The Environmental Impacts of Overpopulation
Abstract
:1. Introduction
2. Population Pressure’s Effect on Deforestation
3. More People, More Greenhouse Gas Emissions
4. More People, Less Biodiversity
“The government of Papua New Guinea has recognised that the population growth rate and distribution of PNG’s population has become more unsustainable. With the population doubling approximately every 27 years, pressure on the available natural and human resources continue to increase dramatically as well as the need for increased demographic investment and service delivery. This is considered a major stumbling block for the achievement of responsible sustainable development.” [221]
5. Overpopulation and Overfishing
6. The Population Threat to Global Water Security
7. Proliferating Populations, Land Degradation and Desertification
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhara, C.; Singh, V. The Delusion of Infinite Economic Growth. Scientific American. Available online: https://www.scientificamerican.com/article/the-delusion-of-infinite-economic-growth/ (accessed on 20 June 2021).
- Holdren, J.P.; Ehrlich, P.R. Human Population and the Global Environment: Population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 1974, 62, 282–292. [Google Scholar] [PubMed]
- Ehrlich, P.R. The Population Bomb; Ballantine: New York, NY, USA, 1968. [Google Scholar]
- Meadows, D.L.; Randers, J.; Behrens, W. The Limits To Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [PubMed]
- O’Sullivan, J.N. The social and environmental influences of population growth rate and demographic pressure deserve greater attention in ecological economics. Ecol. Econ. 2020, 172, 106648. [Google Scholar] [CrossRef]
- Rees, W.E. The Human Ecology of Overshoot: Why a Major ‘Population Correction’ Is Inevitable. World 2023, 4, 509–527. [Google Scholar] [CrossRef]
- Norrman, K. World population growth: A once and future global concern. World 2023, 4, 684–697. [Google Scholar] [CrossRef]
- Ripple, W.J.; Newsome, T.M. Galetti along with 15,364 scientist signatories from 184 countries, World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef]
- McMullin-Messier, P. The end of population-environmentalism: Dissonance over human rights and societal goals. In Handbook of Anti-Environmentalism; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 345–364. [Google Scholar]
- Fletcher, R.; Breitling, J.; Puleo, V. Barbarian hordes: The overpopulation scapegoat in international development discourse. Third World Q. 2014, 35, 1195–1215. [Google Scholar] [CrossRef]
- Beaujot, R. The Cairo Conference: Implications for Population Activities. Can. Stud. Popul. 1995, 22, 95–102. [Google Scholar] [CrossRef]
- McIntosh, C.A.; Finkle, J.L. The Cairo Conference on Population and Development: A New Paradigm? Popul. Dev. Rev. 1995, 21, 223–260. [Google Scholar]
- Hayes, A.C. Cairo and the changing definition of population and development issues. J. Popul. Res. 1995, 12, 15–23. [Google Scholar] [CrossRef]
- Mumford, S.D. NSSM 200, the Vatican, and the World Population Explosion. J. Soc. Political Econ. Stud. 1995, 20, 35–63. [Google Scholar]
- Ideological Crackup on the Road to Cairo? Vatican and Allies Take Aim at U.N. Population Conference. The Los Angeles Times. 2 September 1994. Available online: https://www.latimes.com/archives/la-xpm-1994-09-02-me-33916-story.html (accessed on 23 March 2025).
- Jain, A.; Hardee, K. Revisiting the Cairo Conference in the Context of Rights-Based Family Planning. Stud. Fam. Plan. 2018, 49, 171–179. [Google Scholar]
- Weld, M. Deconstructing the dangerous dogma of denial: The feminist-environmental justice movement and its flight from overpopulation. Ethics Sci. Environ. Politics 2012, 12, 53–58. [Google Scholar] [CrossRef]
- Deivanayagam, T.A.; Osborne, R.E. Breaking free from tunnel vision for climate change and health. PLoS Glob. Public Health 2023, 3, e0001684. [Google Scholar] [CrossRef]
- Coole, D. Too many bodies? The return and disavowal of the population question. Environ. Politics 2013, 22, 195–215. [Google Scholar]
- Mann, K. The Spectre of “Overpopulation” in Climate Change. Master’s Thesis, University of Eastern Kentucky, Richmond, KY, USA, 2022. Available online: https://encompass.eku.edu/honors_theses/885/ (accessed on 23 March 2025).
- Connelly, M. Fatal Misconception: The Struggle to Control World Population; Harvard University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Clarke, A.L. The Sierra Club and Immigration Policy: A Critique. Politics Life Sci. 2001, 20, 19–28. [Google Scholar] [CrossRef] [PubMed]
- De Luca Zuria, A. Overpopulation discourse: A feminist and necropolitical approach from the Global South. Geo. Geogr. Environ. 2024, 11, e00144. [Google Scholar]
- Campbell, M. Why the Silence on Population? In Life on the Brink: Environmentalists Confront Overpopulation; Philip, C., Eileen, C., Eds.; University of Georgia Press: Athens, GA, USA, 2012; pp. 41–55. [Google Scholar]
- Foreman, D. The Great Backtrack. In Life on the Brink: Environmentalists Confront Overpopulation; Philip, C., Eileen, C., Eds.; University of Georgia Press: Athens, GA, USA, 2012; pp. 56–71. [Google Scholar]
- Ganivet, E. Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future. Environ. Dev. Sustain. 2020, 22, 4979–4998. [Google Scholar] [CrossRef]
- Tal, A. Two Sides of the Rectangle: The Environmental Movement and the Population Explosion. Ecology and Environment. 2012. Available online: https://magazine.isees.org.il/?p=39792 (accessed on 23 March 2025).
- Cohen, J.E. Human population grows up. Sci. Am. (Am. Ed.) 2005, 293, 48–55. [Google Scholar] [CrossRef]
- World Population by Year, Worldometer. Available online: https://www.worldometers.info/world-population/world-population-by-year/ (accessed on 9 September 2024).
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Summary of Results (UN DESA/POP/2024/TR/NO. 9); United Nations: New York, NY, USA, 2024. [Google Scholar]
- Rial, J.A.; Pielke, R.A.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; de Noblet-Ducoudré, N.; Prinn, R.; Reynolds, J.F.; et al. Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim. Change 2004, 65, 11–38. [Google Scholar] [CrossRef]
- Hsiang, S.; Oliva, P.; Walker, R. The distribution of environmental damages. Rev. Environ. Econ. Policy 2019, 13, 83–102. [Google Scholar]
- Harte, J. Human population as a dynamic factor in environmental degradation. Popul. Environ. 2007, 28, 223–236. [Google Scholar] [CrossRef]
- Pham, N.M.; Huynh, T.L.; Nasir, M.A. Environmental consequences of population, affluence and technological progress for European countries: A Malthusian view. J. Environ. Manag. 2020, 260, 110143, ISSN 0301-4797. [Google Scholar]
- Vollset, S.E.; Goren, E.; Yuan, C.W.; Cao, J.; Smith, A.E.; Hsiao, T.; Bisignano, C.; Azhar, G.S.; Castro, E.; Chalek, J.; et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1285–1306. [Google Scholar] [PubMed]
- Ezeh, A.; Kissling, F.; Singer, P. Why sub-Saharan African might exceed its projected population size by 2100. Lancet 2020, 396, 1131–1133. [Google Scholar]
- Gietel-Basten, S.; Sobotka, T. Uncertain Population Futures: Critical Reflections on the IHME Scenarios of Future Fertility, Mortality, Migration and Population Trends from 2017 to 2100. SocArXiv (September 23): 57 (2020). Available online: https://osf.io/preprints/socarxiv/5syef_v1 (accessed on 23 March 2025).
- Washington, H.; Kopnina, H. Discussing the Silence and Denial around Population Growth and Its Environmental Impact. How Do We Find Ways Forward? World 2022, 3, 1009–1027. [Google Scholar] [CrossRef]
- Sun, S.H.L. Population Policy and Reproduction in Singapore, Making Future Citizens; Routledge: London, UK, 2011. [Google Scholar]
- Muthuta, M. Public Policy Related to Fertility in Thailand: Past, Present and the Way Forward. Int. J. Crime Law Soc. Issues 2021, 8, 8–21. [Google Scholar]
- Mehri, N.; Messkoub, M.; Kunkel, S. Trends, Determinants and the Implications of Population Aging in Iran. Ageing Int. 2020, 45, 327–343. [Google Scholar] [CrossRef]
- Karim, R.; Pk, M.A.B.; Dey, P.; Akbar, M.A.; Osman, M.S. A study about the prediction of population growth and demographic transition in Bangladesh. J. Umm Al-Qura Univ. Appl. Sci. 2025, 11, 91–103. [Google Scholar] [CrossRef]
- Weisman, A. Countdown: Our Last, Best Hope for a Future on Earth? Little Brown and Company: Boston, MA, USA, 2013. [Google Scholar]
- Wang, F.; Cai, Y.; Shen, K.; Gietel-Basten, S. Is Demography Just a Numerical Exercise? Numbers, Politics, and Legacies of China’s One-Child Policy. Demography 2018, 55, 693–719. [Google Scholar] [CrossRef]
- Cincotta, R. Emulating Botswana’s Approach to Reproductive Health Services Could Speed Development in the Sahel. In New Security Beat; Wilson Center: Washington, DC, USA, 2020; Available online: https://www.newsecuritybeat.org/2020/01/emulating-botswanas-approach-reproductive-health-services-speed-development-sahel/ (accessed on 23 March 2025).
- Rutayisire, P.C.; Hooimeijer, P.; Broekhuis, A. Changes in Fertilty Decline in Rwanda, A Decomposition Analysis. Int. J. Popul. Res. 2014, 2014, 486210. [Google Scholar] [CrossRef]
- Republic of Kenya, National Council for Population and Development. Sessional Paper No 1 of 2023 on the Kenya National Population Policy for Sustainable Development. 2023. Available online: https://ncpd.go.ke/2024/06/10/sessional-paper-no-1-of-2023-on-the-kenya-national-population-policy-for-sustainable-development (accessed on 23 March 2025).
