Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC
Abstract
:1. Introduction
2. Experimental
2.1. Printed Filter Material—Inkjet Printers
2.2. Other Substrates
2.3. Round Robin
2.4. Quartz-Fiber Filters (QFF)
3. Results and Discussion
3.1. Inkjet Printers
3.2. Quantifying Carbonaceous Content of Ink Deposited onto Filters as Mass (µg/cm2) of Inorganic (EC) and Organic (OC) Carbon
3.3. Other Substrates
3.4. Round Robin
3.5. Quality Assurance for Round Robin
3.6. Long-Term Storage Study
3.7. Chemical Analysis of the Inkjet Printer #VI Ink
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, T.C.; Sun, H. Can reducing black carbon emissions counteract global warming? Environ. Sci. Technol. 2005, 39, 5921–5926. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Bond, T.C.; Zarzycki, C.; Flanner, M.G.; Koch, D.M. Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmos. Chem. Phys. 2011, 11, 1505–1525. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Chung, S.H.; Seinfeld, J.H. Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. 2005, 110, 1–25. [Google Scholar] [CrossRef]
- EPA. Report to Congress on Black Carbon; External Peer Review Draft. U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina. 2011. Available online: https://yosemite.epa.gov/sab/sabproduct.nsf/fedrgstr_activites/05011472499C2FB28525774A0074DADE/$File/BC+RTC+External+Peer+Review+Draft-opt.pdf (accessed on 6 November 2021).
- ICPP. Technical Summary. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Gregory, J.M., Hegerl, G.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 6 November 2021).
- IPCC. Climate Change 2013. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, F.T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 6 November 2021).
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. Available online: https://www.nature.com/articles/ngeo156 (accessed on 6 November 2021). [CrossRef]
- Solomon, P.A.; Gehr, P.; Bennett, D.; Phalen, R.; Loyda, B.; Rothen-Rutishauser, B.M.; Clift, M.; Brandenberger, C.; Mühlfeld, C. Macroscopic to microscopic scales of particle dosimetry: From source to fate in the body. Air Qual. Atmos. Health 2012, 5, 169–187. Available online: https://link.springer.com/content/pdf/10.1007%2Fs11869-011-0167-y.pdf (accessed on 6 November 2021). [CrossRef]
- Janssen, N.; Girlofs-Nijland, M.; Lanki, T.; Salonen, R.; Cassee, F.; Hoek, G.; Fischer, P.; Brunekreef, B.; Krzyzanowski, M. Health Effects of Black Carbon. The WHO European Centre for Environment and Health, Bonn; WHO Regional Office for Europe: Copenhagen, Denmark, 2012; Available online: https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/8699/Health_effects_black_carbon.pdf?sequence=3&isAllowed=y (accessed on 6 November 2021).
- Li, Y.; Henze, D.K.; Jack, D.; Henderson, B.H.; Kinney, P.L. Assessing public health burden associated with exposure to ambient black carbon in the United States. Sci. Total Environ. 2016, 539, 515–525. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761114/ (accessed on 6 November 2021). [CrossRef] [PubMed] [Green Version]
- Luben, T.J.; Nichols, J.L.; Dutton, S.J.; Kirrane, E.; Owens, E.O.; Datko-Williams, L.; Madden, M.; Sacks, J.D. A systematic review of cardiovascular emergency department visits, hospital admissions and mortality associated with ambient black carbon. Environ. Int. 2017, 107, 154–162. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193259/ (accessed on 6 November 2021). [CrossRef]
- Kirrane, E.F.; Luben, T.J.; Benson, A.; Owens, E.O.; Sacks, J.D.; Dutton, S.J.; Madden, M.; Nichols, J.L. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ. Int. 2019, 127, 305–316. [Google Scholar] [CrossRef]
- Redaelli, M.; Sanchez, M.; Fuertes, E.; Blanchard, M.; Mullot, J.; Baeza-Squiban, A.; Garçon, G.; Léger, C.; Jacquemin, B. Health effects of ambient black carbon and ultrafine particles: Review and integration of the epidemiological evidence. Environ. Epidemiol. 2019, 3, 347–348. Available online: https://journals.lww.com/environepidem/fulltext/2019/10001/health_effects_of_ambient_black_carbon_and.1061.aspx (accessed on 6 November 2021).
