Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review
Abstract
:1. Introduction
2. Phenomics
2.1. Proximal Sensing Phenomics in Controlled Environments
2.1.1. Shoot Phenomics
2.1.2. Root Phenomics
2.2. Ground-Based Phenomics in Field Environments
2.2.1. Ground-Based Mobile Platforms
2.2.2. Fixed Ground-Based Platforms
2.3. Remote Sensing Phenomics for Large-Scale Field Trials
2.3.1. Drone-Based Phenotyping
2.3.2. Satellite-Based Phenotyping
2.4. Integrated Phenomics Platforms
2.4.1. Multi-Modal Imaging Systems
2.4.2. Integrated Drone-Ground Platforms
2.4.3. Applications of LiDAR in Integrated Phenomics
2.4.4. Multi-Omics Data Integration for Enhanced Insights
3. Imaging Techniques
3.1. Visible Light Imaging
3.2. Infrared and Thermal-Based Imaging
3.3. Fluorescence Imaging
3.4. Spectroscopy Imaging
3.5. Integrated Imaging Techniques
4. Plant Phenomics Data Management
4.1. Automated Data Collection and Sensor Fusion
4.2. Data Storage, Cloud Computing, and Computational Advances
4.3. Multi-Omics Data Integration and AI-Driven Annotation
4.4. Data Quality Management and AI-Enhanced Phenotype Predictions
4.5. Practical Applications in Breeding and Sustainable Agriculture
5. Current Advancements and Impact of Phenomics Studies on Abiotic Stress Management
6. Challenges and Limitations
7. Future Directions in Phenomics for Sustainable Agriculture
7.1. Cost and Scalability
7.2. Integration of AI and Machine Learning
7.3. Interdisciplinary Collaboration
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Ashraful Alam, M.; Syed, M.A.; Hossain, J.; Sarkar, S.; Saha, S.; Bhadra, P.; et al. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 2020, 11, 241. [Google Scholar] [CrossRef]
- Bakala, H.S.; Singh, G.; Srivastava, P. Smart breeding for climate resilient agriculture. In Plant Breeding-Current and Future Views; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Al-Tamimi, N.; Langan, P.; Bernád, V.; Walsh, J.; Mangina, E.; Negrão, S. Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol. 2022, 12, 210–353. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Gill, S.K.; Saini, D.K.; Chopra, Y.; de Koff, J.P.; Sandhu, K.S. A comprehensive review of high-throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2022, 2, 156–183. [Google Scholar] [CrossRef]
- Arya, S.; Sandhu, K.S.; Singh, J.; Kumar, S. Deep learning: As the new frontier in high-throughput plant phenotyping. Euphytica 2022, 218, 47. [Google Scholar] [CrossRef]
- Khan, A.; Vibhute, A.D.; Mali, S.; Patil, C.H. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecol. Inform. 2022, 69, 101–678. [Google Scholar] [CrossRef]
- Su, W.H. Advanced machine learning in point spectroscopy, RGB-and hyperspectral-imaging for automatic discriminations of crops and weeds: A review. Smart Cities 2020, 3, 767–792. [Google Scholar] [CrossRef]
- Atefi, A.; Ge, Y.; Pitla, S.; Schnable, J. Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives. Front. Plant Sci. 2021, 12, 611–940. [Google Scholar] [CrossRef]
- Li, D.; Quan, C.; Song, Z.; Li, X.; Yu, G.; Li, C.; Muhammad, A. High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Front. Bioeng. Biotechnol. 2021, 8, 623–705. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 50–87. [Google Scholar] [CrossRef]
- Smith, D.T.; Potgieter, A.B.; Chapman, S.C. Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theor. Appl. Genet. 2021, 134, 1845–1866. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.I.; Hu, H.; Gill, M.; Batley, J.; Edwards, D. Crop breeding for a changing climate: Integrating phenomics and genomics with bioinformatics. Theor. Appl. Genet. 2021, 134, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.S.M.; Neik, T.X.; Thomas, W.J.; Amas, J.C.; Cantila, A.Y.; Craig, R.J.; Edwards, D.; Batley, J. Advancing designer crops for climate resilience through an integrated genomics approach. Curr. Opin. Plant Biol. 2022, 67, 102–220. [Google Scholar] [CrossRef]
- Zavafer, A.; Bates, H.; Mancilla, C.; Ralph, P.J. Phenomics: Conceptualization and importance for plant physiology. Trends Plant Sci. 2023, 28, 1004–1013. [Google Scholar] [CrossRef]
