Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artificial Neural Networks Basics
2.2. Implementation of an ANN Regressor
- The process of data preparation involves collecting and preprocessing data from experiments or polls. A typical preprocessing step is scaling and normalizing input features and target values. These input features and targets are commonly known as instances; then, instances are commonly randomly grouped as training and testing datasets.
- The network architecture stage considers the architecture by determining the number of layers and neurons per layer, as well as the activation functions. For regression applications, the final layer should have a single neuron with a linear activation function.
- The choice of the loss (cost) function is crucial in creating accurate models. Metrics such as mean squared error (MSE) or mean absolute error (MAE) can lead to different outcomes.
- During the training stage, the neural network’s weights and bias can be updated using various numeral optimizers such as gradient descent, stochastic gradient descent, batch gradient descent, mini-batch gradient descent, and adaptive moment estimation (Adam).
- The model will be updated using the prepared dataset and the previously defined neural network architecture. The training process will be monitored by observing the loss decrease by the optimizer. Then, the model’s performance is evaluated over a validation dataset.
- Evaluating the model’s performance requires testing with various hyper-parameters, such as learning rate (), batch size (n), and number of epochs.
- After completing the training stage, the model’s performance is evaluated on a different test dataset. Metrics such as mean squared error, mean absolute error, and R-squared are used to determine the model’s prediction accuracy. Nevertheless, it is highly recommended to use the same previously defined loss function.
- Finally, if the initial results are not satisfactory, it is possible to try adjusting the network architecture, hyper-parameters, collecting more data, or even including additional inputs to improve the model’s performance.
2.3. Non-Autoregressive Neural Networks
2.4. Data Preparation: IoT Device and Experimental Setup
3. Results
3.1. ANN for Estimating the PV’s Power
- is the PV’s power output;
- are the explanatory variables: lighting, temperature, and humidity;
- is the constant term;
- are the coefficients for each explanatory variable;
- is the model’s error term.
3.2. Forecasting Model
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
ML | Machine Learning |
KNNs | K-Nearest Neighbors |
ELM | Extreme Learning Machine |
SVM | Support Vector Machine |
RMSE | Root Mean Squared Error |
RNN | Recurrent Neural Network |
MLR | Multiple Linear Regressor |
ANOVA | Analysis Of Variance |
IoT | Internet of Things |
References
- Roungkvist, J.S.; Enevoldsen, P. Timescale classification in wind forecasting: A review of the state-of-the-art. J. Forecast. 2020, 39, 757–768. [Google Scholar] [CrossRef]
- El Kafazi, I.; Bannari, R.; Abouabdellah, A. Modeling and forecasting energy demand. In Proceedings of the Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 746–750. [Google Scholar]
- Pham, A.D.; Ngo, N.T.; Ha Truong, T.T.; Huynh, N.T.; Truong, N.S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Enerdata. Global Energy Statistical Yearbook. 2023. Available online: https://www.energyinst.org/__data/assets/pdf_file/0004/1055542/EI_Stat_Review_PDF_single_3.pdf (accessed on 6 July 2023).
- Powell, K.M.; Rashid, K.; Ellingwood, K.; Tuttle, J.; Iverson, B.D. Hybrid concentrated solar thermal power systems: A review. Renew. Sustain. Energy Rev. 2017, 80, 215–237. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.J.; Wilberforce, T.; Olabi, A. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, P. Solar Energy: Resource Assessment Handbook, Asian and Pacific Centre for Transfer of Technology, September 2009. Available online: https://repository.unescap.org/handle/20.500.12870/5255 (accessed on 20 August 2023).