- Cassee, F.R.; Héroux, M.-E.; Gerlofs-Nijland, M.; Kelly, F. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef]
- Baumgardner, D.; Popovicheva, O.; Allan, J.; Bernardoni, V.; Cao, J.; Cavalli, F.; Cozic, J.; Diapouli, E.; Eleftheriadis, K.; Genberg, P.J.; et al. Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations. Atmos. Meas. Tech. 2012, 5, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Henzing, J.S.; de Leeuw, G.; Wiedensohler, A.; Alastuey, A.; Angelov, H.; Bizjak, M.; Coen, M.C.; Engström, J.E.; Gruening, C.; et al. Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech. 2011, 4, 245–268. Available online: https://amt.copernicus.org/articles/4/245/2011/amt-4-245-2011.pdf (accessed on 6 November 2021). [CrossRef] [Green Version]
- Bond, T.C.; Anderson, T.L.; Campbell, D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 1999, 30, 582–600. [Google Scholar] [CrossRef]
- Kondo, Y.; Sahu, L.; Kuwata, M.; Miyazaki, Y.; Takegawa, N.; Moteki, N.; Imaru, J.; Han, S.; Nakayama, T.; Oanh, K.N.T.; et al. Stabilization of the filter-based absorption photometry by the use of a heated inlet. Aerosol Sci. Technol. 2009, 43, 741–756. [Google Scholar] [CrossRef]
- Lack, D.A.; Lovejoy, E.; Baynard, T.; Pettersson, A.; Ravishankara, A.R. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 2006, 40, 697–708. [Google Scholar] [CrossRef]
- Nakayama, T.; Kondo, Y.; Moteki, N.; Sahu, L.K.; Kinase, T.; Kita, K.; Matsumi, Y. Size-dependent correction factors for absorption measurements using filter-based photometers: PSAP and COSMOS. J. Aerosol Sci. 2010, 41, 333–343. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 2007, 41, 1874–1888. [Google Scholar] [CrossRef]
- Slowik, J.G.; Cross, E.S.; Han, J.-H.; Davidovits, P.; Onasch, T.B.; Jayne, J.T.; Williams, L.R.; Canagaratna, M.R.; Worsnop, D.R.; Chakrabarty, R.K.; et al. An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol. 2007, 41, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Chai, M.; Birch, M.E.; Deye, G. Organic and elemental carbon filter sets: Preparation method and interlaboratory results. Ann. Occup. Hyg. 2012, 56, 959–967. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577040/ (accessed on 6 November 2021). [PubMed] [Green Version]
- Currie, L.A.; Benner, B.A., Jr.; Kessler, J.D.; Klinedinst, D.B.; Klouda, G.A.; Marolf, J.V.; Slater, J.F.; Wise, S.A.; Cachier, H.; Cary, R.; et al. A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 279–298. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Okuyama, K.; Mizohata, A.; Kim, T.O.; Koyama, H. Fabrication of reference filter for measurements of EC (elemental carbon) and OC (organic carbon) in aerosol particles. Aerosol Sci. Technol. 2007, 41, 284–294. [Google Scholar] [CrossRef]
- Bae, M.-S.; Schauer, J.J.; Turner, J.R.; Hopke, P.K. Seasonal variations of elemental carbon in urban aerosols as measured by two common thermal-optical carbon methods. Sci. Total Environ. 2009, 407, 5176–5183. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol. 2001, 34, 23–34. Available online: https://www.tandfonline.com/doi/abs/10.1080/02786820119073 (accessed on 6 November 2021). [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmuller, H.; Fung, K.K. Equivalence of elemental carbon by Thermal/Optical Reflectance and Transmittance with different temperature protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef]