- Bongaarts, J. Trends in fertility and fertility preferences in sub-Saharan Africa: The roles of education and family planning programs. Genus 2020, 76, 32. [Google Scholar] [CrossRef]
- Liu, D.P. How Do Education and Family Planning Accelerate Fertility Decline? Popul. Dev. Rev. 2020, 46, 409–441. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, F.; Roth, S. Dirty density: Air quality and the density of American cities. J. Environ. Econ. Manag. 2023, 118, 102767. [Google Scholar] [CrossRef]
- Ekokor, O. Environment and Over Population: The Health and Social Impucucations. Niger. J. Health Promot. 2015, 8, 195–207. Available online: https://journals.aphriapub.com/index.php/NJHP/article/view/1901 (accessed on 23 March 2025).
- .Moslen, M.; Miebaka, C.A. Population Growth and Environmental Pollution in the Global South. In Biomonitoring of Pollutants in the Global South; Springer Nature: Singapore, 2024; pp. 127–152. [Google Scholar]
- Chen, D.M.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends a nd impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Voukkali, I.; Papamichael, I.; Loizia, P.; Zorpas, A.A. Urbanization and solid waste production: Prospects and challenges. Environ. Sci. Pollut. Res. 2024, 31, 17678–17689. [Google Scholar] [CrossRef]
- Cheng, J.; Shi, F.; Yi, J.; Fu, H. Analysis of the factors that affect the production of municipal solid waste in China. J. Clean. Prod. 2020, 259, 120808. [Google Scholar] [CrossRef]
- Sohel, M.S.; Alam, S.; Adnan, Z.H.; Hossain, M.A.; Sifullah, M.K.; Happy, A.N. Household Waste Management Woes in Dhaka City: Current Challenges and Policy Directions. Int. J. Community Well-Being 2024, 7, 237–264. [Google Scholar] [CrossRef]
- Firdaus, G. Increasing Rate of Psychological Distress in Urban Households: How Does Income Matter? Community Ment. Health J. 2023, 54, 641–648. [Google Scholar] [CrossRef]
- Yuan, M.; Yin, C.; Sun, Y.; Chen, W. Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 50, 101678. [Google Scholar]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [PubMed]
- Barbier, E.B.; Burgess, J.C. Economics of Water Scarcity and Efficiency. Sustainability 2024, 16, 8550. [Google Scholar] [CrossRef]
- Pierrat, E.; Laurent, A.; Martin, M.; Rygaard, M.; Verones, F.; Hauschild, M. Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. Sci. Total Environ. 2023, 870, 161910. [Google Scholar]
- Sharma, G.; Pravin, K.M. Human Overpopulation and Water Pollution: Reduction of Microbial Pollution by Vertical Flow Constructed Wetland. In Waste Management: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 1587–1603. [Google Scholar]
- Jargin, S.V. The Overpopulation: Selected Environmental and Geographic Aspects. J. Environ. Stud. 2024, 10, 6. [Google Scholar] [CrossRef]
- World Economic Forum. Global Risks Report 2024; World Economic Forum: Geneva, Switzerland, 2024; Available online: https://www.weforum.org/publications/global-risks-report-2024/ (accessed on 23 March 2025).
- Lee, T.-C.; Anser, M.K.; Nassani, A.A.; Haffar, M.; Zaman, K.; Abro, M.M.Q. Managing Natural Resources through Sustainable Environmental Actions: A Cross-Sectional Study of 138 Countries. Sustainability 2021, 13, 12475. [Google Scholar] [CrossRef]
- Simane, B.; Kapwata, T.; Naidoo, N.; Cissé, G.; Wright, C.Y.; Berhane, K. Ensuring Africa’s Food Security by 2050: The Role of Population Growth, Climate-Resilient Strategies, and Putative Pathways to Resilience. Foods 2025, 14, 262. [Google Scholar] [CrossRef]
- Kvamsdal, S.; Hopland, A.O.; Li, Y.; Selle, S. Expert opinions on threats and impacts in the marine environment. Mar. Policy 2023, 147, 105382. [Google Scholar]
- Velammal, D. Relation of Human Interference on Environment. In Environment Conservation, Challenges Threats in Conservation of Biodiversity; Scieng Publications: Tamilnadu, India, 2022; Volume 5. [Google Scholar]
- Ashanti, J.; White, N.D. Ocean acidification: The other climate change issue. Am. Sci. 2014, 102, 60–63. [Google Scholar]
- Hulme, P.E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 2021, 4, 666–679. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Ahmed, D.A.; Cuthbert, R.N.; Stubbington, R.; Domisch, S.; Marquez, J.R.; Haase, P. Invasion impacts and dynamics of a European-wide introduced species. Glob. Change Biol. 2022, 28, 4620–4633. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.R.; Upadhyaya, M.K.; Joshi, S.; Shrestha, A. Global Plant Invasions on the Rise. In Global Plant Invasions; Springer: Cham, Switzerland, 2021; pp. 1–28. [Google Scholar]
- Crist, E. Got nitrogen? On the links between nitrogen pollution and overpopulation. Ecol. Citiz. 2021, 5, 3. [Google Scholar]
- Ollivier, M.E.L.; Newton, A.; Kelsey, H. Social-Ecological Analysis of the Eutrophication in Chesapeake Bay, United States of America. Front. Mar. Sci. 2023, 10, 1237493. [Google Scholar]
- Epstein, Y.M. Crowding stress and human behavior. In Environmental Stress; Evans, G.W., Ed.; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Ostfeld, A.M.; Kasl, S.V.; d’Atri, D.A.; Fitzgerald, E.F. Stress, Crowding, and Blood Pressure in Prison; Taylor & Francis: New York, NY, USA, 2023. [Google Scholar]
- Dave, S. High urban densities in developing countries: A sustainable solution? Built Environ. 2010, 36, 9–27. [Google Scholar] [CrossRef]
- Pengcheng, L.; Longfei, Z.; Shujuan, C.; Xiaojie, W. Association between household overcrowding and depressive mood among Chinese residents. J. Affect. Disord. 2021, 290, 74–80. [Google Scholar] [CrossRef]
- Ruiz-Tagle, J.; Urria, I. Household overcrowding trajectories and mental well-being. Soc. Sci. Med. 2022, 296, 114051. [Google Scholar] [CrossRef]
- Russell, C.; Russell, W.M. The natural history of violence. J. Med. Ethics 1979, 5, 108–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harries, K. Property crimes and violence in United States: An analysis of the influence of population density. Int. J. Crim. Justice Sci. 2006, 1, 24–34. [Google Scholar]
- Biles, D. Violence due to Over-Population and OverCrowding—Gang Violence. Aust. J. Forensic Sci. 1975, 8, 7–13. [Google Scholar] [CrossRef]
- Arora, P. Overpopulation: A Hyperobject inducing ‘Slow Violence’. Int. J. Engl. Stud. 2023, 5, 104–112. [Google Scholar]
- Smith, S.; Ferguson, C.J.; Henderson, H. An Exploratory Study of Environmental Stress in Four High Violent Crime Cities: What Sets Them Apart? Crime Delinq. 2022, 68, 2092–2114. [Google Scholar] [CrossRef]
- Chang, Y.S.; Jo, S.J.; Lee, Y.T.; Lee, Y. Population density or populations size. Which factor determines urban traffic congestion? Sustainability 2021, 13, 4280. [Google Scholar] [CrossRef]
- Rahman, M.M.; Najaf, P.; Fields, M.G.; Thill, J.C. Traffic congestion and its urban scale factors: Empirical evidence from American urban areas. Int. J. Sustain. Transp. 2022, 16, 406–421. [Google Scholar]
- Kanyepe, J. The nexus between residential density, travel behavior and traffic congestion in developing metropolitans: A case study of harare, Zimbabwe. J. Contemp. Urban Aff. 2023, 30, 103–117. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Carnegie, E.R.; Inglis, G.; Taylor, A.; Bak-Klimek, A.; Okoye, O. Is population density associated with non-communicable disease in western developed countries? A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 2638. [Google Scholar] [CrossRef]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Gholipour, B. What 11 Billion People Mean for Disease Outbreaks. Scientific American. 26 November 2013. Available online: https://www.scientificamerican.com/article/what-11-billion-people-mean-disease-outbreaks/ (accessed on 23 March 2025).
- von Seidlein, L.; Alabaster, G.; Deen, J.; Knudsen, J. Crowding has consequences: Prevention and management of COVID-19 in informal urban settlements. Build. Environ. 2021, 15, 107472. [Google Scholar] [CrossRef]
- Miladinov, G. Impacts of population growth and economic development on foodsecurity in low-income and middle-income countries. Front. Hum. Dyn. 2023, 5, 1121662. [Google Scholar] [CrossRef]
- Obaisi, A. Overpopulation: A threat to sustainable agriculture and food security in developing countries? A review. Int. J. Agric. Food Secur. 2017, 6, 921–927. [Google Scholar]
- World Health Organization. 2024, Hunger Numbers Stubbornly High for Three Consecutive Years as Global Crises Deepen: UN Report. Joint News Report. 24 July 2024. Available online: https://www.who.int/news/item/24-07-2024-hunger-numbers-stubbornly-high-for-three-consecutive-years-as-global-crises-deepen--un-report (accessed on 23 March 2025).
