Evaluating the Yield of Three Legume Crop Varieties under Hawaii’s Micro-Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Crops
2.1.1. Chickpea (Cicer arietinum)
2.1.2. Common Bean (Phaseolus vulgaris)
2.1.3. Cowpea (Vigna unguiculata)
2.2. Study Site
2.3. Planting–Harvesting Dates and Experimental Design
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Sowing (Planting) Date and Crop Rotation on Legume Yield
3.2. Effect of Genotype X Environment on Chickpea Yield
3.3. Effect of Genotype X Environment on Common Bean Yield
3.4. Effect of Genotype X Environment on Cowpea Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeSchutter, O. Special Rapporteur on the Right to Food. 2012. Available online: https://www.ohchr.org/en/special-procedures/sr-food (accessed on 16 March 2020).
- Annamalai, H.; Keener, V.; Widlansky, M.J.; Hanfer, J. El Nino Strengthen in the Pacific: Preparing for the Impact of Drought; Asia Pacific Issues, East-West Center: Honolulu, Hawaii, 2015; N. 122; Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/api122.pdf (accessed on 16 March 2020).
- FAO. The International Year of Pulses Final Report. 2019. Available online: https://www.fao.org/3/CA2853EN/ca2853en.pdf (accessed on 16 March 2020).
- FAO. The State of Food Insecurity in the World. Addressing Food Insecurity in Protracted Crises. 2010. Available online: https://www.fao.org/3/i1683e/i1683e.pdf (accessed on 16 March 2020).
- Yadav, S.; Kanwar, R.S. Effect of Crop Rotation with Legumes and Some Other Crops on Soil Health and Population of Heteroderaavenae. Indian J. Nematol. 2019, 49, 44–52. [Google Scholar]
- Fageria, N.K.; Baligae, V.C.; Bailey, B.A. Role of Cover Crops in Improving Soil and Row Crop Productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Tylka, G.L.; Gebhart, G.D.; Marett, C.C.; Mullaney, M.P. Evaluation of Soybean Varieties Resistant to Soybean Cyst Nematode in Iowa. Iowa State University. 2021. Available online: https://store.extension.iastate.edu/product/Evaluation-of-Soybean-Varieties-Resistant-to-Soybean-Cyst-Nematode-in-Iowa-2021 (accessed on 20 December 2022).
- Crop Life International. Integrated Pest Management. Crop Life International, Belgium. 2014. Available online: https://croplife.org/wp-content/uploads/pdf_files/Integrated-pest-management.pdf (accessed on 16 March 2020).
- Shrestha, S.; Asch, F.; Dusserre, J.; Ramanantsoanirina, A.; Brueck, H. Climate effects on yield components as affected by genotypic responses to variable environmental conditions in upland rice systems at different altitudes. Field Crops Res. 2012, 134, 216–228. [Google Scholar] [CrossRef]
- Minor, T.; Bond, J.K. Vegetables and Pulses Outlook. USDA-Economic Research Service. 2017. Available online: https://www.ers.usda.gov/webdocs/outlooks/83350/vgs-358.pdf?v=20.2 (accessed on 16 March 2020).