- ten Brink, H.; Maenhaut, W.; Hitzenberger, R.; Gnauk, T.; Spindler, G.; Even, A.; Chi, X.; Bauer, H.; Puxbaum, H.; Putaud, J.-P.; et al. INTERCOMP2000: The comparability of methods in use in Europe for measuring the carbon content of aerosol. Atmos. Environ. 2004, 38, 6459–6466. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Chen, L.-W.A. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 2005, 5, 65–102. Available online: https://aaqr.org/articles/aaqr-05-06-oa-0006.pdf (accessed on 6 November 2021). [CrossRef] [Green Version]
- Cheng, Y.; Zheng, M.; He, K.; Chen, Y.; Yan, B.; Russell, A.G.; Shi, W.; Jiao, Z.; Sheng, G.; Fu, J.; et al. Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the south-eastern United States. Atmos. Environ. 2011, 45, 1913–1918. [Google Scholar] [CrossRef]
- Giannoni, M.; Calzolai, G.; Chiari, M.; Cincinelli, A.; Lucarelli, F.; Martellini, T.; Nava, S. A comparison between thermal-optical transmittance elemental carbon measured by different protocols in PM2.5 samples. Sci. Total Environ. 2016, 571, 195–205. [Google Scholar] [CrossRef]
- Gundel, L.A.; Dod, R.L.; Rosen, H.; Novakov, T. The relationship between optical attenuation and black carbon concentration for ambient and source particles. Sci. Total Environ. 1983, 36, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Snyder, D.C.; Schauer, J.J. An inter-comparison of two black carbon aerosol instruments and a semi-continuous elemental carbon instrument in the urban environment. Aerosol Sci. Technol. 2007, 41, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Solomon, P.A.; Hansen, A.D.A.; Hyatt, A.-M. Reproducible Reference Standards for Filter-Based Measurements of Carbonaceous Aerosols Found in Environmental Samples. United States Patent Application, Pub. No. US 2019/0113431 A1, 18 April 2019. Assigned to the United States Government, Washington, DC. Available online: https://patentimages.storage.googleapis.com/35/88/3f/25c12bad60d383/US20190113431A1.pdf (accessed on 6 November 2021).
- Solomon., P.A.; Hopke, P.K.; Froines, J.; Scheffe, R. Key scientific and policy- and health-relevant findings from EPA’s Particulate Matter Supersites Program and related studies: An integration and synthesis of results. J. Air Waste Manag. Assoc. 2008, 58, S1–S92. Available online: https://www.proquest.com/docview/214375417?pq-origsite=gscholar&fromopenview=true (accessed on 6 November 2021). [CrossRef] [PubMed] [Green Version]
- Solomon, P.A.; Lantz, J.J.; Crumpler, D.; Flanagan, J.B.; Jayanty, R.K.M.; Rickman, E.E.; McDade, C.; Ashbaugh, L. United States national PM2.5 chemical speciation monitoring Networks–CSN and IMPROVE: Description of networks. J. Air Waste Manag. Assoc. 2014, 64, 1410–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Sreekanth, V.; Tonne, C.; Salmon, M.; Arulselvan, S.; Marshal, D.J. The role of blank filter mass in attenuation measurements using an off-line transmissometer. J. Aerosol Sci. 2019, 131, 41–47. [Google Scholar] [CrossRef]
- Johnson, M.M. Evaluation of a Multiwavelength Characterization of Brown and Black Carbon from Filter Samples. Master’s Thesis, University of Nevada, Reno, NV, USA, 2015. Available online: https://scholarworks.unr.edu/bitstream/handle/11714/2666/Johnson_unr_0139M_11943.pdf?sequence=1 (accessed on 6 November 2021).