- Sen, P.; Orešič, M. Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites 2023, 13, 855. [Google Scholar] [CrossRef]
- Roitsch, T.; Himanen, K.; Chawade, A.; Jaakola, L.; Nehe, A.; Alexandersson, E. Functional phenomics for improved climate resilience in Nordic agriculture. J. Exp. Bot. 2022, 73, 5111–5127. [Google Scholar] [CrossRef]
- Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3232–3245. [Google Scholar] [CrossRef]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Golzarian, M.R.; Frick, R.A.; Rajendran, K.; Berger, B.; Roy, S.; Tester, M.; Lun, D.S. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 2011, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Gilmer, F.; Biskup, B.; Nagel, K.A.; Rascher, U.; Fischbach, A.; Briem, S.; Dreissen, G.; Tittmann, S.; Braun, S.; et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 2009, 36, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Awlia, M.; Nigro, A.; Fajkus, J.; Schmoeckel, S.M.; Negrão, S.; Santelia, D.; Trtílek, K.; Tester, M.; Julkowska, M.M.; Panzarová, K. High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 1414. [Google Scholar] [CrossRef]
- Czedik-Eysenberg, A.; Seitner, S.; Güldener, U.; Koemeda, S.; Jez, J.; Colombini, M.; Djamei, A. The ‘PhenoBox’, a flexible, automated, open-source plant phenotyping solution. New Phytol. 2018, 219, 808–823. [Google Scholar] [CrossRef]
- Rahaman, M.; Chen, D.; Gillani, Z.; Klukas, C.; Chen, M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 2015, 6, 619. [Google Scholar] [CrossRef]
- Reuzeau, C.; Frankard, V.; Hatzfeld, Y.; Sanz, A.; Van Camp, W.; Lejeune, P.; De Wilde, C.; Lievens, K.; de Wolf, J.; Vranken, E. TraitmillTM: A functional genomics platform for the phenotypic analysis of cereals. Plant Gen. Res. 2006, 4, 20–24. [Google Scholar] [CrossRef]
- Kumar, M.; Mahato, A.; Kumar, S.; Mishra, V.K. Phenomics-assisted breeding: An emerging way for stress management. In New Frontiers in Stress Management for Durable Agriculture; Springer: Singapore, 2020; pp. 295–310. [Google Scholar] [CrossRef]
- Yazdanbakhsh, N.; Fisahn, J. High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM. Funct. Plant Biol. 2009, 36, 938–946. [Google Scholar] [CrossRef]
- Galkovskyi, T.; Mileyko, Y.; Bucksch, A.; Moore, B.; Symonova, O.; Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S.; Zurek, P.R.; Fang, S. GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 2012, 12, 116. [Google Scholar] [CrossRef]
- Nagel, K.A.; Putz, A.; Gilmer, F.; Heinz, K.; Fischbach, A.; Pfeifer, J.; Faget, M.; Blossfeld, S.; Ernst, M.; Dimaki, C.; et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 2012, 39, 891–904. [Google Scholar] [CrossRef]
- Garbout, A.; Munkholm, L.J.; Hansen, S.B.; Petersen, B.M.; Munk, O.L.; Pajor, R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions. Plant Soil 2012, 352, 113–127. [Google Scholar] [CrossRef]
- Jahnke, S.; Menzel, M.I.; van Dusschoten, D.; Roeb, G.W.; Buhler, J.; Minwuyelet, S.; Blumler, P.; Temperton, V.M.; Hombach, T.; Streun, M.; et al. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J. 2009, 59, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 2019, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Tehran, P.; Sabermanesh, K.; Virlet, N.; Hawkesford, M.J. Automated method to determine two critical growth stages of wheat: Heading and flowering. Front. Plant Sci. 2017, 8, 252. [Google Scholar] [CrossRef]
- Weight, C.; Parnham, D.; Waites, R. TECHNICAL ADVANCE: Leaf Analyser: A computational method for rapid and large-scale analyses of leaf shape variation. Plant J. 2007, 53, 578–586. [Google Scholar] [CrossRef]
- Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, H.P.; Reif, J.C.; Würschum, T.; Müller, J.; et al. BreedVision—A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 2013, 13, 2830–2847. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Zhang, X.; Ibrahim, Z.; Khaskheli, M.B.; Raza, H.; Zhou, F.; Shamsi, I.H. Integrative Approaches to Abiotic Stress Management in Crops: Combining Bioinformatics Educational Tools and Artificial Intelligence Applications. Sustainability 2024, 16, 7651. [Google Scholar] [CrossRef]