- Gezahegn, A.M.; Tafes, B.; Eshetu, S. Boosting Chickpea Production by Optimizing Inter-Row and Intra-row Spacing at Central Highlands of Ethiopia. Int. J. Agron. 2022, 2022, 4139645. [Google Scholar] [CrossRef]
- Fageriaa, N.K.; Baligarb, V.C.; Moreirac, A.; Portesd, T.A. Dry Bean Genotypes Evaluation for Growth, Yield Components and Phosphorus Use Efficiency. J. Plant Nutr. 2010, 33, 2167–2181. Available online: http://www.informaworld.com/smpp/title~content=t713597277 (accessed on 16 March 2020). [CrossRef]
- Langyan, S.; Yadava, P.; Nazish Khan, F.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutrition 2022, 18, 772573. [Google Scholar] [CrossRef]
- Pietrysiak, E.; Smith, D.M.; Smith, B.M.; Ganjyal, G.M. Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chem. 2018, 243, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.T.; Yasmeen, A.; Abassi, A.R.; Qureshi, A.S.; Gafoor, A.; Memon, M.; Soomro, N. Evaluation of Chickpea Genotypes Under Different Environments for Stability of Quantitative Traits. Sindh Univ. Res. J. 2015, 47, 559–562. [Google Scholar]
- Zhang, C.; McGee, R.J.; Vandemark, G.J.; Sankaran, S. Crop Performance Evaluation of Chickpea and Dry Pea Breeding Lines Across Seasons and Locations Using Phenomics Data. Front. Plant Sci. 2021, 12, 640259. [Google Scholar] [CrossRef]
- Merga, J.T. Evaluation of common bean varieties (Phaseolus vulgaris L.) to different row-spacing in Jimma, South Western Ethiopia. Heliyon 2020, 6, e04822. [Google Scholar] [CrossRef] [PubMed]
- Peña-Ortega, M.G.; Serrano-Covarrubias, L.M.; Martínez-Solís, L. Exploration of Genetic Variability of Bean (Phaseolus vulgaris L.) Landraces through ISSR Markers. Athens J. Sci. 2014, 1, 165–174. [Google Scholar] [CrossRef]
- Nkhata, W.; Shimelis, H.; Chirwa, R. Productivity of Newly Released Common Bean (Phaseolus vulgaris L.) Varieties Under Sole Cropping and Intercropping with Maize (Zea mays L.). Front. Plant Sci. 2021, 5, 741177. [Google Scholar] [CrossRef]
- Katuuramu, D.N.; Luyima, G.B.; Nkalubo, S.T.; Wiesinger, J.A.; Kelly, J.D.; Cichy, K.A. On-farm multi-location evaluation of genotype by environment interactions for seed yield and cooking time in common bean. Sci. Rep. 2020, 10, 3628. Available online: https://www.nature.com/articles/s41598-020-60087-2 (accessed on 27 December 2021). [CrossRef]
- Yegrem, L.; Mengestu, D.; Legesse, O.; Abebe, W.; Girma, N. Nutritional compositions and functional properties of New Ethiopian chickpea varieties: Effects of variety, grown environment and season. Int. J. Food Prop. 2022, 25, 1485–1497. [Google Scholar] [CrossRef]
- Namvar, A.; Sharifi, R.S.; Khandan, T. Growth analysis and yield of chickpea (Cicer arietinum L.) in relation to organic and inorganic nitrogen fertilization. Ekologija 2011, 57, 97–108. [Google Scholar] [CrossRef]
- Garden-Robinson, J.; McNeal, K. All About Beans. North Dakota State University. 2019. Available online: https://www.ndsu.edu/agriculture/sites/default/files/2022-06/fn1643.pdf (accessed on 16 March 2020).
- Singh, B.B. Cowpea: The Food Legume of the 21st Century. ASA, CSSA, and SSSA Books; Wiley: Madison, WI, USA, 2014; 192p. [Google Scholar]
- Srinivas, J.; Kale, V.S.; Nagre, P.K. Evaluation of Different Cowpea Varieties and Genotypes. Int. J. Pure Appl. Biosci. 2017, 5, 329–334. [Google Scholar] [CrossRef]
- Agbogidi, O.M.; Egho, E.O. Evaluation of eight varieties of cowpea (Vigna unguiculata (L.) Walp) in Asaba agro-ecological environment, Delta State, Nigeria. Eur. J. Sustain. Dev. 2012, 1, 303–314. [Google Scholar] [CrossRef]
- Deenik, J.; McClellan, A.T. Soils of Hawaii. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa. 2007. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/scm-20.pdf (accessed on 16 March 2020).