- Panteliadis, P.; Hafkenscheid, T.; Cary, B.; Diapouli, E.; Fischer, A.; Favez, O.; Quincey, P.; Viana, M.; Hitzenberger, R.; Vecchi, R.; et al. ECOC comparison exercise with identical thermal protocols after temperature offset correction–Instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Tech. 2015, 8, 779–792. Available online: https://amt.copernicus.org/articles/8/779/2015/amt-8-779-2015.pdf (accessed on 6 November 2021). [CrossRef] [Green Version]
- Dutkiewicz, V.A.; DeJulio, A.M.; Ahmed, T.; Laing, J.; Hopke, P.K.; Skeie, R.B.; Viisanen, Y.; Paatero, J.; Husain, L. Forty-seven years of weekly atmospheric black carbon measurements in the Finnish Arctic: Decrease in black carbon with declining emissions. J. Geophys. Res. Atmos. 2014, 119, 7667–7683. [Google Scholar] [CrossRef] [Green Version]
- Chow, C.; Watson, J.G.; Green, M.C.; Wang, X.; Chen, L.-W.A.; Trimble, D.L.; Cropper, P.M.; Kohl, S.D.; Gronstal, S.B. Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM2.5 samples. J. Air Waste Manag. Assoc. 2018, 68, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, Y. Ink Composition. United States Patent Application, Pub. No. US 2012/0236068 A1, 20 September 2012. Assigned to Fujifilm Corporation, Tokyo. Available online: https://patentimages.storage.googleapis.com/bb/f1/2f/bfffdf65023529/US20120236068A1.pdf (accessed on 6 November 2021).
- Bello, D.; Martin, J.; Santeufemio, C.; Sun, Q.; Bunker, K.L.; Shafer, M.; Demokritou, P. Physicochemical and morphological characterisation of nanoparticles from photocopiers: Implications for environmental health. Nanotoxicology 2013, 7, 989–1003. [Google Scholar] [CrossRef]
- Pirela, S.V.; Sotiriou, G.A.; Bello, D.; Shafer, M.; Bunker, K.L.; Castranova, V.; Thomas, T.; Demokritou, P. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products. Nanotoxicology 2015, 9, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Shara, S.I.; Moustafay, Y.M.; Bakr, A.A.; Aboul El Magd, A.A.; Abd El-Aziz, I.M. Application of some physical techniques for forensic discrimination of printer toner. Egypt J. Chem. 2018, 61, 131–142. Available online: https://ejchem.journals.ekb.eg/article_4495.html (accessed on 6 November 2021). [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Paredes-Miranda, G.; Chang, M.-C.O.; Trimble, D.; Fung, K.; Zhang, H.; Yu, J.Z. Refining temperature measures in thermal/optical carbon analysis. Atmos. Chem. Phys. 2005, 5, 4477–4505. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chung, A.; Paulson, S.E. The effect of metal salts on quantification of elemental and organic carbon in diesel exhaust particles using thermal-optical evolved gas analysis. Atmos. Chem. Phys. 2010, 10, 11447–11457. Available online: https://acp.copernicus.org/articles/10/11447/2010/acp-10-11447-2010.pdf (accessed on 6 November 2021). [CrossRef] [Green Version]
- Bauer, S.W.; Zeying, M. Pigment-based Inks for Ink-jet Printing. European Patent Specification, Pub. No. EP1589081B1, 13 August 2013. Assigned to Hewlett-Packard Development Company, L.P. San Diego, CA. Available online: https://patentimages.storage.googleapis.com/e6/cc/e7/a2c529f5e1b1de/EP1589081B1.pdf (accessed on 6 November 2021).
- Katsen, B.J.R.; Himmelwright, S.; Schwartz, N.R.; Stewart, B.J. Black Ink Jet Ink Composition. United States Patent, US5803958A, 8 September 1998. Assigned to Rexam Graphics, Inc. South Hadley, MA. Available online: https://patentimages.storage.googleapis.com/24/4c/8a/45d6fbf12e07d8/US5803958.pdf (accessed on 6 November 2021).