- Confalonieri, R.; Paleari, L.; Foi, M.; Movedi, E.; Vesely, F.M.; Thoelke, W.; Agape, C.; Borlini, G.; Ferri, I.; Massara, F.; et al. PocketPlant3D: Analysing canopy structure using a smartphone. Biosyst. Eng. 2017, 164, 1–12. [Google Scholar] [CrossRef]
- Duan, L.; Yang, W.; Huang, C.; Liu, Q. A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods 2011, 7, 44. [Google Scholar] [CrossRef]
- Crowell, S.; Falcão, A.X.; Shah, A.; Wilson, Z.; Greenberg, A.J.; McCouch, S.R. High-resolution inflorescence phenotyping using a novel image-analysis pipeline, PANorama. Plant Physiol. 2014, 165, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Al-Tam, F.; Adam, H.; Anjos, A.D.; Lorieux, M.; Larmande, P.; Ghesquière, A.; Jouannic, S.; Shahbazkia, H.R. P-TRAP: A panicle trait phenotyping tool. BMC Plant Biol. 2013, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Hughes, N.; Oliveira, H.R.; Fradgley, N.; Corke, F.M.; Cockram, J.; Doonan, J.H.; Nibau, C. Trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant J. 2019, 99, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.; Askew, K.; Scotson, C.P.; Williams, K.; Sauze, C.; Corke, F.; Doonan, J.H.; Nibau, C. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography. Plant Methods 2017, 13, 76. [Google Scholar] [CrossRef]
- Harris, Z.N.; Awale, M.; Bhakta, N.; Chitwood, D.H.; Fennell, A.; Frawley, E.; Klein, L.L.; Kovacs, L.G.; Kwasniewski, M.; Londo, J.P.; et al. Multi-dimensional leaf phenotypes reflect root system genotype in grafted grapevine over the growing season. Giga Sci. 2021, 10, giab087. [Google Scholar] [CrossRef]
- Clark, R.T.; MacCurdy, R.B.; Jung, J.K.; Shaff, J.E.; McCouch, S.R.; Aneshansley, D.J.; Kochian, L.V. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 2011, 156, 455–465. [Google Scholar] [CrossRef]
- Armengaud, P.; Zambaux, K.; Hills, A.; Sulpice, R.; Pattison, R.J.; Blatt, M.R.; Amtmann, A. EZ-Rhizo: Integrated software for the fast and accurate measurement of root system architecture. Plant J. 2009, 57, 945–956. [Google Scholar] [CrossRef]
- Naeem, A.; French, A.P.; Wells, D.M.; Pridmore, T.P. High throughput feature counting and measurement of roots. Bioinformatics 2011, 27, 1337–1338. [Google Scholar] [CrossRef]
- French, A.; Ubeda-Tomás, S.; Holman, T.J.; Bennett, M.J.; Pridmore, T. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol. 2009, 150, 1784–1795. [Google Scholar] [CrossRef]
- Le Bot, J.; Serra, V.; Fabre, J.; Draye, X.; Adamowicz, S.; Pagés, L. DART: A software to analyse root system architecture and development from captured images. Plant Soil. 2010, 326, 261–273. [Google Scholar] [CrossRef]
- Lobet, G.; Pagés, L.; Draye, X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011, 157, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Aguirrezabal, L.; Chenu, K.; Cookson, S.J.; Dauzat, M.; Hamard, P.; Thioux, J.J.; Rolland, G.; Bouchier-Combaud, S.; Lebaudy, A. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 2006, 169, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Czauderna, T.; Hoffmann, R.; Stein, N.; Schreiber, F. HTPheno: An image analysis pipeline for highthroughput plant phenotyping. BMC Bioinform. 2011, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.D.; Heckman, R.W.; Juenger, T.E. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. Plant Cell 2023, 35, 109–124. [Google Scholar] [CrossRef]
- Iwata, H.; Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 2002, 93, 384–385. [Google Scholar] [CrossRef]
- Iwata, H.; Ebana, K.; Uga, Y.; Hayashi, T.; Jannink, J.L. Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Mol. Breed. 2010, 25, 203–215. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-throughput phenotyping software for measuring seed shape. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef]
- Boer, M.M.; Macfarlane, C.; Norris, J.; Sadler, R.J.; Wallace, J.; Grierson, P.F. Mapping Burned Areas and Burn Severity Patterns in SW Australian Eucalypt Forest Using Remotely-Sensed Changes in Leaf Area Index. Remote Sens. Environ. 2008, 112, 4358–4369. [Google Scholar] [CrossRef]
