Epidemiology of SARS-CoV-2 Infection in Ethiopia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Design and Protocol Registration
2.2. Search Strategy and Study Selection
2.3. Eligibility Criteria
2.4. Outcome Variables
2.5. Data Extraction and Quality Assessment
2.6. Statistical Analysis
3. Result
3.1. Selection and Identification of Studies
3.2. Study Characteristics
3.3. Prevalence of SARS-CoV-2 Infection
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
rRT-PCR | Real-Time Reverse-Transcriptase Polymerase-Chain-Reaction |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
URT | Upper Respiratory Tract |
WHO | World health organization |
References
- World Health Organization. Novel Coronavirus—China. 2020. Available online: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ (accessed on 12 April 2022).
- Kempen, J.H.; Abashawl, A.; Suga, H.K.; Difabachew, M.N.; Kempen, C.J.; Debele, M.T.; Menkir, A.A.; Assefa, M.T.; Asfaw, E.H.; Habtegabriel, L.B.; et al. SARS-CoV-2 serosurvey in Addis Ababa, Ethiopia. Am. J. Trop. Med. Hyg. 2020, 103, 2022–2023. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Disease 2019 (COVID-19)|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/index.html (accessed on 12 April 2022).
- Matsushita, K.; Ding, N.; Kou, M.; Hu, X.; Chen, M.; Gao, Y.; Honda, Y.; Zhao, D.; Dowdy, D.; Mok, Y.; et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis. Glob Heart 2020, 15, 64. [Google Scholar] [CrossRef]
- Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore. JAMA 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef]
- Fan, B.E.; Chong, V.C.L.; Chan, S.S.W.; Lim, G.H.; Lim, K.G.E.; Tan, G.B.; Mucheli, S.S.; Kuperan, P.; Ong, K.H. Hematologic parameters in patients with COVID-19 infection. Am. J. Hematol. 2020, 95, E131–E134. [Google Scholar] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Andrade, B.S.; Siqueira, S.; Soares, W.R.A.; Rangel, F.S.; Santos, N.O.; dos Santos Freitas, A.; Ribeiro da Silveira, P.; Tiwari, S.; Alzahrani, K.J.; Goes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, X.; Qu, J. Coronavirus disease 2019 (COVID-19): A clinical update. Eur. Rev. Med. Pharmacol. Sci. 2020, 14, 126–135. [Google Scholar] [CrossRef]
- Rai, S.N.; Tiwari, N.; Singh, P.; Singh, A.K.; Mishra, D.; Imran, M.; Singh, S.; Hooshmandi, E.; Vamanu, E.; Singh, S.K.; et al. Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson’s and Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2022, 2022, 3012778. [Google Scholar] [CrossRef]
- Fara, A.; Mitrev, Z.; Rosalia, R.A.; and Assas, B.M. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol. 2020, 10, 200160. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Karmakar, S.; Basu, M.; Ghosh, P.; Ghosh, M.K. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm 2023, 4, e247. [Google Scholar] [CrossRef] [PubMed]
- Dandena, F.; Teklewold, B.; Anteneh, D. Impact of COVID-19 and mitigation plans on essential health services: Institutional experience of a hospital in Ethiopia. BMC Health Serv. Res. 2021, 21, 1105. [Google Scholar] [CrossRef] [PubMed]
- ECLAC. The Effects of the Coronavirus Disease (COVID-19) Pandemic on International Trade and Logistics. 2020; p. 7. Available online: https://www.cepal.org/en/publications/45878-effects-coronavirus-disease-COVID-19-pandemic-international-trade-and-logistics (accessed on 12 April 2022).
- FAO & WFP. Impacts of COVID-19 on Food Security and Nutrition: Developing Effective Policy Responses to Address the Hunger and Malnutrition Pandemic. HLPE Issues Pap. 2020; pp. 1–24. Available online: https://www.fao.org/agroecology/database/detail/en/c/1310872/ (accessed on 12 April 2022).