- Chow, C.; Watson, J.G.; Green, M.C.; Frank, N.H. Filter light attenuation as a surrogate for elemental carbon. J. Air Waste Manag. Assoc. 2010, 60, 1365–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, H.W.; Krystyna, T.; Nicole, P.; Schichtel, H.; Schichtel, B.A. A critical review of filter transmittance measurements for aerosol light absorption, and de novo calibration for a decade of monitoring on PTFE membranes. Aerosol Sci. Technol. 2016, 50, 984–1002. [Google Scholar] [CrossRef] [Green Version]
- Presler-Jur, P.; Doraiswamy, P.; Hammond, O.; Rice, J. An evaluation of mass absorption cross-section for optical carbon analysis on Teflon filter media. J. Air Waste Manag. Assoc. 2017, 67, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Dillner, A.M.; Takahama, S. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: Organic carbon. Atmos. Meas. Tech. 2015, 8, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Dillner, A.M.; Takahama, S. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: Elemental carbon. Atmos. Meas. Tech. 2015, 8, 4013–4023. [Google Scholar] [CrossRef] [Green Version]
- Weakley, W.T.; Takahama, S.; Dillner, A.M. Thermal/optical reflectance equivalent organic and elemental carbon determined from federal reference and equivalent method fine particulate matter samples using Fourier transform infrared spectrometry. Aerosol Sci. Technol. 2018, 52, 1048–1058. [Google Scholar] [CrossRef]
- Sun, H.; Biedermann, L.; Bond, T.C. Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Forrister, H.; Liu, J.; Scheuer, E.; Dibb, J.; Ziemba, L.; Thornhill, K.L.; Anderson, B.; Diskin, G.; Perring, A.E.; Schwarz, J.P.; et al. Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett. 2015, 42, 4623–4640. [Google Scholar] [CrossRef] [Green Version]
- Healy, R.M.; Wang, J.M.; Jeong, C.-H.; Lee, A.K.Y.; Willis, M.D.; Jaroudi, E.; Zimmerman, N.; Hilker, N.; Murphy, M.; Eckhardt, S.; et al. Light-absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources. J. Geophys. Res. Atmos. 2015, 120, 6619–6633. [Google Scholar] [CrossRef] [Green Version]
- Washenfelder, R.A.; Attwood, A.R.; Brock, C.A.; Guo, H.; Xu, L.; Weber, R.J.; Ng, N.L.; Allen, H.M.; Ayres, B.R.; Baumann, K.; et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys. Res. Lett. 2015, 42, 653–664. [Google Scholar] [CrossRef]
- EPA. Wildland Fire Research to Protect Health and the Environment. US EPA, Research Triangle Park, NC. 2019. Available online: https://www.epa.gov/air-research/wildland-fire-research-protect-health-and-environment (accessed on 6 November 2021).
- Kitto, M.E.; Anderson, D.L. The use of Whatman-41 filters for particle collection. Atmos. Environ. 1988, 22, 2629–2630. [Google Scholar] [CrossRef]
- Pekney, N.J.; Davidson, C.I. Determination of trace elements in ambient aerosol samples. Anal. Chim. Acta 2005, 540, 269–277. [Google Scholar] [CrossRef]
- Upadhyay, N.; Majestic, B.J.; Prapaipong, P.; Herckes, P. Evaluation of polyurethane foam, polypropylene, quartz-fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS. Anal. Bioanal. Chem. 2009, 394, 255–266. Available online: https://link.springer.com/article/10.1007%2Fs00216-009-2671-6 (accessed on 6 November 2021). [CrossRef]
- Schauer, J.J.; Mader, B.T.; DeMinter, J.T.; Heidemann, G.; Bae, M.S.; Seinfeld, J.H.; Flagan, R.C.; Cary, R.A.; Smith, D.; Huebert, B.J.; et al. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ. Sci. Technol. 2003, 37, 993–1001. [Google Scholar] [CrossRef]
- Ikoshi, M.; Tojo, K. Inkjet Recording Liquid. United States Patent Application, Pub. No. US 2010/0168322 A1, 1 July 2010. Assigned to Fujifilm Corporation, Falls Church, VA. Available online: https://patentimages.storage.googleapis.com/f4/b3/02/03208ca53a5932/US20100168322A1.pdf (accessed on 6 November 2021).
- Long, C.M.; Nascarella, A.M.; Valberg, A.P. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C. Inkjet Ink. International Patent Application. International Pub. No. WO 2008/130625 Al, Published 30 October 2008. Wilmington, DE. Available online: https://patentimages.storage.googleapis.com/9b/78/d1/aa057f06352125/WO2008130625A1.pdf (accessed on 6 November 2021).
