Soil as a Source of Fungi Pathogenic for Public Health
Abstract
:1. Introduction
2. Groups of Soil Filamentous Fungi Dangerous for Public Health
2.1. Penicillium
2.2. Aspergillus
2.3. Fusarium
2.4. Trichoderma
2.5. Paecilomyces
2.6. Cladosporium
2.7. Alternaria
2.8. Stachybotrys
2.9. Mucorales
2.10. Keratinophilic Fungi
3. Conclusive Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi, 2nd ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Frac, M.; Hannula, S.E.; Bełka, M.; Jedryczka, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Gladieux, P.; Ropars, J.; Badouin, H.; Branca, A.; Aguileta, G.; De Vienne, D.M.; Rodríguez De La Vega, R.C.; Branco, S.; Giraud, T. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol. Ecol. 2014, 23, 753–773. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. One Health. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 25 October 2023).
- Yiallouris, A.; Pana, Z.D.; Marangos, G.; Tzyrka, I.; Karanasios, S.; Georgiou, I.; Kontopyrgia, K.; Triantafyllou, E.; Seidel, D.; Cornely, O.A.; et al. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024, 18, 100720. [Google Scholar] [CrossRef] [PubMed]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [PubMed]
- Lyratzopoulos, G.; Ellis, M.; Nerringer, R.; Denning, D.W. Invasive infection due to Penicillium species other than P. marneffei. J. Infect. 2002, 45, 184–207. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.J.; Wong, W.C.; Cooley, J.D.; Straus, D.C. Continually measured fungal profiles in sick building syndrome. Curr. Microbiol. 1999, 38, 33–36. [Google Scholar] [CrossRef]
- Mishra, S.K.; Ajello, L.; Ahearn, D.G.; Burge, H.A.; Kurup, B.P.; Pierson, D.L.; Price, D.L.; Samson, R.A.; Sandu, R.S.; Shelton, B.; et al. Environmental mycology and its importance to public health. J. Med. Vet. Mycol. 1992, 30, 287–305. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Jens Frisvad, C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010. [Google Scholar]
- Perrone, G.; Susca, A. Penicillium species and their associated mycotoxins. Methods Mol. Biol. 2017, 1542, 107–119. [Google Scholar] [CrossRef]
- Otero, C.; Arredondo, C.; Echeverría-Vega, A.; Gordillo-Fuenzalida, F. Penicillium spp. mycotoxins found in food and feed and their health effects. World Mycotoxin J. 2020, 3, 323–343. [Google Scholar] [CrossRef]
- Morales, H.; Marín, S.; Rovira, A.; Ramos, A.J.; Sanchis, V. Patulin accumulation in apples by Penicillium expansum during postharvest stages. Lett. Appl. Microbiol. 2007, 44, 30–35. [Google Scholar] [CrossRef]
- Barkai-Golan, R. Chapter 7—Penicillium Mycotoxins. In Mycotoxins in Fruits and Vegetables; Barkai-Golan, R., Paster, N., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 153–183. [Google Scholar] [CrossRef]
- Rovetto, E.I.; Luz, C.; La Spada, F.; Meca, G.; Riolo, M.; Cacciola, S.O. Diversity of mycotoxins and other secondary metabolites recovered from blood oranges infected by Colletotrichum, Alternaria, and Penicillium species. Toxins 2023, 15, 407. [Google Scholar] [CrossRef] [PubMed]
- Oshikata, C.; Tsurikisawa, N.; Saito, A.; Watanabe, M.; Kamata, Y.; Tanaka, M.; Tsuburai, T.; Mitomi, H.; Takatori, K.; Yasueda, H.; et al. Fatal pneumonia caused by Penicillium digitatum: A case report. BMC Pulm. Med. 2013, 13, 16. Available online: http://www.biomedcentral.com/1471-2466/13/16 (accessed on 27 October 2023). [CrossRef] [PubMed]
- Mills, J.T.; Seifert, K.A.; Frisvad, J.C.; Abramson, D. Nephrotoxigenic Penicillium species occurring on farm-stored cereal grains in western Canada. Mycopathologica 1995, 130, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S. Systemic infection caused by Penicillium decumbens in a patient with acquired immunodeficiency syndrome. J. Infect. Dis. 1990, 162, 283. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.W.; Schoch, P.E.; Rinaldi, M.G.; Klich, M.A.; Cunha, B.A. Penicillium janthinellum in sputum and bronchoalveolar lavage in an AIDS patient with pneumonia. Clin. Microbiol. Infect. 1997, 3, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [PubMed]