- Kavut, Y.T.; Geren, H.; Avcioglu, R.; Soya, H. Effects of previous legume crop levels of nitrogen and sowing date on yield components and some morphological characteristics of corn. Legume Res. 2015, 38, 341–347. [Google Scholar] [CrossRef]
- Mutari, B.; Sibiya, J.; Gasura, E.; Matova, P.M.; Simango, K.; Kondwakwenda, A. Genetic analysis of grain yield and yield-attributing traits in navy bean (Phaseolus vulgaris L.) under drought stress. Euphytica 2022, 218, 51. [Google Scholar] [CrossRef]
- Olaleke, A.M.; Olorunfemi, O.; Akintayo, E. Compositional evaluation of cowpea (Vigna unguiculata) and scarlet runner bean (Phaseolus coccineus) varieties grown in Nigeria. J. Food Agric. Environ. 2006, 4, 39–43. [Google Scholar]
- Mekonnen, T.W.; Mekbib, F.; Amsalu, B.; Gedil, M.; Labuschagne, M. Genotype by environment interaction and grain yield stability of drought tolerant cowpea landraces in Ethiopia. Euphytica 2022, 5, 57. [Google Scholar] [CrossRef]
- Bhatia, A.; Mina, U.; Kumar, V.; Tomer, R.; Kumar, A.; Chakrabarti, B.; Singh, R.N.; Singh, B. Effect of elevated ozone and carbon dioxide interaction on growth, yield, nutrient content and wilt disease severity in chickpea grown in Northern India. Heliyon 2021, 7, e06049. [Google Scholar] [CrossRef] [PubMed]
Site | Location * | Annual Rainfall * | Average Min/Max Temperature * | Soil Type ** |
---|---|---|---|---|
Poamoho Research Station | Waialua, Oahu County | 889 mm | 19 °C/28 °C | Wahiawa series: Very-fine, kaolinitic, isohyperthermic Rhodic Haplustox |
Lalamilo Research Station | Waimea, Hawaii County | 1270 mm | 15 °C/23 °C | Waimea series: Medial, amorphic, isothermic Humic Haplustands |
Kula Agricultural Park | Kula, Maui County | 635 mm | 16 °C/27 °C | Keahua series: Fine, kaolinitic, isohyperthermic Torroxic Haplustoll |
Beck’s Superior Hybrids | Kekaha, Kauai County | 584 mm | 19 °C/29 °C | Kekaha series: Very-fine, parasesquic, isohyperthermic Typic Haplocambids |
S.O.V. | D.F. | Chickpea | S.O.V. | D.F. | Common Bean | S.O.V. | D.F. | Cowpea |
---|---|---|---|---|---|---|---|---|
Block | 2 | Block | 2 | Block | 2 | |||
Location (A) | 2 | ** | Location (A) | 2 | ** | Location (A) | 2 | ** |
Error (A) | 4 | Error (A) | 4 | Error (A) | 4 | |||
Variety (B) | 23 | ** | Variety (B) | 20 | ** | Variety (B) | 9 | ** |
A X B | 46 | ** | AXB | 40 | ** | AXB | 18 | ** |
Error (B) | 138 | Error (B) | 120 | Error (B) | 54 | |||
Total | 215 | Total | 188 | Total | 89 |
Chickpea Variety | Dry Seed Yield (g/plot) | Chickpea Variety | Dry Seed Yield (g/plot) | ||||||
---|---|---|---|---|---|---|---|---|---|
Oahu | Maui | Kauai | Hawaii | Oahu | Maui | Kauai | Hawaii | ||
Sierra | 200 D | 94 F | 231 | 322 B | JG11 | 200 D | 212 D | 81 | 128 F |
Dylan | 150 E | 68 F | 94 | 384 B | Kabuli2 | 25 F | 60 G | 312 | 40 G |
Alma | 324 B | 40 G | 231 | 224 D | Jaki | 350 A | 452 A | 415 | 120 F |
Orion | 259 C | 255 D | 351 | 455 A | PI583753 | 175 E | 170 D | 428 | 159 E |
Myles | 255 C | 149 E | 380 | 105 F | Royal | 390 A | 370 B | 435 | 400 A |
Green | 347 A | 425 A | 291 | 50 G | Nash | 175 E | 171 D | 258 | 160 E |
Frontier | 374 A | 30 G | 435 | 304 C | PI360279 | 200 D | 140 E | 376 | 211 D |