- Yau, H.-L.; Krzemien, W.; Flood, E. Preferred Materials for Publication Classification Pigmented Inkjet Ink. United States Patent Application, Pub. No. US 2004/0085418A1, 6 May 2004. Assigned to Eastman Kodak Company, Rochester, NY. Available online: https://patentimages.storage.googleapis.com/86/23/50/c6de4cbf7d6055/US20040085418A1.pdf (accessed on 6 November 2021).
880 nm | ||||||||||
Field Blank | G223 | G173 | G127 | G100 | G83 | G70 | G40 a | n b | ||
Roll 15 | Mean | −0.10 | 6.71 | 21.37 | 46.15 | 69.38 | 88.35 | 101.09 | 15 | |
SD c | 0.37 | 0.92 | 0.88 | 1.42 | 1.55 | 1.48 | 2.27 | |||
Range d | 1.24 | 3.61 | 3.16 | 4.54 | 5.41 | 5.31 | 6.58 | |||
Roll 16 | Mean | −0.07 | 5.09 | 16.72 | 35.26 | 54.09 | 69.38 | 78.20 | 23 | |
SD | 0.39 | 0.54 | 0.70 | 0.87 | 1.43 | 1.54 | 2.22 | |||
Range | 1.59 | 1.97 | 3.15 | 3.13 | 5.63 | 6.01 | 8.74 | |||
Roll 17 | Mean | 0.18 | 5.95 | 18.82 | 39.76 | 57.22 | 74.09 | 84.38 | 130.3 | 19 |
SD | 0.60 | 0.57 | 0.69 | 0.95 | 1.27 | 1.37 | 1.89 | 4.20 | ||
Range | 2.87 | 1.98 | 2.76 | 3.76 | 4.24 | 5.32 | 6.48 | 16.31 | ||
Roll 18 | Mean | −0.01 | 6.32 | 19.77 | 42.32 | 61.91 | 79.89 | 90.67 | 137.6 | 19 |
SD | 0.70 | 0.79 | 0.68 | 1.16 | 2.23 | 2.43 | 3.39 | 4.27 | ||
Range | 2.57 | 3.14 | 2.32 | 4.66 | 9.36 | 8.74 | 11.62 | 17.51 | ||
370 nm | ||||||||||
Field Blank | G223 | G173 | G127 | G100 | G83 | G70 | G40 a | n b | ||
Roll 15 | Mean | 0.20 | 4.86 | 16.96 | 37.10 | 57.95 | 75.26 | 84.67 | 15 | |
SD c | 0.27 | 0.54 | 0.75 | 0.79 | 1.56 | 1.64 | 2.51 | |||
Range d | 1.01 | 2.09 | 3.57 | 3.01 | 5.79 | 5.88 | 9.40 | |||
Roll 16 | Mean | 0.20 | 4.86 | 16.96 | 37.10 | 57.95 | 75.26 | 84.67 | 23 | |
SD | 0.27 | 0.54 | 0.75 | 0.79 | 1.56 | 1.64 | 2.51 | |||
Range | 1.01 | 2.09 | 3.57 | 3.01 | 5.79 | 5.88 | 9.40 | |||
Roll 17 | Mean | 0.09 | 5.85 | 19.33 | 42.03 | 61.78 | 81.41 | 93.0 | 144.1 | 19 |
SD | 0.59 | 0.42 | 0.77 | 1.08 | 1.33 | 1.52 | 1.99 | 5.66 | ||
Range | 2.28 | 1.27 | 3.23 | 4.37 | 5.05 | 5.33 | 6.36 | 22.17 | ||
Roll 18 | Mean | −0.80 | 6.43 | 21.18 | 46.89 | 69.62 | 91.13 | 102.8 | 157.1 | 19 |
SD | 0.91 | 0.84 | 0.83 | 1.63 | 2.71 | 3.31 | 4.14 | 4.28 | ||
Range | 3.37 | 3.38 | 3.12 | 6.39 | 10.51 | 12.70 | 13.96 | 12.85 |
IR | ABS% Rel. Diff | Slope | Intercept | R2 |
Printer #VI-C, G123–G00, Three Sheets, Ink Lots Y and Z, Same tape roll | 6.10 | 1.04 | 0.50 | 0.9999 |
Printer #VI-B and #VI-C, G223, G173, G127, Four Sheets, Ink Lots X and Z, Three Rolls as described in the text | 4.40 | 1.03 | 0.23 | 0.9999 |