- Cui, Y.; Su, Y.; Liu, Y.; Liu, Y.; Smith, D. Study of variability metrics for solar irradiance and photovoltaic output. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Niemi, A.; Lehtonen, M.; AbdelHadi, H.A.R. Analysis of solar irradiance variations as a source of flicker associated with PV systems. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Tan, W.C.; Saw, L.H.; San Thiam, H.; Xuan, J.; Cai, Z.; Yew, M.C. Overview of porous media/metal foam application in fuel cells and solar power systems. Renew. Sustain. Energy Rev. 2018, 96, 181–197. [Google Scholar] [CrossRef]
- Ruz-Hernandez, J.A.; Matsumoto, Y.; Arellano-Valmaña, F.; Pitalúa-Díaz, N.; Cabanillas-López, R.E.; Abril-García, J.H.; Herrera-López, E.J.; Velázquez-Contreras, E.F. Meteorological Variables’ Influence on Electric Power Generation for Photovoltaic Systems Located at Different Geographical Zones in Mexico. Appl. Sci. 2019, 9, 1649. [Google Scholar] [CrossRef]
- Hassan, M.A.; Al-Ghussain, L.; Khalil, A.; Kaseb, S.A. Self-calibrated hybrid weather forecasters for solar thermal and photovoltaic power plants. Renew. Energy 2022, 188, 1120–1140. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Shirmohammadi, S. A multimodal deep learning-based distributed network latency measurement system. IEEE Trans. Instrum. Meas. 2020, 69, 2487–2494. [Google Scholar] [CrossRef]
- Alippi, C.; Ferrero, A.; Piuri, V. Artificial intelligence for instruments and measurement applications. IEEE Instrum. Meas. Mag. 1998, 1, 9–17. [Google Scholar] [CrossRef]
- Fogel, D.B. Machine intelligence. IEEE Instrum. Meas. Mag. 2006, 9, 12–16. [Google Scholar] [CrossRef]
- Chhajer, P.; Shah, M.; Kshirsagar, A. The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis. Anal. J. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Skrypnik, A.N.; Shchelchkov, A.V.; Gortyshov, Y.F.; Popov, I.A. Artificial neural networks application on friction factor and heat transfer coefficients prediction in tubes with inner helical-finning. Appl. Therm. Eng. 2022, 206, 118049. [Google Scholar] [CrossRef]
- Lu, C.; Li, S.; Lu, Z. Building energy prediction using artificial neural networks: A literature survey. Energy Build. 2022, 262, 111718. [Google Scholar] [CrossRef]
- Mir, A.A.; Alghassab, M.; Ullah, K.; Khan, Z.A.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12, 5931. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: London, UK, 2016. [Google Scholar]
- Fu, X. Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power. Prot. Control. Mod. Power Syst. 2022, 7, 5. [Google Scholar] [CrossRef]
- Abubakar Mas’ud, A. Comparison of three machine learning models for the prediction of hourly PV output power in Saudi Arabia. Ain Shams Eng. J. 2022, 13, 101648. [Google Scholar] [CrossRef]
- Sangrody, H.; Sarailoo, M.; Zhou, N.; Tran, N.; Motalleb, M.; Foruzan, E. Weather Forecasting Error in Solar Energy Forecasting. IET Renew. Power Gener. 2017, 11, 1274–1280. [Google Scholar] [CrossRef]
- Verma, T.; Tiwana, A.; Reddy, C.; Arora, V.; Devanand, P. Data Analysis to Generate Models Based on Neural Network and Regression for Solar Power Generation Forecasting. In Proceedings of the Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016; pp. 97–100. [Google Scholar]
- Tao, Y.; Chen, Y. Distributed PV power forecasting using genetic algorithm based neural network approach. In Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 10–12 August 2014; pp. 557–560. [Google Scholar]
- Brenna, M.; Foiadelli, F.; Longo, M.; Zaninelli, D. Solar radiation and load power consumption forecasting using neural network. In Proceedings of the Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 726–731. [Google Scholar]
- Talayero, A.P.; Melero, J.J.; Llombart, A.; Yürüşen, N.Y. Machine Learning models for the estimation of the production of large utility-scale photovoltaic plants. Sol. Energy 2023, 254, 88–101. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Lai, Y.-H.; Huang, C.-L.; Phuong, N.T.B.; Tan, W.-S. Artificial Intelligence Applications in Estimating Invisible Solar Power Generation. Energies 2022, 15, 1312. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Rashid, T. Make Your Own Neural Network; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2016; Volume 29. [Google Scholar]