- Klich, M.A. Identification of Common Aspergillus Species; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2002. [Google Scholar]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Navale, V.; Vamkudoth, K.R.; Ajmera, S.; Dhuri, V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol. Rep. 2021, 8, 1008–1030. [Google Scholar] [CrossRef]
- Felšöciová, S.; Kowalczewski, P.Ł.; Krajčovič, T.; Dráb, Š.; Kačániová, M. Effect of Long-Term Storage on Mycobiota of Barley Grain and Malt. Plants 2021, 10, 1655. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Pitt, J.I.; Magan, N. Aspergillus species and mycotoxins: Occurrence and importance in major food commodities. Curr. Opin. Food Sci. 2018, 23, 38–43. [Google Scholar] [CrossRef]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health risks Associated with exposure to filamentous fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [PubMed]
- Simões, D.; de Andrade, E.; Sabino, R. Fungi in a One Health Perspective. Encyclopedia 2023, 3, 900–918. [Google Scholar] [CrossRef]
- Kousha, M.; Tadi, R.; Soubani, A.O. Pulmonary aspergillosis: A clinical review. Eur. Respir. Rev. 2011, 20, 156–174. [Google Scholar] [CrossRef] [PubMed]
- Grishkan, I. Soil microfungi of Israeli deserts: Adaptations to environmental stress. In Fungi in Extreme Environments: Ecolog-ical Role and Biotechnological Significance; Tiquia-Arashiro, S.M., Grube, M., Eds.; Springer: Cham, Switzeland, 2019; pp. 97–117. [Google Scholar] [CrossRef]
- Bhabhra, R.; Askew, D.S. Thermotolerance and virulence of Aspergillus fumigatus: Role of the fungal nucleolus. Med. Mycol. 2005, 43, S87–S93. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; Alcazar-Fuoli, L. Diseases Caused by Aspergillus fumigatus; In Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Guinea, J.; Darío de Viedma, G.; Peláez, T.; Escribano, P.; Muñoz, P.; Meis, J.F.; Klaassen, C.H.W.; Bouza, E. Molecular epidemiology of Aspergillus fumigatus: An in-depth genotypic analysis of isolates involved in an outbreak of invasive aspergillosis. J. Clin. Microbiol. 2011, 10, 3498–3503. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- O’Donnell, K.; Ward, T.J.; Robert, V.A.R.; Crous, P.W.; Geiser, D.W.; Kang, S. DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica 2015, 43, 583–595. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Nelson, P.E.; Toussoun, T.A. Toxigenic Fusarium Species: Identity and Mycotoxicology; Pennsylvania State University Press: Pennsylvania, PA, USA, 1984. [Google Scholar]
- Guarro, J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1491–1500. [Google Scholar] [CrossRef]
- Craddock, V.M. Aetiology of oesophageal cancer: Some operative factors. Eur. J. Cancer Prev. 1992, 1, 89–103. [Google Scholar] [CrossRef]
- Jain, P.K.; Gupta, V.K.; Misra, A.K.; Gaur, R.; Bajpai, V.; Issar, S. Current status of Fusarium infection in human and animal. Asian J. Anim. Vet. Adv. 2011, 6, 201–227. [Google Scholar] [CrossRef]
- Howard, D.H. Pathogenic Fungi in Humans and Animals, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 2003. [Google Scholar]
- Harmans, G.E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 2006, 96, 190–194. [Google Scholar] [CrossRef]
- Festuccia, M.; Giaccone, L.; Gay, F.; Brunello, L.; Maffini, E.; Ferrando, F.; Talamo, E.; Boccadoro, M.; Serra, R.; Barbui, A.; et al. Trichoderma species fungemia after high-dose chemotherapy and autologous stem cell transplantation: A case report. Transpl. Infect. Dis. 2014, 16, 653–657. [Google Scholar] [CrossRef]