- World Health Organization (WHO). Health Inequity and the Effects of COVID—19 ION RE I ES CO; World Health Organization: Geneva, Switzerland, 2020; pp. 1–43. [Google Scholar]
- CARE Ethiopia. Impact of COVID-19 On Women and Girls in Ethiopia. 2021; pp.1–85. Available online: https://theowp.org/impactof-COVID-19-on-women-and-girls-in-sports/ (accessed on 12 April 2022).
- World Health Organization. The Impact of COVID-19 on Health and Care Workers: A Closer Look at Deaths; World Health Organization: Geneva, Switzerland, 2021; Volume 1, pp. 1–26. [Google Scholar]
- Schleicher, A. The Impact of COVID-19 on Education: Insights from Education at a Glance 2020. OECD J. Econ. Stud. 2020, 1–31. Available online: https://www.oecd.org/education/the-impact-of-COVID-19-on-education-insights-education-at-a-glance-2020.pdf (accessed on 12 April 2022).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.; Shea, B.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta- Analysis Bias and Confounding Newcastle-Ottowa Scale. Ott. Hosp. Res. Inst. 2012. Available online: http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf (accessed on 12 April 2022).
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Phillips, A.N. Meta-analysis: Principles and procedures. Br. Med. J. 1997, 315, 1533–1537. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Alemu, B.N.; Addissie, A.; Mamo, G.; Deyessa, N.; Abebe, T.A.; Abagero, A.; Ayele, W.; Abebe, W.; Haile, T.; Argaw, R.; et al. Sero-prevalence of anti-SARS-CoV-2 Antibodies in Addis Ababa, Ethiopia. Ethiop. J. Health Dev. 2021, 35, 367–374. [Google Scholar]
- Assefa, N.; Regassa, L.D.; Teklemariam, Z.; Oundo, J.; Madrid, L.; Dessie, Y.; Scott, J.A.G. Seroprevalence of anti-SARS-CoV-2 antibodies in women attending antenatal care in eastern Ethiopia: A facility-based surveillance. BMJ Open 2021, 11, e055834. [Google Scholar] [CrossRef] [PubMed]
- Gelanew, T.; Seyoum, B.; Mulu, A.; Mihret, A.; Abebe, M.; Wassie, L.; Gelaw, B.; Sorsa, A.; Merid, Y.; Muchie, Y.; et al. High Seroprevalence of anti-SARS-CoV-2 antibodies among Ethiopian healthcare workers. Res. Sq. 2021, rs.3.rs-676935. [Google Scholar] [CrossRef]
- Shaweno, T.; Abdulhamid, I.; Bezabih, L.; Teshome, D.; Derese, B.; Tafesse, H.; Shaweno, D. Sero-prevalence of SARS-CoV-2 Antibody Among Adults in the General Population in Diredawa, Ethiopia. Res. Sq. 2021, 49, 1–12. [Google Scholar]
- Kebede, F.; Kebede, T.; Kebede, B. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG-antibody seroprevalence among quarantined population, during the first wave of COVID-19 pandemic, in North West Ethiopia (from 30 April to 30 May 2020). SAGE Open Med. 2022, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Abdella, S.; Riou, S.; Tessema, M.; Assefa, A.; Seifu, A.; Blachman, A.; Abera, A.; Moreno, N.; Irarrazaval, F.; Tollera, G.; et al. Prevalence of SARS-CoV-2 in urban and rural Ethiopia: Randomized household serosurveys reveal level of spread during the first wave of the pandemic. EClinicalMedicine 2021, 35, 100880. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, E.B.; Endris, A.A.; Solomon, H.; Alayu, M.; Kebede, A.; Eshetu, K.; Teka, G.; Seid, B.E.; Ahmed, J.; Abayneh, S.A.; et al. Seroprevalence and risk factors for SARS-CoV-2 Infection in selected urban areas in Ethiopia: A crosssectional evaluation during July 2020. Int. J. Infect. Dis. 2021, 11, 179–185. [Google Scholar] [CrossRef]