- United Nations, Department of Economic and Social Affairs. Population, Food Security, Nutrition and Sustainable Development. Policy Brief 102. Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/PB_102.pdf (accessed on 23 March 2025).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024—Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms; FAO; IFAD; UNICEF; WFP; WHO: Rome, Italy. [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Daskalova, G.N.; Myers-Smith, I.H.; Bjorkman, A.D.; Blowes, S.A.; Supp, S.R.; Magurran, A.E.; Dornelas, M. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 2020, 19, 1341–1347. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Carr, D.L.; Suter, L.; Barbieri, A. Population dynamics and tropical deforestation: State of the debate and conceptual challenges. Popul. Environ. 2005, 27, 89–113. [Google Scholar] [CrossRef]
- Barber, C.V.; Talbott, K. The chainsaw and the gun: The role of the military in deforesting Indonesia. In War and Tropical Forests; CRC Press: Boca Raton, FL, USA, 2020; pp. 137–166. [Google Scholar]
- Rudel, T. Population, development and tropical deforestation: A cross-national study. In The Causes of Tropical Deforestation; Routledge: London, UK, 2023; pp. 96–105. [Google Scholar]
- Wolf, C.; Levi, T.; Ripple, W.J.; Zárrate-Charry, D.A.; Betts, M.G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 2021, 5, 520–529. [Google Scholar] [CrossRef]
- Nunez, Z. Why Deforestation Matters—And What We Can Do to Stop It. National Geographic, 7 December 2022. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Ritchie, H. The World Has Lost One-Third of Its Forest, But an End of Deforestation Is Possible. Published online at OurWorldinData.org. 2021. Available online: https://ourworldindata.org/world-lost-one-third-forests (accessed on 23 March 2025).
- Einhorn, C.; Buckly, C. Global Leaders Pledge to End Deforestation by 2030. The New York Times. 10 November 2023. Available online: https://www.nytimes.com/2021/11/02/climate/cop26-deforestation.html (accessed on 23 March 2025).
- Andreoni, M. Global Forest Loss Remains High, Despite Recent Progress. The New York Times. 4 April 2024. Available online: https://www.nytimes.com/2024/04/04/climate/global-forest-tree-loss-wri.html (accessed on 23 March 2025).
- Milodowski, D.T.; Mitchard, E.T.; Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett. 2017, 22, 094003. [Google Scholar] [CrossRef]
- Spring, J. Tropical Forest Loss Eased in 2023 but Threats Remain, Analysis Shows. Reuters. 4 April 2024. Available online: https://www.reuters.com/world/tropical-forest-loss-eased-2023-threats-remain-analysis-shows-2024-04-04/ (accessed on 23 March 2025).
- Xu, X.; Zhang, X.; Riley, W.J.; Xue, Y.; Nobre, C.A.; Lovejoy, T.E.; Jia, G. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 2022, 17, 034037. [Google Scholar] [CrossRef]
- Botswick, S. The Link Between Deforestation and Poverty. Borgen Project. 5 October 2019. Available online: https://borgenproject.org/the-link-between-deforestation-and-poverty/ (accessed on 23 March 2025).
- World Resources Institute, Global Forest Watch. Top 10 Countries for Global Tree Cover Loss, 2001–2023. Available online: https://research.wri.org/gfr/top-ten-lists (accessed on 23 March 2025).
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking global food demand for 2050. Popul. Dev. Rev. 2022, 48, 921–925. [Google Scholar] [CrossRef]
- Trees Are Covering More of the Land in Rich Countries. The Economist. 2 December 2017. Available online: https://www.economist.com/international/2017/12/02/trees-are-covering-more-of-the-land-in-rich-countries (accessed on 23 March 2025).
- McDonald, R.I.; Biswas, T.; Sachar, C.; Housman, I.; Boucher, T.M.; Balk, D.; Nowak, D.; Spotswood, E.; Stanley, C.K.; Leyk, S. The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5723 communities. PLoS ONE 2021, 16, e0249715. [Google Scholar] [CrossRef] [PubMed]
- Reytar, K.; Levin, D.; Goldman, E.; Stolle, F.; Weisse, M.; Potapov, P. 36 Countries Are Gaining More Trees Than They’re Losing; World Resources Institute: Washington, DC, USA, 2022; Available online: https://www.wri.org/insights/tracking-global-tree-cover-gain (accessed on 23 March 2025).
- Miyamoto, M. Poverty reduction saves forests sustainably: Lessons for deforestation policies. World Dev. 2020, 127, 104746. [Google Scholar] [CrossRef]
- Mapulanga, A.M.; Naito, H. Does A Higher Population Growth Cause Deforestation?: A Study of Malawi’s Rapid Deforestation. Ideas. 2018. Available online: https://ideas.repec.org/p/tsu/tewpjp/2018-005.html (accessed on 23 March 2025).
- Palmer, C.; Pearson, N.; Kyriacou, G. What Is the Role of Deforestation in Climate Change and How Can ‘Reducing Emissions from Deforestation and Degradation’; London School of Economics: London, UK, 2023; Available online: https://www.lse.ac.uk/granthaminstitute/explainers/whats-redd-and-will-it-help-tackle-climate-change/#:~:text=Land%20use%20change%2C%20principally%20deforestation,also%20contribute%20to%20these%20emissions (accessed on 23 March 2025).
- Tang, K.H.; Yap, P.S. A Systematic Review of Slash-and-Burn Agriculture as an Obstacle to Future-Proofing Climate Change. In Proceedings of the International Conference on Climate Change, Kuala Lumpur, Malaysia, 27–28 February 2020; Volume 4, pp. 11–19. Available online: https://tiikmpublishing.com/proceedings/index.php/iccc/article/view/570 (accessed on 23 March 2025).
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tabeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.E.; van den Berg, M.; van Zeist, W.J.; Daioglou, V.; et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Change Biol. 2020, 26, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Razafindratsima, O.H.; Kamoto, J.F.; Sills, E.O.; Mutta, D.N.; Song, C.; Kabwe, G.; Castle, S.E.; Kristjanson, P.M.; Ryan, C.M.; Brockhaus, M.; et al. Reviewing the evidence on the roles of forests and tree-based systems in poverty dynamics. For. Policy Econ. 2021, 131, 102576. [Google Scholar]
- Bodo, T.; Gimah, B.G.; Seomoni, K.J. Deforestation and habitat loss: Human causes, consequences and possible solutions. J. Geogr. Res. 2021, 4, 22–30. [Google Scholar] [CrossRef]
- Gleave, M.B.; White, H.P. Population density and agricultural systems in West Africa. In Environment and Land Use in Africa 2023; Routledge: London, UK, 2023; pp. 273–300. [Google Scholar]
- Herrmann, S.M.; Brandt, M.; Rasmussen, K.; Fensholt, R. Accelerating land cover change in West Africa over four decades as population pressure increased. Commun. Earth Environ. 2020, 1, 53. [Google Scholar] [CrossRef]
- Zora Kovacic, Z.; Salazar, O.V. The lose-lose predicament of deforestation through subsistence farming: Unpacking agricultural expansion in the Ecuadorian Amazon. J. Rural. Stud. 2017, 51, 105–114. [Google Scholar] [CrossRef]
- Noon, M.L.; Goldstein, A.; Ledezma, J.C.; Roehrdanz, P.R.; Cook-Patton, S.C.; Spawn-Lee, S.A.; Turner, W.R. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 2022, 5, 37–46. [Google Scholar] [CrossRef]
- World Bank. GDP per Capita (Current US$)—Congo, Democratic Republic. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CD (accessed on 23 September 2024).
- Weisse, M.; Goldman, L.; Carter, S. Tropical Primary Forest Loss Worsened in 2022, Despite International Commitments to End Deforestation, Global Forest Review; World Resource Institute: Washington, DC, USA, 2023; Available online: https://research.wri.org/gfr/latest-analysis-deforestation-trends?utm_campaign=treecoverloss2021&utm_medium=bitly&utm_source=GFWBlog (accessed on 23 March 2025).
- World Bank. Access to Electricity (% of Population) Democratic Republic of Congo. 2023. Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2020&locations=ZG-CD&start=1996&view=chart&year_high_desc=true (accessed on 23 March 2025).
- Shackleton, C.; Sinasson, G.; Adeyemi, O.; Martins, V. Fuelwood in South Africa revisited: Widespread use in a policy vacuum. Sustainability 2022, 14, 11018. [Google Scholar] [CrossRef]
- Lawson, S. Illegal Logging in the Democratic Republic of the Congo. In Energy, Environment and Resources; Chatham House: London, UK, 2014; Available online: https://www.chathamhouse.org/sites/default/files/home/chatham/public_html/sites/default/files/20140400LoggingDRCLawson.pdf (accessed on 23 March 2025).
- Schneider, V. Poor Governance Fuels ‘Horrible Dynamic’ of Deforestation in DRC. Mongabay, News from Nature’s Front Lines. 1 December 2020. Available online: https://news.mongabay.com/2020/12/poor-governance-fuels-horrible-dynamic-of-deforestation-in-drc/ (accessed on 23 March 2025).
- Stefoff, R. Overpopulation; Chelsea House Publishers: New York, NY, USA, 1993. [Google Scholar]
- Ssekibaala, S.D.; Kasule, T.A. Examination of the poverty-environmental degradation nexus in Sub-Saharan Africa. Reg. Sustain. 2023, 4, 296–308. [Google Scholar] [CrossRef]
- Ben, V.E.; Okon, D.E. Population, Environment and Planning for Sustainable Development in Nigeria. Ibom J. Soc. Issues 2020, 10, 53. [Google Scholar]
- Atedhor, G.O. Greenhouse gases emissions and their reduction strategies: Perspectives of Africa’s largest economy. Sci. Afr. 2023, 20, e01705. [Google Scholar]
- Destiartono, M.E.; Hartono, D. Does Rapid Urbanization Drive Deforestation? Evidence From Southeast Asia. Econ. Dev. Anal. J. 2022, 3011, 442–453. [Google Scholar]
- Gaveau, D.L.; Santos, L.; Locatelli, B.; Salim, M.A.; Husnayaen, H.; Meijaard, E.; Heatubun, C.; Sheil, D. Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook. Biol. Conserv. 2021, 261, 109225. [Google Scholar]
- Güneral, B.; Reba, M.; Hales, B.; Wentz, E.; Seto, K. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar]
- Prabhakar, S.V. A succinct review and analysis of drivers and impacts of agricultural land transformations in Asia. Land Use Policy 2021, 102, 105238. [Google Scholar]
- Nigeria Population Growth Rate 1950–2024. Macrotrends. 2024. Available online: https://www.macrotrends.net/global-metrics/countries/NGA/nigeria/population-growth-rate (accessed on 23 March 2025).