- Roman-Soto, S.; Elena Alvarez-Rojas, E.; García-Rodríguez, J. Skin infection due to Trichoderma longibrachiatum in a haematological paediatric patient. Clin. Microbiol. Infect. 2019, 25, 1383–1384. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Wengenack, N.L.; Walsh, T.J. Non-Aspergillus hyaline molds: Emerging causes of sino-pulmonary fungal infections and other invasive mycoses. Semin. Respir. Crit. Care Med. 2020, 41, 115–130. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, G.S.; Guarro, J.; Gené, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2000. [Google Scholar]
- Sal, E.; Stemler, J.; Salmanton-García, J.; Falces-Romero, I.; Kredics, L.; Meyer, E.; Würstl, B.; Lass-Flörl, C.; Racil, Z.; Klimko, N.; et al. Invasive Trichoderma spp. infections: Clinical presentation and outcome of cases from the literature and the FungiScope® registry. J. Antimicrob. Chemother. 2022, 77, 2850–2858. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Pastor, F.J.; Guarro, J. Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clin. Microbiol. Infect. 2006, 12, 948–960. [Google Scholar] [CrossRef]
- Moreira, D.C.; Oliveira, M.M.E.; Borba, C.M. Human pathogenic Paecilomyces from food. Microorganisms 2018, 6, 64. [Google Scholar] [CrossRef]
- Borba, C.M.; Brito, M.M.S. Paecilomyces: Mycotoxin production and human infection. In Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi; Paterson, R.R.M., Lima, N., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 401–421. [Google Scholar]
- Houbraken, J.; Verweij, P.E.; Rijs, A.J.M.M.; Borman, A.M.; Samson, R.A. Identification of Paecilomyces variotii in clinical samples and settings. J. Clin. Microbiol. 2010, 48, 2754–2761. [Google Scholar] [CrossRef]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1971. [Google Scholar]
- Cooley, J.D.; Wong, W.C.; Jumper, C.A.; Straus, D.C. Correlation between the prevalence of certain fungi and sick building syndrome. Occup. Environ. Med. 1998, 55, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Mintz-Cole, R.A.; Brandt, E.B.; Bass, S.A.; Gibson, A.M.; Reponen, T.; Khurana, H.; Gurjit, K. Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides. J. Allergy Clin. Immunol. 2013, 132, 159–169.e2. [Google Scholar] [CrossRef] [PubMed]
- Annessi, G.; Cimitan, A.; Zambruno, G.; Silverio, A.D. Cutaneous phaeohyphomycosis due to Cladosporium cladosporioides. Mycoses 1992, 35, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Kalan, L.; Grice, E.A. Fungi in the Wound Microbiome. Adv. Wound. Care 2018, 7, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Pastor, F.J.; Guarro, J. Alternaria infections: Laboratory diagnosis and relevant clinical features. Clin. Microbiol. Infect. 2008, 14, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Fehr, M.; Baechler, S.; Kropat, C.; Mielke, C.; Boege, F.; Pahlke, G.; Marko, D. Repair of DNA damage induced by the mycotoxin alternariol involves tyrosyl-DNA phosphodiesterase 1. Mycotoxin Res. 2010, 26, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.D. Stachybotrys chartarum: The Toxic Indoor Mold; The American Phytopathological Society-APSnet Features: New York, NY, USA, 2001. [Google Scholar]
- Jarvis, B.B. Macrocyclic trichothecenes. In Mycotoxins and Phytoalexins in Human and Animal Health; Sharma, R.P., Salunkhe, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 361–421. [Google Scholar]
- Jarvis, B.; Salemme, J.; Morais, A. Stachybotrys toxins 1. Nat. Toxins 1995, 3, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Dylag, M.; Spychała, K.; Zielinski, J.; Łagowski, D.; Gnat, S. Update on Stachybotrys chartarum—Black mold perceived as toxigenic and potentially pathogenic to humans. Biology 2022, 11, 352. [Google Scholar] [CrossRef]
- Ochiai, E.; Kamei, K.; Hiroshima, K.; Watanabe, A.; Hashimoto, Y.; Sato, A.; Ando, A. The pathogenicity of Stachybotrys chartarum. Nihon Ishinkin Gakkai Zasshi 2005, 46, 109–117. [Google Scholar] [CrossRef]