- Gebretsadik, D.; Ahmed, N.; Kebede, E.; Gebremicheal, S.; Belete, M.A.; Adane, M. Knowledge, attitude, practice towards COVID-19 pandemic and its prevalence among hospital visitors at Ataye district hospital, Northeast Ethiopia. PLoS ONE 2021, 16, e0246154. [Google Scholar] [CrossRef]
- Geto, Z.; Gebremichael, S.; Belete, M.A.; Gedefie, A.; Molla, G.; Tesfaye, M.; Demsiss, W.; Gebretsadik, D. The Escalating Magnitude of COVID-19 Infections among the Northeastern Ethiopia Region: A Community-Based Cross-Sectional Study. Int. J. Microbiol. 2021, 2021, 5549893. [Google Scholar] [CrossRef]
- Birhanu, A.; Ayana, G.M.; Bayu, M.; Mohammed, A.; Dessie, Y. Features associated with SARS-CoV-2 positivity among people presenting with acute respiratory tract infections to public Hospitals in Harari region, Ethiopia. SAGE Open Med. 2021, 9, 1–7. [Google Scholar] [CrossRef]
- Adane, T.; Adugna, Y.; Aynlem, M. Prevalence of COVID-19 in West Gondar zone, Northwest Ethiopia: A population-based retrospective study. Disaster Med. Public Health Prep. 2022, 23, e156. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Lucrecia, S.; Guevara, R.; Echeverría, L.E.; Glisic, M.; Muka, T. COVID-19 in Healthcare Workers: A Systematic Review and Meta-analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef]
- Baluku, J.B.; Olum, R.; Agolor, C.; Nakakande, J.; Russell, L.; Bongomin, F.; Nakawesi, J. Prevalence, clinical characteristics and treatment outcomes of HIV and SARS-CoV-2 co-infection: A systematic review and meta-analysis. medRxiv 2020, 2020, 20118497. [Google Scholar] [CrossRef]
- Rostami, A.; Sepidarkish, M.; Lee, M.M.G.; Riahi, S.M.; Shiadeh, M.N.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 27, 331–340. [Google Scholar] [CrossRef]
- Sah, P.; Fitzpatrick, M.C.; Zimmer, C.F.; Abdollahi, E.; Juden-Kelly, L.; Moghadas, S.M.; Singer, B.H.; Galvani, A.P. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci. USA 2021, 118, e2109229118. [Google Scholar] [CrossRef]
- Syangtan, G.; Bista, S.; Dawadi, P.; Rayamajhee, B.; Shrestha, L.B.; Tuladhar, R.; Joshi, D.R. Asymptomatic SARS-CoV-2 Carriers: A Systematic Review and Meta-Analysis. Front. Public Health 2021, 8, 587374. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA 2020, 323, 1915–1923. [Google Scholar] [CrossRef]
- Conti, P.; Younes, A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: Clinical response to viral infection. J. Biol. Regul. Homeost. Agents 2020, 34, 339–343. [Google Scholar] [PubMed]
- Li, D.; Wang, D.; Dong, J.; Wang, N.; Huang, H.; Xu, H.; Xia, C. False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: Role of deep-learning-based ct diagnosis and insights from two cases. Korean J. Radiol. 2020, 21, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Wikramaratna, P.; Paton, R.S.; Ghafari, M.; Lourenco, J. Estimating falsenegative detection rate of SARS-CoV-2 by RT-PCR. medRxiv 2020, 2020, 20053355. [Google Scholar] [CrossRef]