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–61. [Google Scholar]
- Bologna, M.; Aquino, G. Deforestation and world population sustainability: A quantitative analysis. Sci. Rep. 2020, 10, 7631. [Google Scholar]
- Pogge, T. Keynote Address: Poverty, Climate Change, and Overpopulation. Ga. J. Int. Comp. Law 2009, 38, 525. [Google Scholar]
- Spears, D. Smaller human population in 2100 could importantly reduce the risk of climate catastrophe. Proc. Natl. Acad. Sci. USA 2015, 112, E2270. [Google Scholar]
- Scovronick, N.; Budolfson, M.B.; Dennig, F.; Fleurbaey, M.; Siebert, A.; Socolow, R.H.; Wagner, F. Environmental change. Popul. Stud. 2021, 75, 77–104. [Google Scholar]
- Dasgupta, A.; Dasgupta, P. Population overshoot. In Oxford Handbook of Population Ethics; Arrhenius, G., Bykvist, K., Campbell, T., Finneron-Burns, E., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 490–518. [Google Scholar] [CrossRef]
- Muttarak, R. Demographic perspectives in research on global environmental change. Popul. Stud. 2021, 75, 77–104. [Google Scholar]
- Nathaniel, S.P.; Adeleye, N. Environmental preservation amidst carbon emissions, energy consumption, and urbanization in selected african countries: Implication for sustainability. J. Clean. Prod. 2021, 285, 125409. [Google Scholar]
- Rahman, M.M.; Husnain, M.I.; Azimi, M.N. An environmental perspective of energy consumption, overpopulation, and human capital barriers in South Asia. Sci. Rep. 2024, 23, 4420. [Google Scholar]
- Sarkar, B.; Halder, U.K. Overpopulation and Environment Pollution. In Development, Environment and Education: The Indian Perspective; Redshine: Navamuvada, India, 2023; pp. 31–44. [Google Scholar]
- Raihan, A.; Chandra Voumik, L. Carbon emission dynamics in India due to financial development, renewable energy utilization, technological innovation, economic growth, and urbanization. J. Environ. Sci. Econ. 2022, 1, 36–50. [Google Scholar] [CrossRef]
- Le, H.P.; Ozturk, I. The impacts of globalization, financial development, government expenditures, and institutional quality on CO2 emissions in the presence of environmental Kuznets curve. Environ. Sci. Pollut. Res. 2020, 27, 22680–22697. [Google Scholar] [CrossRef]
- Gould, R.; Tal, A. Returning Population to the Sustainable Development Discourse: Israel as a Case Study. Acta Univ. Carol. 2020, 20, 11–43. [Google Scholar]
- Tal, A. Unkept Promises: Israel’s Implementation of Its International Climate Change Commitments. Isr. J. Foreign Aff. 2020, 14, 21–51. [Google Scholar] [CrossRef]
- UNFCCC. Outcome of the First Global Stocktake. In Proceedings of the Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement, Fifth Session, Dubai, United Arab Emirates, 30 November–13 December 2023. Available online: https://unfccc.int/sites/default/files/resource/cma2023_L17_adv.pdf (accessed on 23 March 2025).
- Wynes, S.; Nichols, K. The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environ. Res. Lett. 2017, 12, 074024. [Google Scholar]
- European Union. EU Economy Greenhouse Gas Emissions: −2.6% in Q2 2024; Eurostat: Luxembourg, 2024; Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20241115-2#:~:text=In%20the%20second%20quarter%20of%202024%2C%20greenhouse%20gas%20emissions%20were,Hungary%20(each%20%2D5.9%25) (accessed on 23 March 2025).
- Nagaj, R.; Gajdzik, B.; Wolniak, R.; Grebski, W.W. The impact of deep decarbonization policy on the level of greenhouse gas emissions in the European Union. Energies 2024, 17, 1245. [Google Scholar] [CrossRef]
- Tal, A. The Demands of Dubai: Is Israel Prepared to Meet the New Global Road Map for Climate Action? Isr. J. Foreign Aff. 2024, 17, 1–22. [Google Scholar]
- Roth, M.; Erez, P. National Carrying Capacity, A Crowded Future; Tsairi, Y., Tal, A., Eds.; Zafuf: Tel Aviv, Israel, 2021; Available online: https://population.org.il/capacity-report/ (accessed on 23 March 2025).
- Cordova, T.; Kissinger, M.; Teschner, N.; Chen, D.; Stossel, Z.; Goldfischer, O.; Nitzan-Tzaho, S.; Riemerm, E. Effects of demographic and technological trends on the mitigation of Israel’s environmental footprint. Nat. Sustain. 2024, 7, 1616–1625. [Google Scholar] [CrossRef]
- Parker, L.; Blodgett, J.E.; Director, D.A. Greenhouse Gas Emissions: Perspectives on the Top 20 Emitters and Developed Versus Developing Nations; Congressional Research Service: Washington, DC, USA, 2008. [Google Scholar]
- Dlamni, C. Africa’s Businesses Are Its Secret Weapon Against Climate Change; World Economic Forum: Geneva, Switzerland, 2022; Available online: https://www.weforum.org/agenda/2022/11/africa-business-climate-change-mitigation-adaptation/ (accessed on 23 March 2025).
- Paprotny, D. Convergence between developed and developing countries: A centennial perspective. Soc. Indic. Res. 2021, 53, 193–225. [Google Scholar] [CrossRef]
- Payne, J.E.; Apergis, N. Convergence of per capita carbon dioxide emissions among developing countries: Evidence from stochastic and club convergence tests. Environ. Sci. Pollut. Res. 2021, 28, 33751–33763. [Google Scholar] [CrossRef]
- Mulhern, O. Africa: Growth and Potential for A Sustainable Future. Earth.Org. 2021. Available online: https://earth.org/data_visualization/africa-potential-for-a-sustainble-future/ (accessed on 23 March 2025).
- European Environmental Agency, Is Europe Reducing Its Greenhouse Gas Emissions? EEA. 2022. Available online: https://www.eea.europa.eu/themes/climate/eu-greenhouse-gas-inventory/is-europe-reducing-its-greenhouse (accessed on 23 March 2025).
- Nomura, K.; Mitchard, E.T.; Bowers, S.J.; Patenaude, G. Missed carbon emissions from forests: Comparing countries’ estimates submitted to UNFCCC to biophysical estimates. Environ. Res. Lett. 2019, 14, 024015. [Google Scholar] [CrossRef]
- Corbera, E.; Estrada, M.; Brown, K. Reducing greenhouse gas emissions from deforestation and forest degradation in developing countries: Revisiting the assumptions. Clim. Change 2010, 100, 355–388. [Google Scholar] [CrossRef]
- Krug, J.H. Accounting of GHG emissions and removals from forest management: A long road from Kyoto to Paris. Carbon Balance Manag. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Federici, S.; Grassi, G.; Harris, N.; Lee, D.; Neeff, T.; Penman, J.; Sanz-Sanchez, M.; Wolosin, M. GHG Fluxes from Forests: An Assessment of National Reporting and Independent Science in the Context of the Paris Agreement; Working Paper; UCLA: San Francisco, CA, USA, 2016; Available online: http://www.climateandlandusealliance.org/wp-content/uploads/2016/06/GHG_Fluxes_From_Forests_Working_Paper.pdf (accessed on 18 October 2016).
- Dodson, J.; Derer, P.; Cafaro, P.; Gotmark, F. Population growth, family planning and the Paris Agreement: An assessment of the nationally determined contributions (NDCs). Int. Environ. Agreem. 2022, 22, 561–576. [Google Scholar] [CrossRef]
- Bongaarts, J.; O’Neill, B.C. Global warming policy: Is population left out in the cold? Science 2018, 361, 650–652. [Google Scholar] [CrossRef]
- United Nations, Convention on Biological Diversity (with Annexes). Concluded at Rio de Janeiro on 5 June 1992. Available online: https://treaties.un.org/ (accessed on 25 October 2024).
- Prip, C. The Convention on Biological Diversity as a legal framework for safeguarding ecosystem services. Ecosyst. Serv. 2018, 29, 199–204. [Google Scholar] [CrossRef]
- World Wildlife Fund. Living Planet Index. 2024. Available online: https://livingplanet.panda.org/en-US/ (accessed on 23 March 2025).
- Kibet, R. How AWF’s Giraffe Conservation Strategy Tackles a Growing Crisis. African Wildlife Foundation. 20 June 2024. Available online: https://www.awf.org/news/how-awfs-giraffe-conservation-strategy-tackles-growing-crisis (accessed on 23 March 2025).
- IUCN. Amazing Species, Tiger. Available online: https://nc.iucnredlist.org/redlist/amazing-species/panthera-tigris/pdfs/original/panthera-tigris.pdf (accessed on 25 October 2024).
- Gorilla foundation. Status of Gorillas Worldwide. Available online: https://www.koko.org/conservation/status-of-gorillas-worldwide/ (accessed on 25 October 2024).
- Cafaro, P.; Hansson, P.; Götmark, F. Overpopulation is a major cause of biodiversity loss and smaller human populations are necessary to preserve what is left. Biol. Conserv. 2022, 272, 109646. [Google Scholar] [CrossRef]
- World Wildlife Fund. East Lowland Gorillas. Available online: https://www.worldwildlife.org/species/eastern-lowland-gorilla (accessed on 25 October 2024).