- Binder, U.; Maurer, E.; Lass-Flörl, C. Mucormycosis—From the pathogens to the disease. Clin. Microbiol. Infect. 2014, 20 (Suppl. S6), 60–66. [Google Scholar] [CrossRef]
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Walker, D.H.; McGinnis, M.R. Diseases caused by fungi. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms; Linda, M., McManus, L.M., Mitchell, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 217–221. [Google Scholar] [CrossRef]
- Goralska, K.; Blaszkowska, J.; Dzikowiec, M. Neuroinfections caused by fungi. Infection 2018, 46, 443–459. [Google Scholar] [CrossRef]
- Lin, E.; Moua, T.; Limper, A.H. Pulmonary mucormycosis: Clinical features and outcomes. Infection 2017, 45, 443–448. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Baldin, C.; Gu, Y.; Singh, S.; Gebremariam, T.; Swidergall, M.; Alqarihi, A.; Youssef, E.G.; Alkhazraji, S.; Pikoulas, A.; et al. Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nat. Microbiol. 2021, 6, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, I.; Summerbell, R. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef] [PubMed]
- Gadrea, A.; Enbialeb, W.; Andersenc, L.K.; Coates, S.J. The effects of climate change on fungal diseases with cutaneous manifestations: A report from the International Society of Dermatology Climate Change Committee. J. Clim. Chang. Health 2022, 6, 100156. [Google Scholar] [CrossRef]
- Spiawak, R.; Szostak, W. Zoophilic and geophilic dermatophytes among farmers and non-farmers in eastern Poland. Ann. Agric. Environ. Med. 2000, 7, 125–129. [Google Scholar]
- Segal, E.; Elad, D. Human and zoonotic dermatophytoses: Epidemiological aspects. Front. Microbiol. 2021, 12, 713532. [Google Scholar] [CrossRef]
Taxonomic (Functional) Group | Sporulation | Diseases Cased | References | Pathogenicity (Biosafety Level, BSL) 1 |
---|---|---|---|---|
Penicillium | Allergy, pneumonia, brain infections, kidney infection | [8,17,18,19] | BSL-1 | |
Aspergillus | Allergy, sinusitis, bronchopulmonary infection, keratitis, osteomyelitis, brain granuloma, otomycosis | [27,35,46] | BSL-1; BSL-2 (A. fumigatus, A. flavus) | |
Fusarium | Keratitis, sinusitis, onychomycosis, cutaneous and sub-cutaneous infections, disseminated infections | [27,35,39,40,41] | BSL-1; BSL-2 (F. oxysporum, F. solani, F. verticillioides) | |
Trichoderma | Pulmonary, CNS, and skin infections, peritonitis, endo-carditis, disseminated infections | [43,44,45,46,47,48] | BSL-1 | |
Paecilomyces | sinusitis, pneumonia, oculomycosis, cutaneous infections, peritonitis, endocarditis, pyelonephritis, disseminated infections | [46,49,50,51] | BSL-1; BSL-2 (P. variotii) | |
Cladosporium | allergy, pulmonary and cutaneous infections, keratitis, wound infections | [46,56,57] | BSL-1 | |
Alternaria | allergic rhinitis, cutaneous and subcutaneous infections, onychomycosis | [46,58] | BSL-1 | |
Stachybotrys | allergy, pulmonary hemorrhage | [63] | BSL-1 | |
Mucorales | infarct, hematogenous dissemination, CNS infections, pulmonary, gastro-intestinal, and cutaneous infections | [35,46,65,67,68,69] | BSL-1; BSL-2 (R. microsporus, S. racemosum) | |
Keratinophilic fungi | cutaneous infections (dermatophytoses) | [71,72] | BSL-1, BSL-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grishkan, I. Soil as a Source of Fungi Pathogenic for Public Health. Encyclopedia 2024, 4, 1163-1172. https://doi.org/10.3390/encyclopedia4030075
Grishkan I. Soil as a Source of Fungi Pathogenic for Public Health. Encyclopedia. 2024; 4(3):1163-1172. https://doi.org/10.3390/encyclopedia4030075
Chicago/Turabian StyleGrishkan, Isabella. 2024. "Soil as a Source of Fungi Pathogenic for Public Health" Encyclopedia 4, no. 3: 1163-1172. https://doi.org/10.3390/encyclopedia4030075