Sawyer | 150 E | 99 E | 85 | 240 D | Noki85th | 195 D | 156 D | 126 | 218 D |
Turkish | 202 D | 270 D | 371 | 152 E | Noki1 | 133 E | 130 E | 374 | 135 EF |
BGD103 | 310 B | 365 B | 355 | 300 C | Ghab3 | 150 E | 44 G | 423 | 236 D |
Rajestan | 320 B | 352 B | 426 | 192 DE | Rafidain | 250 C | 152 E | 417 | 323 B |
Kabuli1 | 250 C | 237 D | 387 | 249 D | Harrer | 300 B | 324 C | 363 | 294 C |
Common Bean Variety | Dry Seed Yield (g/plot) | Common Bean Variety | Dry Seed Yield (g/plot) | ||||||
---|---|---|---|---|---|---|---|---|---|
Oahu | Maui | Kauai | Hawaii | Oahu | Maui | Kauai | Hawaii | ||
Mayocoba | 390 B | 412 B | 306 | 458 B | Gancho | 279 C | 233 D | 360 | 244 D |
Black Coco | 370 B | 507 A | 293 | 300 C | Dragon Tongue | 278 C | 283 C | 252 | 300 C |
Black Turtle | 305 C | 292 C | 331 | 296 C | Appaloosa | 150 E | 147 D | 138 | 149 E |
Black Bean | 425 AB | 363 B | 422 | 488 B | Vermont Appaloosa | 279 C | 335 B | 212 | 289 CD |
Cranberry | 430 A | 408 B | 385 | 504 A | Rockwell | 265 C | 259 C | 209 | 328 C |
Kanearly Yellow Eye | 215 D | 254 C | 188 | 207 D | Tiger’s Eye | 300 C | 353 B | 212 | 339 C |
Jumbo Roman | 222 D | 282 C | 121 | 264 D | Tongue of Fire | 250 D | 255 C | 194 | 300 C |
Anasazi | 435 A | 464 A | 356 | 477 B | Hidasta Red | 357 B | 265 C | 422 | 383 C |
Anasazi Heirloom | 450 A | 481 A | 260 | 580 A | Cannellani | 451 A | 454 A | 435 | 465 B |
Dominican Red Speckled | 265 C | 193 D | 253 | 350 C | Kebarika | 435 A | 473 A | 405 | 425 BC |
Pink Bean | 500 A | 472 A | 509 | 507 A |
Cowpea Variety | Dry Seed Yield (g/plot) | Cowpea Variety | Dry Seed Yield (g/plot) | ||||
---|---|---|---|---|---|---|---|
Oahu | Maui | Hawaii | Oahu | Maui | Hawaii | ||
Big Boy | 300 D | 315 D | 375 C | Kiawah | 614 AB | 620 A | 340 C |
Colosus | 281 D | 305 D | 550 BC | QP Pinkeye | 322 C | 360 C | 340 C |
Coronet | 690 A | 400 B | 825 A | TP Pinkeye | 361 C | 360 C | 790 A |
Dixie Lee | 558 B | 440 B | 350 C | Zipper Cream | 695 A | 230 E | 635 B |
Hercules | 547 B | 280 D | 650 B | TP Brown | 350 C | 120 F | 190 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.A.; Radovich, T.J.K.; Sugano, J.; Wang, K.-H.; Nguyen, H.V.; Uyeda, J.; Wages, S.; Tavares, K.; Kirk, E.; Kantar, M. Evaluating the Yield of Three Legume Crop Varieties under Hawaii’s Micro-Climates. Crops 2024, 4, 242-255. https://doi.org/10.3390/crops4020018
Ahmad AA, Radovich TJK, Sugano J, Wang K-H, Nguyen HV, Uyeda J, Wages S, Tavares K, Kirk E, Kantar M. Evaluating the Yield of Three Legume Crop Varieties under Hawaii’s Micro-Climates. Crops. 2024; 4(2):242-255. https://doi.org/10.3390/crops4020018
Chicago/Turabian StyleAhmad, Amjad A., Theodore J. K. Radovich, Jari Sugano, Koon-Hui Wang, Hue V. Nguyen, Jensen Uyeda, Sharon Wages, Kylie Tavares, Emilie Kirk, and Michael Kantar. 2024. "Evaluating the Yield of Three Legume Crop Varieties under Hawaii’s Micro-Climates" Crops 4, no. 2: 242-255. https://doi.org/10.3390/crops4020018
APA StyleAhmad, A. A., Radovich, T. J. K., Sugano, J., Wang, K. -H., Nguyen, H. V., Uyeda, J., Wages, S., Tavares, K., Kirk, E., & Kantar, M. (2024). Evaluating the Yield of Three Legume Crop Varieties under Hawaii’s Micro-Climates. Crops, 4(2), 242-255. https://doi.org/10.3390/crops4020018