- Allan, J.R.; Watson, J.E.M.; Di Marco, M.; O’Bryan, C.J.; Possingham, H.P.; Atkinson, S.C.; Venter, O. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 2019, 17, e3000158. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES). Summary for Policymakers. Global Assessment Report on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Püttker, T.; Crouzeilles, R.; Almeida-Gomes, M.; Schmoeller, M.; Maurenza, D.; Alves-Pinto, H.; Pardini, R.; Vieira, M.V.; Banks-Leite, C.; Fonseca, C.R.; et al. Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biol. Conserv. 2020, 241, 108368. [Google Scholar] [CrossRef]
- Rija, A.A.; Critchlow, R.; Thomas, C.D.; Beale, C.M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS ONE 2020, 21, e0227163. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, G.; Ågerstrand, M.; Antonelli, A.; Backhaus, T.; Brodin, T.; Diamond, M.L.; Erdelen, W.R.; Evers, D.C.; Hofmann, T.; Hueffer, T.; et al. Addressing chemical pollution in biodiversity research. Glob. Change Biol. 2023, 29, 3240–3255. [Google Scholar] [CrossRef]
- Duenas, M.A.; Hemming, D.J.; Roberts, A.; Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: A systematic review. Glob. Ecol. Conserv. 2021, 26, e01476. [Google Scholar]
- Habibullah, M.S.; Din, B.H.; Tan, S.H.; Zahid, H. Impact of climate change on biodiversity loss: Global evidence. Environ. Sci. Pollut. Res. 2022, 29, 1073–1086. [Google Scholar] [CrossRef]
- Geary, W.L.; Nimmo, D.G.; Doherty, T.S.; Ritchie, E.G.; Tulloch, A.I.T. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 2019, 56, 1992–1997. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 201, e1500052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Lázaro, A.; Fuster, F.; Alomar, D.; Totland, Ø. Disentangling direct and indirect effects of habitat fragmentation on wild plants’ pollinator visits and seed production. Ecol. Appl. 2020, 30, e02099. [Google Scholar] [CrossRef]
- Kulikowski, M. Shrinking Habitats Have Adverse Effects on World Ecosystems. NC State News. 20 March 2015. Available online: https://news.ncsu.edu/2015/03/20/bad-effects-shrinking-habitats/ (accessed on 23 March 2025).
- Laurance, W.F.; Camargo, J.L.; Luizão, R.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Williamson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L.; et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar]
- Maja, M.M.; Ayano, S.F. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Fa, J.E.; Funk, S.M.; Nasi, R. Hunting Wildlife in the Tropics and Subtropics; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Musetsho, K.D.; Chitakira, M.; Nel, W. Mapping land-use/land-cover change in a critical biodiversity area of South Africa. Int. J. Environ. Res. Public Health 2021, 18, 10164. [Google Scholar] [CrossRef] [PubMed]
- Alva, O.; Leroy, A.; Heiske, M.; Pereda-Loth, V.; Tisseyre, L.; Boland, A.; Deleuze, J.F.; Rocha, J.; Schlebusch, C.; Fortes-Lima, C.; et al. The loss of biodiversity in Madagascar is contemporaneous with major demographic events. Curr. Biol. 2022, 32, 4997–5007. [Google Scholar] [CrossRef]
- United States Census, International Data Base (IDB). 2025. Available online: https://www.census.gov/data-tools/demo/idb/#/dashboard?dashboard_page=country&COUNTRY_YR_ANIM=2025 (accessed on 31 October 2024).
- Simmons, A. Status of deforestation of Madagascar. Glob. Ecol. Conserv. 2023, 42, e02389. [Google Scholar]
- Ralimanana, H.; Perrigo, A.L.; Smith, R.J.; Borrell, J.S.; Faurby, S.; Rajaonah, M.T.; Randriamboavonjy, T.; Vorontsova, M.S.; Cooke, R.S.; Phelps, L.N.; et al. Madagascar’s extraordinary biodiversity: Threats and opportunities. Science 2022, 378, eadf1466. [Google Scholar]
- United Nations Environmental Program. Haiti, Biodiverstiy. Available online: https://dicf.unepgrid.ch/haiti/biodiversity (accessed on 28 October 2024).
- Hedges, S.B.; Cohen, W.B.; Timyan, J.; Yang, Z. Haiti’s biodiversity threatened by nearly complete loss of primary forest. Proc. Natl. Acad. Sci. USA 2018, 115, 11850–11855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pauleus, O.; Aide, T.M. Haiti has more forest than previously reported: Land change 2000–2015. Peer J. 2020, 8, e9919. [Google Scholar]
- Salomon, W.; Sikuzani, Y.U.; Kouakou, A.T.; Barima, S.S.; Theodat, J.M.; Bogaert, J. Monitoring of Anthropogenic Effects on Forest Ecosystems within the Municipality of Vallières in the Republic of Haiti from 1984 to 2019. Trees For. People 2021, 6, 100135. [Google Scholar]
- Sharples, C.; Erickson-Davis, M. Haiti may lose all primary forest by 2035, mass extinction underway. Mongabay. 29 November 2018. Available online: https://news.mongabay.com/2018/11/haiti-may-lose-all-primary-forest-by-2035-mass-extinction-underway/ (accessed on 23 March 2025).
- Dolisca, F.; McDaniel, J.M.; Teeter, L.D.; Jolly, C.M. Land tenure, population pressure, and deforestation in Haiti: The case of Forêt des Pins Reserve. J. For. Econ. 2007, 13, 277–289. [Google Scholar]
- United Nations. Convention on Biological Diversity. Papua New Guinea—Country Profile. Available online: https://www.cbd.int/countries/profile?country=pg#:~:text=Approximately%202.9%20million%20hectares%20of,rate%20of%201.4%25%20per%20year (accessed on 28 October 2024).
- Turia, R.; Gamoga, G.; Abe, H.; Novotny, V.; Attorre, F.; Vesa, L. Monitoring the multiple functions of tropical rainforest on a national scale: An overview from Papua New Guinea. Case Stud. Environ. 2022, 6, 1547792. [Google Scholar] [CrossRef]
- United Nations Development Program. Papua New Guinea, Common Country Assessment. 2022. Available online: https://minio.uninfo.org/uninfo-production-main/f5fc3a95-bf65-4f77-81f9-885d55459c7b_FINAL__2022_update_PNG_CCA_Report.pdf (accessed on 23 March 2025).
- Ningal, T.; Hartemink, A.E.; Bregt, A.K. Land use change and population growth in the Morobe Province of Papua New Guinea between 1975 and 2000. J. Environ. Manag. 2008, 1, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Broekman, M.J.; Hilbers, J.P.; Tucker, M.A.; Huijbregts, M.A.; Schipper, A.M. Impacts of existing and planned roads on terrestrial mammal habitat in New Guinea. Conserv. Biol. 2024, 38, e14152. [Google Scholar] [CrossRef] [PubMed]
- Papua New Guinea, Population Pyramids of the World, 1950–2100, 2025. Available online: https://www.populationpyramid.net/papua-new-guinea/1950/ (accessed on 23 March 2025).
- White, T.H., Jr.; Bickley, P.; Brown, C.; Busch, D.E.; Dutson, G.; Freifeld, H.; Krofta, D.; Lawlor, S.; Polhemus, D.; Rounds, R. Quantifying threats to biodiversity and prioritizing responses: An example from Papua New Guinea. Diversity 2021, 13, 248. [Google Scholar] [CrossRef]
- Sembajwe, I. Population and Demographic Trends in Papua New Guinea (Discussion Paper No. 130). Papua New Guinea National Research Institute. Available online: https://pngnri.org/images/Publications/DP130_-201309-Sembajwe-_Demographic_Trends_in_PNG_2.pdf (accessed on 23 March 2025).
- The Royal Society. Where Is Most Biodiversity Loss Happening and Why? 2022. Available online: https://royalsociety.org/news-resources/projects/biodiversity/where-is-most-biodiversity-loss-happening-and-why/ (accessed on 23 March 2025).
- Biodb. Nature Conservation Index. 2024. Available online: https://biodb.com/table/nci-2024/ (accessed on 23 March 2025).
- Ritchie, H.; Roser, M. Fish and Overfishing: How Are Fish Stocks Changing Across the World? Our World in Data. 2024. Available online: https://ourworldindata.org/fish-and-overfishing?utm_source=Rambler&utm_medium=news&utm_campaign=transition (accessed on 23 March 2025).
- Naylor, R.L.; Kishore, A.; Sumaila, U.R.; Issifu, I.; Hunter, B.P.; Belton, B.; Bush, S.R.; Cao, L.; Gelcich, S.; Gephart, J.A.; et al. Blue food demand across geographic and temporal scales. Nat. Commun. 2021, 12, 5413. [Google Scholar] [CrossRef]
- Clovis, H.I.; Simon, A.M. Understanding Overfishing: A Literature Review. Asian J. Fish. Aquat. Res. 2024, 26, 61–72. [Google Scholar] [CrossRef]
- Yan, H.F.; Kyne, P.M.; Jabado, R.W.; Leeney, R.H.; Davidson, L.N.; Derrick, D.H.; Finucci, B.; Freckleton, R.P.; Fordham, S.V.; Dulvy, N.K. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 2021, 7, eabb6026. [Google Scholar] [CrossRef]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef]
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef]
- Marine Stewardship Council. Fish Aggregating Devices (FADs), (Undated). Available online: https://www.msc.org/what-we-are-doing/our-approach/fishing-methods-and-gear-types/fish-aggregating-devices-fads (accessed on 23 March 2025).
