; 3(1):78-87. https://doi.org/10.3390/crops3010008
Chicago/Turabian StyleMérida-López, Jenny, Sander Jonathan Pérez, Björn Bergenståhl, Jeanette Purhagen, and Cinthia Carola Rojas. 2023. "Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties" Crops 3, no. 1: 78-87. https://doi.org/10.3390/crops3010008
APA StyleMérida-López, J., Pérez, S. J., Bergenståhl, B., Purhagen, J., & Rojas, C. C. (2023). Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties. Crops, 3(1), 78-87. https://doi.org/10.3390/crops3010008