- Nrgaard, M.; Ravn, O.; Poulsen, N.K.; Hansen, L.K. Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook; Springer: London, UK, 2000. [Google Scholar]
- Silva, I.N.d.; Spatti, D.H.; Flauzino, R.A. Redes Neurais Artificiais para Engenharia e Ciências Aplicadas; Artliber Editora: São Paulo, Brazil, 2010. [Google Scholar]
Time dd-hh:mm | Lighting [lx] | Temp [°C] | RH [%] | Current [A] | Voltage [V] | Power [W] |
---|---|---|---|---|---|---|
9-15:07 | 17,213.44 | 31 | 41 | 0.34 | 14.84 | 5.12 |
9-15:02 | 19,732.48 | 30 | 43 | 0.40 | 14.86 | 5.90 |
9-14:05 | 708,158.72 | 28 | 44 | 0.17 | 14.73 | 2.47 |
9-14:52 | 14,530.56 | 30 | 43 | 0.29 | 14.80 | 4.35 |
9-14:47 | 28,026.88 | 32 | 41 | 0.55 | 14.95 | 8.20 |
9-14:42 | 18,508.80 | 30 | 44 | 0.37 | 14.85 | 5.56 |
9-14:37 | 14,504.96 | 29 | 44 | 0.29 | 14.81 | 4.33 |
9-14:32 | 13,184.00 | 29 | 44 | 0.26 | 14.80 | 3.92 |
Input Variables | ANN Topology | Epochs | Learning Rate | Momentum | RMSE |
---|---|---|---|---|---|
LTH | 3:3:1 | 5000 | 0.6 | 0.8 | 0.255326464 |
LTH | 3:4:1 | 5000 | 0.4 | 0.6 | 0.291738768 |
LTH | 3:5:1 | 5000 | 0.5 | 0.45 | 0.28434865 |
LTH | 3:7:1 | 5000 | 0.6 | 0.8 | 0.294496645 |
LT | 2:8:1 | 5000 | 0.6 | 0.8 | 0.273086254 |
LH | 2:3:1 | 5000 | 0.6 | 0.8 | 0.26061261 |
TH | 2:7:1 | 5000 | 0.6 | 0.8 | 1.519228854 |
LTH | 3:3:2:1 | 5000 | 0.6 | 0.8 | 0.311024568 |
LTH | 3:3:5:1 | 5000 | 0.6 | 0.8 | 0.301213273 |
LTH | 3:3:6:1 | 5000 | 0.6 | 0.8 | 0.329514254 |
LT | 2:8:2:1 | 6000 | 0.5 | 0.3 | 0.351396489 |
LT | 2:8:3:1 | 6000 | 0.4 | 0.4 | 0.29822584 |
LT | 2:8:4:1 | 6000 | 0.6 | 0.8 | 0.261604926 |
LH | 2:3:2:1 | 6000 | 0.6 | 0.8 | 0.315069276 |
LH | 2:3:7:1 | 6000 | 0.6 | 0.8 | 0.290041741 |
TH | 2:3:1 | 5000 | 0.6 | 0.8 | 1.917250263 |
TH | 2:4:1 | 5000 | 0.6 | 0.8 | 1.87009645 |
TH | 2:6:1 | 5000 | 0.6 | 0.8 | 1.843136019 |
TH | 2:7:4:1 | 5000 | 0.6 | 0.8 | 1.737671751 |
TH | 2:7:5:1 | 5000 | 0.5 | 0.4 | 1.826990897 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 3 | 10,159.50 | 3386.51 | 5895.20 | 0.000 |
Lighting | 1 | 2761.10 | 2761.10 | 4806.50 | 0.000 |
Temperature | 1 | 6.80 | 6.78 | 11.81 | 0.001 |
Humidity | 1 | 47.00 | 47.01 | 81.83 | 0.000 |
Error | 1586 | 911.10 | 0.57 | ||
Total | 1589 | 11,070.60 | |||
Model Summary | |||||
S | R-sq | R-sq(adj) | R-sq(pred) | ||
0.757926 | 91.77% | 91.75% | 91.67% | ||
Equation | |||||
Topology | Input | Data | Sampling | Epochs | Learning Rate | Momentum | RMSE |
---|---|---|---|---|---|---|---|
4:4:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.7 | 2.0757 |
9:4:1 | T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 1.8472 |
9:9:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 1.2055 |
9:8:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.7 | 0.1160 |
9:5:5:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.9252 |
9:5:6:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.8354 |
9:5:7:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.8882 |
9:8:5:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.1156 |
9:8:6:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.1162 |
9:8:7:1 | L-T-H | Raw | 5 min | 6000 | 0.6 | 0.8 | 0.1165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobato-Nostroza, O.; Chávez-Campos, G.M.; Morales-Cervantes, A.; Chiaradia-Masselli, Y.M.; Lara-Hernández, R.; Téllez-Anguiano, A.d.C.; Fraga-Aguilar, M. Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks. Metrology 2023, 3, 347-364. https://doi.org/10.3390/metrology3040021
Lobato-Nostroza O, Chávez-Campos GM, Morales-Cervantes A, Chiaradia-Masselli YM, Lara-Hernández R, Téllez-Anguiano AdC, Fraga-Aguilar M. Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks. Metrology. 2023; 3(4):347-364. https://doi.org/10.3390/metrology3040021
Chicago/Turabian StyleLobato-Nostroza, Oscar, Gerardo Marx Chávez-Campos, Antony Morales-Cervantes, Yvo Marcelo Chiaradia-Masselli, Rafael Lara-Hernández, Adriana del Carmen Téllez-Anguiano, and Miguelangel Fraga-Aguilar. 2023. "Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks" Metrology 3, no. 4: 347-364. https://doi.org/10.3390/metrology3040021
APA StyleLobato-Nostroza, O., Chávez-Campos, G. M., Morales-Cervantes, A., Chiaradia-Masselli, Y. M., Lara-Hernández, R., Téllez-Anguiano, A. d. C., & Fraga-Aguilar, M. (2023). Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks. Metrology, 3(4), 347-364. https://doi.org/10.3390/metrology3040021