- Morrow, F. The tragedy of the commodity and the state: A comparative case study of the Atlantic bluefin tuna and Newfoundland cod fishery collapses. Stud. Political Econ. 2024, 5, 50–68. [Google Scholar] [CrossRef]
- Christensen, V.; Guenette, S.; Heymans, J.J.; Walters, C.J.; Watson, R.; Zeller, D.; Pauly, D. Hundred—Year decline of North Atlantic predatory fishes. Fish Fish. 2003, 4, 1–24. [Google Scholar]
- Froese, R.; Winker, H.; Coro, G.; Palomares, M.L.; Tsikliras, A.C.; Dimarchopoulou, D.; Touloumis, K.; Demirel, N.; Vianna, G.; Scarcella, G.; et al. New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method. Acta Ichthyol. Piscat. 2023, 53, 173–189. [Google Scholar]
- Zhou, S.; Punt, A.E.; Lei, Y.; Deng, R.A.; Hoyle, S.D. Identifying spawner biomass per-recruit reference points from life—History parameters. Fish Fish. 2020, 21, 760–773. [Google Scholar]
- Hønneland, G. Marine Stewardship Council (MSC) Certification of Arctic Fisheries. Arct. Rev. Law Politics 2020, 11, 133–135. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Edgar, G.J.; Bates, A.E.; Krueck, N.C.; Baker, S.C.; Stuart-Smith, R.D.; Brown, C.J. Stock assessment models overstate sustainability of the world’s fisheries. Science 2024, 385, 860–865. [Google Scholar]
- Cheung, W.W.; Pauly, D.; Sumaila, U.R. Hope or Despair Revisited: Assessing Progress and New Challenges in Global Fisheries. Fish Fish. 2025, 26, 257–269. [Google Scholar]
- Cooke, S.J.; Fulton, E.A.; Sauer, W.H.; Lynch, A.J.; Link, J.S.; Koning, A.A.; Jena, J.; Silva, L.G.; King, A.J.; Kelly, R.; et al. Towards vibrant fish populations and sustainable fisheries that benefit all: Learning from the last 30 years to inform the next 30 years. Rev. Fish Biol. Fish. 2023, 33, 317–347. [Google Scholar]
- Allan, J.D.; Abell, R.; Hogan, Z.E.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. BioScience 2005, 55, 1041–1051. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar]
- Chevalier, M.; Ngor, P.B.; Pin, K.; Touch, B.; Lek, S.; Grenouillet, G.; Hogan, Z. Long-term data show alarming decline of majority of fish species in a Lower Mekong basin fishery. Sci. Total Environ. 2023, 15, 164624. [Google Scholar]
- Demirel, N.; Zengin, M.; Ulman, A. First large-scale eastern Mediterranean and Black Sea stock assessment reveals a dramatic decline. Front. Mar. Sci. 2020, 7, 103. [Google Scholar]
- Belhabib, D.; Lam, V.W.; Cheung, W.W. Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy 2016, 71, 15–28. [Google Scholar]
- Pomeroy, R.; Parks, J.; Mrakovcich, K.L.; LaMonica, C. Drivers and impacts of fisheries scarcity, competition, and conflict on maritime security. Mar. Policy 2016, 67, 94–104. [Google Scholar]
- Cao, L.; Halpern, B.S.; Troell, M.; Short, R.; Zeng, C.; Jiang, Z.; Tigchelaar, M. Vulnerability of blue foods to human-induced environmental change. Nat. Sustain. 2023, 6, 1186–1198. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.E.; Clawson, G.; Blanchard, J.L.; Williams, D.R. The environmental footprint of global food production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- Philippines Population Growth Rate 1950–2025, Macrotrends. Available online: https://www.macrotrends.net/global-metrics/countries/PHL/philippines/population-growth-rate (accessed on 23 March 2025).
- Anticamara, J.A.; Go, K.T. Spatio-temporal declines in Philippine fisheries and its implications to coastal municipal fishers’ catch and income. Front. Mar. Sci. 2016, 3, 21. [Google Scholar]
- Pauly, D.; Liang, C. The fisheries of the South China Sea: Major trends since 1950. Mar. Policy 2020, 121, 103584. [Google Scholar]
- Ngo, H. South China Sea’s Fish Stocks Are Running Low. China’s Fishing Ban Isn’t Helping. China Global. 17 August 2023. Available online: https://chinaglobalsouth.com/analysis/south-china-seas-fish-stocks-are-running-low-chinas-fishing-ban-isnt-helping/ (accessed on 23 March 2025).
- Suuronen, P.; Pitcher, C.R.; McConnaughey, R.A.; Kaiser, M.J.; Hiddink, J.G.; Hilborn, R. A path to a sustainable trawl fishery in Southeast Asia. Rev. Fish. Sci. Aquac. 2020, 28, 499–517. [Google Scholar]
- Barboza, A.; Macusi, E.D.; Borazon, E.Q.; Santos, M.D.; Muallil, R.N.; Nallos, I.M. Small-scale fisheries (SSF) management and conservation schemes and their application in the Philippines. Mar. Policy 2024, 161, 106018. [Google Scholar]
- Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding global fisheries. Science 2009, 325, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Panga, F.M.; Anticamara, J.A.; Quibilan, M.C.; Atrigenio, M.P.; Aliño, P.M. Through the boundaries: Environmental factors affecting reef benthic cover in marine protected areas in the Philippines. Front. Mar. Sci. 2021, 8, 702071. [Google Scholar] [CrossRef]
- Hübschle, A.; Lindley, J. Blue crimes and ocean harmscapes: Strategies for tackling Transnational Maritime Environmental Crimes in the Global South. Front. Conserv. Sci. 2024, 5, 1448316. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Liu, J.; Orlic, I. Peruvian anchoveta as a telecoupled fisheries system. Ecol. Soc. 2018, 23, 35. Available online: https://www.jstor.org/stable/26799074 (accessed on 23 March 2025). [CrossRef]
- Castagnino, F.; Estévez, R.A.; Caillaux, M.; Velez-Zuazo, X.; Gelcich, S. Local ecological knowledge (LEK) suggests overfishing and sequential depletion of Peruvian coastal groundfish. Mar. Coast. Fish. 2023, 15, e10272. [Google Scholar] [CrossRef]
- Mollinari, C. Peruvian Anchovy Executive Warns About Problems in Country’s South Fishing Zone, November 8. Supply and Trade. 13 February 2024. Available online: https://www.seafoodsource.com/news/premium/supply-trade/peruvian-anchovy-executive-warns-industry-not-to-forget-about-the-country-s-south-zone#:~:text=A%20top%20executive%20in%20Peru's,issues%20to%20address%20in%202024. (accessed on 23 March 2025).
- Gutiérrez, D.; Díaz, E. Seventy Years of Management of the Peruvian Anchoveta Fishery Under High Environmental Variability: Lessons and Challenges for Future Climate Change Scenarios. In Proceedings of the Small Pelagic Fish, New Frontiers in Science and Sustainable Management, Lisbon, Portugal, 7–11 November 2022; Available online: https://meetings.pices.int/Publications/Presentations/2022-SPF/S7-Gutierrez.pdf (accessed on 23 March 2025).
- Ndour, I.; Le Loc’h, F.; Kantoussan, J.; Thiaw, M.; Diadhiou, H.D.; Ecoutin, J.M. Changes in the trophic structure, abundance and species diversity of exploited fish assemblages in the artisanal fisheries of the northern coast, Senegal, West Africa. Afr. Mar. Sci. 2014, 36, 361–368. [Google Scholar] [CrossRef]
- United Nations Population Fund. World Population Dashboard, Senegal. Available online: https://www.unfpa.org/data/world-population/SN (accessed on 13 November 2024).
- Ekpu, G.; Whittle, P. Senegal Struggles with Loss of Fish Central to Diet, Culture. AP News. 6 April 2023. Available online: https://apnews.com/article/overfishing-senegal-africa-grouper-fish-seafood-climate-56ab28781307be88026c618fffd6f257 (accessed on 23 March 2025).
- ADF Staff. Loss of White Grouper Threatens Senegal’s Food Security, Culture. African Defense Fund Daily News. 2 May 2023. Available online: https://adf-magazine.com/2023/05/loss-of-white-grouper-threatens-senegals-food-security-culture/ (accessed on 23 March 2025).
- Lemrabott, S.; van Leeuwen, A.; Piersma, T.; Braham, C.-B.; Ball, A.C.; Araujo, A.; Olff, H.; El-Hacen, H. The chronology of overfishing in a remote West-African coastal ecosystem. Ecol. Soc. 2024, 29, 9. [Google Scholar] [CrossRef]
- Ba, K.; Thiaw, M.; Fall, M.; Thiam, N.; Meissa, B.; Jouffre, D.; Thiaw, O.T.; Gascuel, D. Long-term fishing impact on the Senegalese coastal demersal resources: Diagnosing from stock assessment models. Aquat. Living Resour. 2018, 31, 8. [Google Scholar] [CrossRef]
- Deme, E.B.; Moustapha Deme, M.; Pierre Failler, P. Small pelagic fish in Senegal: A multi-usage resource. Marine Policy. 2022, 41, 105083. [Google Scholar] [CrossRef]
- Marotte, A. Senegal Looks to Aquaculture as Fish Stocks Dwindle. Phys. 3 October 2024. Available online: https://phys.org/news/2024-10-senegal-aquaculture-fish-stocks-dwindle.html#google_vignette (accessed on 23 March 2025).
- BBC. Fish Are Vanishing’—Senegal’s Devastated Coastline. BBC. 1 November 2018. Available online: https://www.bbc.com/news/world-africa-46017359 (accessed on 23 March 2025).
- European Commission. Commission Notifies Senegal of Need to Step up Fight Against Illegal, Unreported and Unregulated Fishing. Press Release. 27 May 2024. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_2848 (accessed on 23 March 2025).