- To, K.K.W.; Tsang, O.T.Y.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.Y.; Cai, J.P.; Chan, J.M.C.; Chik, T.S.H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). The Territorial Impact of COVID-19: Managing the Crisis Across Levels of Government; Organisation for Economic Co-operation and Development: Paris, France, 2020. [Google Scholar]
- Tang, J.W.; Caniza, M.A.; Dinn, M.; Dwyer, D.E.; Heraud, J.M.; Jennings, L.C.; Kok, J.; Kwok, K.O.; Li, Y.; Loh, T.P.; et al. An exploration of the political, social, economic and cultural factors affecting how different global regions initially reacted to the COVID-19 pandemic. Interface Focus 2022, 12, 20210079. [Google Scholar] [CrossRef]
- Karmakar, M.; Lantz, P.M.; Tipirneni, R. Association of Social and Demographic Factors with COVID-19 Incidence and Death Rates in the US. JAMA Netw. Open 2021, 4, e2036462. [Google Scholar] [CrossRef] [PubMed]
Author/Year/Reference | Region | Study Design | Age of Participant | Study Population | Diagnostic Methods | Sample Size | Number of Cases | Prevalence, (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | Total | M | F | Total | |||||||
Alemu et al. (2020) [28] | Addis Ababa | Cross-sectional | All age | General population | IgG/IgM Rapid Test Cassette | 188 | 113 | 301 | 17 | 10 | 27 | 8.8 |
Assefa et al. (2021) [29] | Harar | Cross-sectional | >15 years | Pregnant women | WANTAI® SARS-CoV-2 Rapid Test | NA | 1447 | 1447 | NA | 83 | 83 | 5.7 |
Gelanew et al. (2021) [30] | All region | Cross-sectional | All age | Healthcare workers | ELISA using in-house IgG assay | 980 | 1017 | 1997 | 389 | 432 | 821 | 39.6 |
Shaweno et al. (2021) [31] | Dire Dawa | Cross-sectional | >15 years | General population | Abbott SARS-CoV-2 IgG assay | 307 | 377 | 684 | 11 | 10 | 21 | 3.2 |
Kebede et al. (2022) [32] | Benishangul-Gumuz | Cross-sectional | All age | Quarantined individuals | Elecsys Anti-SARS-CoV-2 assay | 292 | 154 | 446 | 9 | 12 | 21 | 4.7 |
Abdella et al. (2021) [33] | Addis Ababa & Oromia | Cross-sectional | All age | General population | IgG/IgM Rapid Test Cassette | 799 | 1057 | 1856 | 20 | 25 | 45 | 2.42 |
Tadesse et al. (2020) [34] | All region | Cross-sectional | >15 years | General population | Abbott™ ARCHITECT™ assay | 5829 | 11102 | 16,932 | 221 | 371 | 593 | 3.5 |
Gebretsadik et al. (2020) [35] | Amhara | Cross-sectional | All age | General population | RT-PCR | 374 | 139 | 513 | 13 | 4 | 17 | 3.3 |
Geto et al. (2020) [36] | Amhara | Cross-sectional | All age | General population | RT-PCR | 5568 | 3184 | 8752 | 194 | 97 | 291 | 3.3 |
Birhanu et al. (2020) [37] | Harari | Cross-sectional | All age | Patients with ARTI | RT-PCR | 816 | 876 | 1692 | 183 | 205 | 388 | 22.9 |
Adane et al. (2022) [38] | Amhara, West Gondar | Cross-sectional | All age | General population | RT-PCR | 794 | 372 | 1166 | 7 | 9 | 16 | 1.37 |
Subgroup | Category | Number of Studies | Prevalence (95% CI) | p-Value | I2 | Heterogeneity between Groups (p-Value) |