- Yao, Y.; Yue, J.; Liu, Y.; Yang, H.; Feng, H.; Shen, J.; Hu, J.; Liu, Q. Classification of Maize Growth Stages Based on Phenotypic Traits and UAV Remote Sensing. Agriculture 2024, 14, 11–75. [Google Scholar] [CrossRef]
- Williamson, H.F.; Leonelli, S. Accelerating agriculture: Data-intensive plant breeding and the use of genetic gain as an indicator for agricultural research and development. Stud. Hist. Philos. Sci. 2002, 95, 167–176. [Google Scholar] [CrossRef]
- Mansoor, S.; Karunathilake, E.M.B.M.; Tuan, T.T.; Chung, Y.S. Genomics, Phenomics, and Machine Learning in Transforming Plant Research: Advancements and Challenges. Hortic. Plant J. 2024. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X. Machine learning bridges omics sciences and plant breeding. Trends Plant Sci. 2023, 28, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Puneet, M.; Lohumi, S.; Khan, H.A.; Nordon, A. Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Comput. Electron. Agric. 2020, 178, 105780. [Google Scholar]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef]
- Khasanova, A.; Lovell, J.T.; Bonnette, J.; Weng, X.; Jenkins, J.; Yoshinaga, Y.; Schmutz, J.; Juenger, T.E. The Genetic Architecture of Shoot and Root Trait Divergence Between Mesic and Xeric Ecotypes of a Perennial Grass. Front. Plant Sci. 2019, 10, 366. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef]
- Neilson, E.H.; Edwards, A.M.; Blomstedt, C.K.; Berger, B.; Møller, B.L.; Gleadow, R.M. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. 2015, 66, 1817–1832. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Tahir, M.U.; Al-Suhaibani, N.; Elsayed, S.; Elsherbiny, O.; Elsharawy, H. Potential of thermal and RGB imaging combined with artificial neural networks for assessing salt tolerance of wheat genotypes grown in real-field conditions. Agronomy 2024, 14, 13–90. [Google Scholar] [CrossRef]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Sirault, X.R.; Furbank, R.T.; Jones, H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 2010, 61, 3499–3507. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Ramanathan, V.; Jagadeeshselvam, N.; Ramasamy, S.; Rajendran, S.; Ramachandran, M.; Sudheer, P.D.; Chauhan, S.; Natesan, S.; Muthurajan, R. Phenomics: Technologies and Applications in Plant and Agriculture. In PlantOmics: The Omics of Plant Science; Barh, D., Khan, M., Davies, E., Eds.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Hairmansis, A.; Berger, B.; Tester, M.; Roy, S.J. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 2014, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Moustaka, J.; Moustakas, M. Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. Biosensors 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Rascher, U.; Hütt, M.T.; Siebke, K.; Osmond, B.; Beck, F.; Lüttge, U. Spatiotemporal variation of metabolism in a plant circadian rhythm: The biological clock as an assembly of coupled individual oscillators. Proc. Natl. Acad. Sci. USA 2001, 98, 11801–11805. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Role of Phenomics in Screening Abiotic Stress Tolerance in Plants. In Plant Abiotic Stress Physiology; Apple Academic Press: Point Pleasant, NJ, USA, 2022; pp. 47–59. [Google Scholar]
- Yang, L.; Yang, S.; Jin, P.; Zhang, R. Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci. Remote Sens. Lett. 2013, 11, 651–655. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Neuberger, T. Surveying the plant’s world by magnetic resonance imaging. Plant J. 2012, 70, 129–146. [Google Scholar] [CrossRef]
- Jones, A.M.; Danielson, J.A.; Kumar, M.S.N.; Lanquar, V.; Grossmann, G.; Frommer, W.B. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 2014, 3, 17–41. [Google Scholar] [CrossRef]
- Okumoto, S.; Jones, A.; Frommer, W.B. Quantitative imaging with fluorescent biosensors. Annu. Rev. Plant Biol. 2012, 63, 663–706. [Google Scholar] [CrossRef]
- Coppens, F.; Wuyts, N.; Inzé, D.; Dhondt, S. Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr. Opin. Syst. Biol. 2017, 4, 58–63. [Google Scholar] [CrossRef]