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. Taking stock of global fisheries: Current stock assessment models overestimate productivity and recovery trajectory. Science 2024, 385, 824–825. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S. Fishing and Overfishing-Sustainable Harvest of the Sea. In Life Below Water; Springer International Publishing: New York, NY, USA, 2022; pp. 207–325. [Google Scholar]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.; Khan, A.; Khan, K. Analysing The Threats Of Population Growth, and the Nexus of Climate Change and Water Scarcity: A Case of Pakistan. Pak. Geogr. Rev. 2023, 78, 1–17. [Google Scholar]
- Otto, B.; Schleifer, L. Domestic Water Use Grew 600% Over the Past 50 Years; World Resources Institute: Washington, DC, USA, 2020; Available online: https://www.wri.org/insights/domestic-water-use-grew-600-over-past-50-years (accessed on 23 March 2025).
- Rockström, J.; Wang-Erlandsson, L.; Folke, C.; Gerten, D.; Gordon, L.J.; Keys, P.W. Malin Falkenmark: Water pioneer who coined the notion of water crowding and coloured the water cycle. Ambio 2024, 53, 657–663. [Google Scholar] [CrossRef]
- Falkenmark, M. Fresh water: Time for a modified approach. Ambio 1986, 15, 192–200. [Google Scholar]
- Falkenmark, M.; Lundquist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Kam, G.; Ding, C.; Ghosh, S. Sustainable Water Management—A Strategy for Maintaining Future Water Resources. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–103. [Google Scholar]
- UN, FAO. Water for Food Security and Nutrition. 2015. Available online: http://www.fao.org/3/a-av045e.pdf (accessed on 23 March 2025).
- Kuzma, S.; Saccoccia, L.; Chertock, M. 25 Countries, Housing One-Quarter of the Population, Face Extremely High Water Stress. World Resource Institute Insights. 16 August 2023. Available online: https://www.wri.org/insights/highest-water-stressed-countries (accessed on 23 March 2025).
- Givetash, L. Water Scarcity Fuels Tensions Across the Middle East. NBC News. 1 November 2018. Available online: https://www.nbcnews.com/news/world/water-scarcity-fuels-tensions-across-middle-east-n924736 (accessed on 23 March 2025).
- Atik, O.; Alkaddour, A.; Mahmoud, I.; Al Hasan, K.; Nabhan, A.; Jazieh, H.; Nijhawan, A.; Pianosi, F. Potable Water under Pressure: Effects of the Syrian Crisis and Recent Drought on Northwest Syria. J. Water Resour. Prot. 2024, 17, 1–3. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Zhao, S.; Cook, K.H.; Vizy, E.K. How shrinkage of Lake Chad affects the local climate. Clim. Dyn. 2023, 61, 595–619. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Sylvestre, F.; Papa, F.; Frappart, F.; Bouchez, C.; Crétaux, J.F. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 5498. [Google Scholar] [CrossRef]
- Minhas, P.S.; Saha, J.K.; Dotaniya, M.L.; Sarkar, A.; Saha, M. Wastewater irrigation in India: Current status, impacts and response options. Sci. Total Environ. 2022, 808, 152001. [Google Scholar] [PubMed]
- Modi, A.; Bhagat, C.; Mohapatra, P.K. Bio-geo-chemical trade-offs of Ganga river system: An overview on its current challenges and potential management practices. River Basin Ecohydrol. Indian Sub-Cont. 2024, 3, 21. [Google Scholar]
- Rosencranz, A.; Puthucherril, T.G.; Tripathi, S.; Gupta, S. Groundwater management in India’s Punjab and Haryana: A case of too little and too late? J. Energy Nat. Resour. Law 2022, 40, 225–250. [Google Scholar]
- World Bank. How is India addressing its water needs? Brief. 14 February 2023. Available online: https://www.worldbank.org/en/country/india/brief/world-water-day-2022-how-india-is-addressing-its-water-needs#:~:text=India’s%20dependence%20on%20an%20increasingly,droughts%20in%20the%20country%20increases (accessed on 23 March 2025).
- Ghosh, P. Water stress and water crisis in large cities of India. In Sustainable Climate Action and Water Management; Springer: Singapore, 2021; pp. 131–138. [Google Scholar]
- Roome, J. India Seeks to Arrest Its Alarming Decline in Groundwater. World Bank Blogs. 25 May 2022. Available online: https://blogs.worldbank.org/en/endpovertyinsouthasia/india-seeks-arrest-its-alarming-decline-groundwater?utm_source=chatgpt.com (accessed on 23 March 2025).
- Gleick, P.H. Water, drought, climate change, and conflict in Syria. Weather. Clim. Soc. 2014, 6, 331–340. [Google Scholar]
- Falkenmark, M.; Rockström, J.; Karlberg, L. Present and future water requirements for feeding humanity. Food Secur. 2009, 1, 59–69. [Google Scholar] [CrossRef]
- Selby, J. Climate change and the Syrian civil war, Part II: The Jazira’s agrarian crisis. Geoforum 2019, 101, 260–274. [Google Scholar] [CrossRef]
- Selby, J.; Dahi, O.S.; Fröhlich, C.; Hulme, M. Climate change and the Syrian civil war revisited. Political Geogr. 2017, 60, 22–44. [Google Scholar]
- Ide, T. Climate War in the Middle East? Drought, the Syrian Civil War and the State of Climate-Conflict Research. Curr. Clim. Change Rep. 2018, 4, 347–354. [Google Scholar]
- Karnielli, A.; Shtein, A.; Panov, N.; Weisbrod, N.; Tal, A. Was Drought Really the Trigger Behind the Syrian Civi War in 2011? Water 2019, 11, 1564–1575. [Google Scholar]
- Eklund, L.; Theisen, O.M.; Baumann, M.; Forø Tollefsen, A.; Kuemmerle, T.; Østergaard Nielsen, J. Societal drought vulnerability and the Syrian climate-conflict nexus are better explained by agriculture than meteorology. Commun. Earth Environ. 2022, 3, 85. [Google Scholar] [CrossRef]
- Al-Attar, J. Syria’s Water and Food Security Crisis. Sada. 4 April 2024. Available online: https://carnegieendowment.org/sada/2024/04/syrias-water-and-food-security-crisis?lang=en (accessed on 23 March 2025).
- Jordan, Population, Worldometer. Available online: https://www.worldometers.info/world-population/jordan-population/ (accessed on 23 March 2025).
- Al-Addous, M.; Bdour, M.; Alnaief, M.; Rabaiah, S.; Schweimanns, N. Water resources in Jordan: A review of current challenges and future opportunities. Water 2023, 5, 3729. [Google Scholar]
- Jordan Ministry of the Environment. The Amman Climate Plan A Vision for 2050 Amman; Jordan Ministry of the Environment: Amman, Jordan, 2019; Available online: https://documents1.worldbank.org/curated/en/816961617187012025/pdf/The-Amman-Climate-Plan-A-Vision-for-2050-Amman.pdf (accessed on 23 March 2025).
- Ghaith, B. How Water Scarcity in Jordan Hits Refugees Twice; UN Refugee Agency: Geneva, Switzerland, 2024; Available online: https://www.unhcr.org/jo/26501-how-water-scarcity-in-jordan-hits-refugees-twice.html#:~:text=Currently%2C%20the%20population%20in%20Jordan,the%20absolute%20water%20scarcity%20line (accessed on 23 March 2025).
- Lindsey, U. Lost Water. Places J. 2023. [Google Scholar] [CrossRef]
- Ogata, R.; Mahasneh, S.; Alananbeh, A.; Fujii, N. Insights into water service quality in Jordan from key performance indicators and consumer perceptions. Util. Policy 2022, 78, 101406. [Google Scholar]
- Wojnorwski, F. Contested Flows: The Power and Politics of Water in Jordan. Research for the London School of Economics, World. 21 May 2023. Available online: https://www.lse.ac.uk/research/research-for-the-world/politics/politics-of-water-jordan (accessed on 23 March 2025).
- Jordan Ministry of Water and Irrigation, National Water Strategy 2023–2040, Summary. 2023. Available online: https://www.mwi.gov.jo/EBV4.0/Root_Storage/AR/EB_List_Page/national_water_strategy_2023-2040.pdf (accessed on 23 March 2025).
- Salameh, E.; Abdallat, G.; Odeh, T. The Damaging Effects of Abstracting the Deep Aquifers’ Groundwater in Jordan-Quality Constraints. J. Geosci. Environ. Prot. 2024, 12, 250–278. [Google Scholar]
- Salameh, E.; Alraggad, M.; Tarawneh, A. Disi water use for irrigation—A false decision and its consequences. CLEAN—Soil Air Water 2014, 12, 1681–1686. [Google Scholar]
- Kramer, I.; Tsairi, Y.; Roth, M.B.; Tal, A.; Mau, Y. Effects of population growth on Israel’s demand for desalinated water. npj Clean Water 2022, 5, 67. [Google Scholar]
- USDA. Egypt 2020, Export Highlights. 2021. Available online: https://fas.usda.gov/egypt-2020-export-highlights#:~:text=With%20high%20population%20growth%2C%20Egypt,the%20world’s%20largest%20wheat%20importer (accessed on 23 March 2025).
- Egypt Today Staff. Egypt’s Population Projected to Reach 157 Million by 2050. Egypt Today. 22 February 2024. Available online: https://www.egypttoday.com/Article/1/130535/Egypt%E2%80%99s-population-projected-to-reach-157-million-by-2050-CAPMAS (accessed on 23 March 2025).