---|---|---|---|---|---|---|
Sex | Male | 10 | 8.8 (5.88–11.72) | <0.0001 | 98.8% | 0.827 |
Female | 11 * | 9.27 (6.24–12.3) | <0.0001 | 98.8% | ||
Publication year | 2020 | 5 | 8.09 (5.33–10.8) | <0.0001 | 98.9% | 0.030 |
2021 | 4 | 12.68 (1.49–23.88) | <0.0001 | 99.7% | ||
2022 | 2 | 2.9 (0.35–6.15) | <0.0001 | 89.9% | ||
Ages of study subject | All age | 8 | 10.73 (5.82–15.63) | <0.0001 | 99.5% | 0.011 |
>15 years | 3 | 4.09 (2.74–5.44) | <0.020 | 84.3% | ||
Population type | General population | 8 | 5.75 (3.93–7.58) | <0.0001 | 98.3% | 0.287 |
Specific group | 3 | 16.65 (3.35–36.66) | <0.0001 | 99.7% | ||
Diagnostics method | Serological test | 7 | 9.72 (4.6–14.84) | <0.0001 | 99.5% | 0.550 |
Molecular technique (PCR) | 4 | 7.59 (2.83–12.35) | <0.0001 | 99.3% |
Std-Eff | Coef. | Std.Err. | t | P | 95% Conf. Interval |
---|---|---|---|---|---|
Slope | 3.56 | 1.56 | 2.28 | 0.049 | 0.0248167–7.096408 |
Bias | 7.19 | 5.75 | 1.25 | 0.242 | 5.809789–20.20058 |
S.No | Authors’ Name | Publication Year | Estimate | 95% Confidence Interval |
---|---|---|---|---|
1 | Alemu et al. | 2020 | 0.09897935 | −0.02924858–0.22720729 |
2 | Assefa et al. | 2021 | 0.0965836 | −0.03164587–0.22481307 |
3 | Gelanew et al. | 2021 | 0.0648924 | −0.06335741–0.19314221 |
4 | Shaweno et al. | 2021 | 0.09923597 | −0.0289918–0.22746374 |
5 | Kebede et al. | 2022 | 0.09923597 | −0.0289918–0.22746374 |
6 | Abdella et al. | 2021 | 0.09773885 | −0.03048987–0.22596759 |
7 | Tadesse et al. | 2020 | 0.07470677 | −0.05353674–0.20295028 |
8 | Gebretsadik et al. | 2020 | 0.09940703 | −0.02882062–0.22763468 |
9 | Geto et al. | 2020 | 0.087674 | −0.04056118–0.21590918 |
10 | Birhanu et al. | 2020 | 0.08351306 | −0.0447248–0.21175091 |
11 | Adane et al. | 2022 | 0.0994498 | −0.02877783–0.22767743 |
Combined * | 0.09103919 | −0.0312262–0.21330459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedefie, A.; Tilahun, M.; Fiseha, M.; Alemayehu, E.; Shibabaw, A.; Bisetegn, H.; Debash, H.; Kassa, Y.; Ali, A.; Seid, A.; et al. Epidemiology of SARS-CoV-2 Infection in Ethiopia: A Systematic Review and Meta-Analysis. COVID 2023, 3, 703-714. https://doi.org/10.3390/covid3050052
Gedefie A, Tilahun M, Fiseha M, Alemayehu E, Shibabaw A, Bisetegn H, Debash H, Kassa Y, Ali A, Seid A, et al. Epidemiology of SARS-CoV-2 Infection in Ethiopia: A Systematic Review and Meta-Analysis. COVID. 2023; 3(5):703-714. https://doi.org/10.3390/covid3050052
Chicago/Turabian StyleGedefie, Alemu, Mihret Tilahun, Mesfin Fiseha, Ermiyas Alemayehu, Agumas Shibabaw, Habtye Bisetegn, Habtu Debash, Yeshimebet Kassa, Abdurrahman Ali, Abdurahaman Seid, and et al. 2023. "Epidemiology of SARS-CoV-2 Infection in Ethiopia: A Systematic Review and Meta-Analysis" COVID 3, no. 5: 703-714. https://doi.org/10.3390/covid3050052
APA StyleGedefie, A., Tilahun, M., Fiseha, M., Alemayehu, E., Shibabaw, A., Bisetegn, H., Debash, H., Kassa, Y., Ali, A., Seid, A., Tesfaye, M., Mohammed, O., & Kebede, B. (2023). Epidemiology of SARS-CoV-2 Infection in Ethiopia: A Systematic Review and Meta-Analysis. COVID, 3(5), 703-714. https://doi.org/10.3390/covid3050052