- Honecker, A.; Schumann, H.; Becirevic, D.; Klingbeil, L.; Volland, K.; Forberig, S.; Jansen, M.; Paulsen, H.; Kuhlmann, H.; Léon, J. Plant, space and time-linked together in an integrative and scalable data management system for phenomic approaches in agronomic field trials. Plant Methods 2020, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Gilliham, M.; Able, J.A.; Roy, S.J. Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J. 2017, 90, 898–917. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; Goldman, I.; Ceccarelli, S.; Ortiz, R. Advanced analytics, phenomics and biotechnology approaches to enhance genetic gains in plant breeding. Adv. Agron. 2020, 162, 89–142. [Google Scholar] [CrossRef]
- Walsh, J.; Mangina, E.E.; Negrão, S. Advancements in Imaging Sensors and AI for Plant Stress Detection: A Systematic Literature Review. Plant Phenomics 2024, 6, 0153. [Google Scholar] [CrossRef]
- Machwitz, M.; Pieruschka, R.; Berger, K.; Schlerf, M.; Aasen, H.; Fahrner, S.; Jiménez-Berni, J.; Baret, F.; Rascher, U. Bridging the gap between remote sensing and plant phenotyping—Challenges and opportunities for the next generation of sustainable agriculture. Front. Plant Sci. 2021, 12, 749374. [Google Scholar] [CrossRef]
- Xu, L.; Cruz, J.A.; Savage, L.J.; Kramer, D.M.; Chen, J. Plant photosynthesis phenomics data quality control. Bioinformatics 2015, 31, 1796–1804. [Google Scholar] [CrossRef]
- Nabwire, S.; Suh, H.K.; Kim, M.S.; Baek, I.; Cho, B.K. Application of artificial intelligence in phenomics. Sensors 2021, 21, 43–63. [Google Scholar] [CrossRef]
- Römer, C.; Wahabzada, M.; Ballvora, A.; Pinto, F.; Rossini, M.; Panigada, C.; Behmann, J.; Léon, J.; Thurau, C.; Bauckhage, C.; et al. Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Funct. Plant Biol. 2012, 39, 878–890. [Google Scholar] [CrossRef]
- Van Dyck, L.E.; Kwitt, R.; Denzler, S.J.; Gruber, W.R. Comparing object recognition in humans and deep convolutional neural networks—An eye tracking study. Front. Neurosci. 2021, 15, 750639. [Google Scholar] [CrossRef]
- Cembrowska-Lech, D.; Krzemińska, A.; Miller, T.; Nowakowska, A.; Adamski, C.; Radaczyńska, M.; Mikiciuk, G.; Mikiciuk, M. An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology 2023, 12, 1298. [Google Scholar] [CrossRef]
- Mostafa, S.; Mondal, D.; Panjvani, K.; Kochian, L.; Stavness, I. Explainable deep learning in plant phenotyping. Front. Artif. Intell. 2023, 6, 1203546. [Google Scholar] [CrossRef]
- Jurado, J.M.; López, A.; Pádua, L.; Sousa, J.J. Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102856. [Google Scholar] [CrossRef]
Application | Platform/Methodology | Key Features | Limitations | References |
---|---|---|---|---|
Shoot Phenomics | GROWSCREEN; Phenoscope; PlantScreen | Relatively inexpensive, quick, automated; suitable for controlled environments. | Limited scalability for larger crops. | [24] |
Phenovator; PHENOPSIS (DB) | High-throughput imaging for biomass and shoot traits. | Restricted by specific trait and environment types. | [24,25] | |
Scanalyzer3D; HRPF | Dynamic and automated high-resolution imaging for growth and biomass data. | Expensive setup and maintenance require technical expertise. | [11,26] | |
TraitMill | High precision in shoot growth analysis. | Requires specialized setups for diverse phenotyping contexts. | [27,28] | |
PhenoBox | Affordable and simple to use. | Limited throughput; labor-intensive for large-scale screening. | [26] | |
Hyperspectral Imaging Systems | Allows precise measurement of pigment composition and stress-induced physiological changes. | High cost; requires technical expertise for analysis. | [29] | |
Root Phenomics | RhizoTubes; RootReader3D | Captures detailed root architecture; low-cost 2D root mapping. | Requires transparent medium; limited spatial realism compared to in-soil setups. | [30,31] |
GROWSCREEN-Rhizo | High-throughput for root and shoot traits. | Development restricted in 2D rhizotrons; lacks field applicability. | [32] | |