UV | ABS% Rel. Diff | Slope | Intercept | R2 |
Printer #VI-C, G123–G00, Three Sheets, Ink Lots Y and Z, Same tape roll | 6.40 | 1.05 | 0.70 | 0.9999 |
Printer #VI-B and #VI-C, G223, G173, G127, Four Sheet, Ink Lots X and Z, Three Rolls as described in the text | 7.10 | 1.06 | 0.27 | 0.9998 |
Substrate | Mean | SD a | Range | n b | Blank, Mean ± SD (Range) |
---|---|---|---|---|---|
− 880 nm − | |||||
AE33 c (Roll 16 d) | 101.1 | 2.27 | 6.58 | 23 | −0.07 ± 0.39 (1.59) |
QFF e | 110.3 | 10.9 | 32.5 | 11 | 2.15 ± 2.42 (8.79) |
PTFE with support ring f | 38.4 | 0.43 | 1.02 | 4 | −0.14 ± 1.05 (2.43) |
Zefluor g | 43.9 | 5.71 | 13.4 | 4 | −0.02 ± 0.19 (0.46) |
Teflon (TF-1000) h | 51.5 | 4.84 | 10.2 | 4 | 0.10 ± 0.13 (0.30) |
Polypropylene i | 64.8 | 3.16 | 4.46 | 2 | 0.16 ± 0.27 (0.38) |
Cellulose j | 121.8 | 0.48 | 0.68 | 2 | 0.70 ± 0.31 (0.44) |
− 370 nm − | |||||
AE33 c (Roll 16 d) | 84. 7 | 2.51 | 9.40 | 23 | 0.20 ± 0.27 (1.01) |
QFF e | 118.3 | 14.4 | 40.9 | 10 | 4.34 ± 2.76 (8.87) |
PTFE with support ring f | 38.4 | 0.54 | 1.22 | 4 | −0.44 ± 1.06 (2.49) |
Zefluor g | 45.2 | 6.13 | 14.4 | 4 | 0.52 ± 0.56 (1.20) |
Teflon (TF-1000) h | 55.7 | 6.01 | 12.9 | 4 | 0.46 ± 1.38 (3.05) |
Polypropylene i | 71.3 | 6.02 | 8.51 | 2 | 0.22 ± 0.04 (0.06) |
Cellulose j | 147.9 | 1.22 | 1.72 | 2 | 0.60 ± 0.49 (0.69) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomon, P.A.; Hyatt, A.-M.; Hansen, A.D.A.; Schauer, J.J.; Hyslop, N.P.; Watson, J.G.; Doraiswamy, P.; Presler-Jur, P. Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC. Metrology 2021, 1, 142-165. https://doi.org/10.3390/metrology1020010
Solomon PA, Hyatt A-M, Hansen ADA, Schauer JJ, Hyslop NP, Watson JG, Doraiswamy P, Presler-Jur P. Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC. Metrology. 2021; 1(2):142-165. https://doi.org/10.3390/metrology1020010
Chicago/Turabian StyleSolomon, Paul A., Anna-Marie Hyatt, Anthony D. A. Hansen, James J. Schauer, Nicole P. Hyslop, John G. Watson, Prakash Doraiswamy, and Paige Presler-Jur. 2021. "Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC" Metrology 1, no. 2: 142-165. https://doi.org/10.3390/metrology1020010
APA StyleSolomon, P. A., Hyatt, A. -M., Hansen, A. D. A., Schauer, J. J., Hyslop, N. P., Watson, J. G., Doraiswamy, P., & Presler-Jur, P. (2021). Methodology to Create Reproducible Validation/Reference Materials for Comparison of Filter-Based Measurements of Carbonaceous Aerosols That Measure BC, BrC, EC, OC, and TC. Metrology, 1(2), 142-165. https://doi.org/10.3390/metrology1020010