PET-CT; MRI-PET; MRI-CT | Captures high-resolution 3D root systems and dynamics. | Expensive and time-consuming; limited availability for agricultural research. | [33,34] | |
CT Scan and 3D Modeling | Enables complete reconstruction of root growth patterns. | High cost and complex data processing required. | [35] | |
Field-Based Phenomics | Field Scanalyzer | Integrates multiple sensors for detailed analysis; high spatial resolution. | High cost; limited adaptability to open-field conditions with variable lighting. | [36] |
CPRS | Simplifies system installation and maintenance. | Limited trait diversity; captures minimal crop information. | [37] | |
BreedVision | Stable imaging conditions; integration of various sensors. | Wet soil and wind conditions pose challenges for data accuracy. | [38] | |
Remote Sensing | Drones/UAVs | Flexible and scalable; equipped with multispectral and thermal cameras; rapid imaging. | Cannot assess traits below the canopy; operational restrictions due to aviation regulations. | [39] |
Satellites | Provides large-scale data with global coverage. | Lower spatial resolution compared to UAVs; constrained temporal frequency for high-demand monitoring. | [40] | |
Pocket Phenomics | PocketPlant3D | Low-cost, portable, and user-friendly for real-time data collection. | Limited capability for complex phenotyping; challenges with data integration and accuracy in field conditions. | [41] |
Post-Harvest Phenomics | Seed Evaluation Accelerator (SEA) | Automates threshing and measures yield-related traits efficiently. | Lacks capability to assess 3D grain characteristics. | [42] |
PANorama; P-TRAP | Directly quantifies grain traits without threshing. | Requires manual separation of samples; does not measure 3D traits. | [43,44] | |
CT Scan; X-ray | Extracts 3D grain features without threshing. | High cost; custom analysis protocols needed for new species. | [45] | |
Hyperspectral Imaging | Measures biochemical traits like protein content with high precision. | Complex and expensive; requires custom image analysis models. | [46] |
Category | Software | Primary Function | Key Advantage | Real-World Application |
---|---|---|---|---|
Root System Analysis | WinRhizo Tron [32] | Measures root area, volume, and length | High-precision root scanning | Studying root traits for drought resistance |
Root Reader 3D [48] | 3D root system architecture | Provides 3D visualization for structural analysis | Modeling root growth patterns under stress conditions | |
EZ-Rhizo [49] | Root system architecture | Automated data processing for large datasets | Root system comparisons in genetic studies | |
RootTrace [50,51] | Root morphology measurement | High-speed root length and branching analysis | Evaluating root vigor in crop breeding programs | |
DART [52] | Dynamic root analysis | Time-series tracking of root development | Understanding root-soil interactions | |
SmartRoot [53] | Quantification of root growth & architecture | Integrated with ImageJ for easy usability | Studying root growth in different soil conditions | |
Gia-Roots [31] | Root system architecture | Image-based high-throughput root assessment | Screening root traits for improved nutrient uptake | |
Leaf & Shoot Phenotyping | TraitMill [28] | Measures agronomic traits | Captures multiple morphological parameters | Assessing leaf traits for yield improvement |
PHENOPSIS [54] | Measures water-deficit related traits | Specializes in drought stress responses | Drought tolerance screening in crops | |
LeafAnalyser [37] | Rapid leaf shape analysis | Automated high-throughput leaf shape detection | Phenotyping leaf shape variations in hybrids | |
HTPheno [39,55] | Shoot and leaf trait measurement | Suitable for high-throughput plant phenotyping | Large-scale plant screening for breeding programs | |
LemnaTec 3D Scanalyzer [23] | Leaf color, shape, size, and architecture | Fully automated phenotyping system | Precision agriculture and stress detection | |
Seed Morphology & Size Analysis | WinSEEDLE [56] | Seed volume and surface area measurement | Accurate 3D analysis of seed morphology | Assessing seed quality in breeding programs |
SHAPE [57,58] | Seed shape analysis | Distinguishes seed shape differences efficiently | Genetic classification based on seed shape | |
SmartGrain [59] | Seed morphology measurement | AI-based feature extraction for seed phenotyping | Identifying seed shape variation in crop genotypes |
Model Type | Function | Applications in Phenomics |
---|---|---|
Convolutional Neural Networks (CNNs) | Image-based feature extraction and classification | Used for plant trait segmentation, stress detection, and automated image analysis in high-throughput phenotyping |
Random Forest Classifiers | Decision-tree-based classification model | Used in trait classification, stress-response prediction, and genotype-phenotype mapping |
Support Vector Machines (SVMs) | Pattern recognition and classification | Applied for phenotypic trait detection, leaf shape analysis, and growth monitoring |
Random Forest Regression | Predictive modeling and ranking of variables | Used for multi-trait phenotypic prediction and breeding selection |
Long Short-Term Memory (LSTM) Networks | Time-series analysis in deep learning | Applied for multi-omics data integration, gene expression analysis, and environmental stress monitoring |
Recurrent Neural Networks (RNNs) | Predicts time-dependent phenotypic variations | Used in predicting plant growth patterns under variable environmental conditions |
Attention-Based Models | Enhances prediction accuracy by focusing on key features in complex datasets | Applied in phenotypic prediction models, multi-trait assessments, and genomic-assisted selection |
Tool/Technology | Function | Applications in Phenomics |
---|---|---|
Google Cloud, AWS, Microsoft Azure | Cloud-based storage and high-performance computing (HPC) | Facilitates data storage, large-scale phenotype data sharing, and parallel processing for genomic-phenotypic analysis |
High-Performance Computing (HPC) Clusters | Large-scale computational processing for complex models | Used in genotypic-phenotypic mapping (G2P), QTL analysis, and deep learning model training |
Federated Databases | Distributed data management across research institutions | Enables multi-institutional collaboration for phenotypic data integration |
Blockchain-Based Data Security | Secure and tamper-proof phenotyping data storage | Ensures data integrity, transparency, and controlled access to phenomics datasets |
Natural Language Processing (NLP) Models | Automates metadata annotation and dataset organization | Used in automated phenotypic dataset structuring, retrieval, and interoperability |
FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) | Standardized data documentation framework | Ensures reproducibility and accessibility of large-scale phenomics datasets |
Edge Computing | On-site data processing to minimize latency | Facilitates real-time phenotyping data processing and rapid breeding selection |
AI-Powered Image Processing Tools | Automated feature extraction and stress detection | Used in hyperspectral imaging, fluorescence analysis, and thermal imaging applications |
Big Data Analytics Platforms | Handles large-scale phenotyping datasets | Enables outlier detection, pattern recognition, and predictive modeling in breeding programs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angidi, S.; Madankar, K.; Tehseen, M.M.; Bhatla, A. Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review. Crops 2025, 5, 8. https://doi.org/10.3390/crops5020008
Angidi S, Madankar K, Tehseen MM, Bhatla A. Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review. Crops. 2025; 5(2):8. https://doi.org/10.3390/crops5020008
Chicago/Turabian StyleAngidi, Srushtideep, Kartik Madankar, Muhammad Massub Tehseen, and Anshika Bhatla. 2025. "Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review" Crops 5, no. 2: 8. https://doi.org/10.3390/crops5020008
APA StyleAngidi, S., Madankar, K., Tehseen, M. M., & Bhatla, A. (2025). Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review. Crops, 5(2), 8. https://doi.org/10.3390/crops5020008