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658. [Google Scholar]
- UNESCO, UN-Water. Water and Climate Change—United Nations World Water Development Report 2020; UNESCO Water and Climate Change: Paris, France, 2020. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Pattison, J.E.; Cooke, P. Groundwater: Sinking cities, urbanisation, global drying, population growth. J. Popul. Sustain. 2024, 8, 77–104. [Google Scholar]
- Sivakumar, M.V.; Stefanski, R. Land Degradation—An overview. In Climate and Land Degradation; CRC Press: Boca Raton, FL, USA, 2001; pp. 105–135. [Google Scholar]
- United Nations Convention to Combat Desertification, What Is Desertification? Available online: https://www.unccd.int/unccd-faq#:~:text=What%20is%20Desertification%3F,and%20dry%20sub%2Dhumid%20areas (accessed on 14 November 2024).
- Stapleton, J.; Bates, S.; Lewis, M.; Turner, S.R.; Warne, D.; Florentine, S. A global review on arid zone restoration: Approaches and challenges. Restor. Ecol. 2024, 32, e14078. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations, Global Symposium on Soil Erosion. 2020. Available online: https://www.fao.org/about/meetings/soil-erosion-symposium/key-messages/en/ (accessed on 23 March 2025).
- Hossini, H.; Karimi, H.; Mustafa, Y.T.; Al-Quraishi, A.M.F. Role of effective factors on soil erosion and land degradation: A review. In Environmental Degradation in Asia: Land Degradation, Environmental Contamination, and Human Activities; Al-Quraishi, A.M.F., Mustafa, Y.T., Negm, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 221–235. [Google Scholar]
- Little, P.D. The social context of land degradation (“desertification”) in dry regions. In Population and Environment; Routledge: London, UK, 2019; pp. 209–251. [Google Scholar]
- Hillel, D. Out of the Earth: Civilization and the Life of the Soil; University of California Press: Berkeley, CA, USA, 1992. [Google Scholar]
- Okolo, E.A.; Oziezi, C. Let there be No Quarrel among Us”(Genesis 13: 8-9): Using Abraham’s Model for Restructuring in Nigeria. UNIZIK J. Relig. Hum. Relat. 2021, 13, 37–68. [Google Scholar] [CrossRef]
- Ward, J. Impact and causes of Desertification. J. Arts Humanit. 2020, 5, 68–73. [Google Scholar]
- Gao, Y.; Zhong, B.; Yue, H.; Wu, B.; Cao, S. A degradation threshold for irreversible loss of soil productivity: A long-term case study in China. J. Appl. Ecol. 2011, 48, 1145–1154. [Google Scholar] [CrossRef]
- Tal, A. Restoration of Desertified Ecosystems. In Encyclopedia of Soil Science; Lal, R., Ed.; Taylor and Francis: Oxford, UK, 2010. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- United Nations Convention to Combat Desertrificaiton. 24 October 2023. Available online: https://www.unccd.int/news-stories/press-releases/least-100-million-hectares-healthy-land-now-lost-each-year (accessed on 23 March 2025).
- Pal, S.C.; Chatterjee, U.; Chakrabortty, R.; Roy, P.; Chowdhuri, I.; Saha, A.; Islam, A.R.; Alam, E.; Islam, M.K. Anthropogenic drivers induced desertification under changing climate: Issues, policy interventions, and the way forward. Prog. Disaster Sci. 2023, 20, 100303. [Google Scholar] [CrossRef]
- Willige, A. What Is Desertification and Why Is It Important to Understand? World Economic Forum: Geneva, Switzerland, 2024; Available online: https://www.weforum.org/stories/2024/09/what-is-desertification-land-degradation/ (accessed on 23 March 2025).
- Sena, A. Land Under Pressure—Health Under Stress; United Nations Convention to Combat Desertification: Bonn, Germany, 2019; Available online: https://catalogue.unccd.int/1463_Land_under_pressure_Health_under_stress.pdf (accessed on 23 March 2025).
- Ware, H. Desertification and Population: Sub-Saharan Africa. In Desertification, Environmental Degradation In and Around Arid Lands; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Becerril-Piña, R.; Mastachi-Loza, C.A. Desertification: Causes and countermeasures. In Life on Land; Springer: Cham, Switzerland, 2021; pp. 219–231. [Google Scholar]
- Tal, A.; Bukchin, S. Transforming Desertification as a Global Policy Orphan, Land Degradation Neutrality Strategies Through Prevention and Restoration. In BMI Malta Conference Proceedings; Tel-Aviv University: Tel-Aviv, Israel, 2017. [Google Scholar]
- Tariq, M.; Sarir, S.; Jan, B.H.; Ali, S. Exploring the Nexus Of Population Pressure, Climate Change, and Overgrazing In District Lower Dir Khyber Pakhtunkhwi. Remit. Rev. 2024, 9, 1132–1160. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Wiesmeier, M. Environmental indicators of Dryland. In Environmental Indicators; Armon, R., Hänninen, O., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 239–250. [Google Scholar]
- Abdelsalam, M.I. Effects of Overgrazing on Rangeland Resources in Semi-arid Areas and Rangel and Management: A Review Article. Agrica 2021, 10, 144–151. [Google Scholar] [CrossRef]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef]
- Frischmann, B.M.; Marciano, A.; Ramello, G.B. Retrospectives: Tragedy of the Commons After 50 Years. J. Econ. Perspect. 2019, 33, 211–218. [Google Scholar] [CrossRef]
- Tal, A.; Cohen, J. Bringing ‘Top-Down’ to ‘Bottom-Up’: A new role for environmental legislation in combating desertification. Harv. Environ. Law Rev. 2007, 31, 163–218. [Google Scholar]
- Fang, X.; Wu, J. Causes of overgrazing in Inner Mongolian grasslands: Searching for deep leverage points of intervention. Ecol. Soc. 2022, 27, 8. [Google Scholar] [CrossRef]
- Ehlert, K. The Lasting Effects of Overgrazing on Rangeland Ecosystems; 4 March 2025, South Dakota State Extension Service Brookings, South Dakota. Available online: https://extension.sdstate.edu/lasting-effects-overgrazing-rangeland-ecosystems (accessed on 23 March 2025).
- Ziesig, M. Overpopulation and Agricultural Land Degradation in The Republic of Niger. Aquila 2022, 7, 46–60. [Google Scholar] [CrossRef]
- Sadda, A.S.; Loireau, M.; Jangorzo, N.S.; Issoufou, H.B.; Chotte, J.L. Standardized Description of Degraded Land Reclamation Actions and Mapping of Actors’ Roles: A Key Step for Action in Combatting Desertification (Niger). Land 2023, 12, 1064. [Google Scholar] [CrossRef]
- Moussa, B.; Nkonya, E.; Meyer, S.; Kato, E.; Johnson, T.; Hawkins, J. Economics of land degradation and improvement in Niger. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A.J., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 499–539. [Google Scholar]
- Hiernaux, P.; Kalilou, A.A.; Kergoat, L.; Brandt, M.; Mougin, E.; Fitts, Y. Woody plant decline in the Sahel of western Niger (1996–2017): Is it driven by climate or land use changes? J. Arid. Environ. 2022, 200, 104719. [Google Scholar] [CrossRef]
- Rabani, A.; Bonkaney, A.L.; Seyni, A.A.; Idrissa, M.; Bellos, N. Niger-Land, Climate, Energy, Agriculture and Development A Study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security; ZEF Working Paper Series; Center for Development Research, University of Bonn: Bonn, Germany, 2021; ISSN 1864-6638. [Google Scholar]
- Gaiser, T.; Judex, M.; Igué, A.M.; Paeth, H.; Hiepe, C. Future productivity of fallow systems in Sub-Saharan Africa: Is the effect of demographic pressure and fallow reduction more significant than climate change? Agric. For. Meteorol. 2011, 151, 1120–1130. [Google Scholar] [CrossRef]
- Hu, X.; Næss, J.S.; Iordan, C.M.; Huang, B.; Zhao, W.; Cherubini, F. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene 2021, 34, 10029. [Google Scholar] [CrossRef]
- Mahtta, R.; Fragkias, M.; Güneralp, B.; Mahendra, A.; Reba, M.; Wentz, E.A.; Seto, K.C. Urban land expansion: The role of population and economic growth for 300+ cities. npj Urban Sustain. 2022, 2, 5. [Google Scholar] [CrossRef]
- Cameron, D.; Osborne, C.; Horton, P.; Sinclair, M. A Sustainable Model for Intensive Agriculture; Grantham Centre for Sustainable Futures, University of Sheffield: Sheffield, UK, 2015; Available online: https://grantham.sheffield.ac.uk/wp-content/uploads/A4-sustainable-model-intensive-agriculture-spread.pdf (accessed on 23 March 2025).
- Hatab, A.A.; Cavinato, M.E.; Lindemer, A.; Lagerkvist, C.J. Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- O’Sullivan, J.N. Demographic Delusions: World Population Growth Is Exceeding Most Projections and Jeopardising Scenarios for Sustainable Futures. World 2023, 4, 545–568. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Alharthi, M.; Atil, A.; Zafar, M.W.; Khan, I. A non-linear analysis of the impacts of natural resources and education on environmental quality: Green energy and its role in the future. Resour. Policy 2022, 79, 102940. [Google Scholar]
- Saco, P.M.; Moreno-de las Heras, M.; Keesstra, S.; Baartman, J.; Yetemen, O.; Rodríguez, J.F. Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Curr. Opin. Environ. Sci. Health 2018, 5, 67–72. [Google Scholar] [CrossRef]
- Franklin-Wallis, O. Wasteland: The Secret World of Waste and the Urgent Search for a Cleaner Future; Hachette Books: New York, NY, USA, 2023. [Google Scholar]
- Borck, R.; Schrauth, P. Population density and urban air quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [Google Scholar]
- Tal, A. The Land Is Full: Addressing Overpopulation in Israel; Yale University Press: New Haven, CT, USA, 2016. [Google Scholar]
- Butler, T. Collosus Versus Liberty, Chapter 14. In Life on the Brink: Environmentalists Confront Overpopulation; Georgia Press: Athens, GA, USA, 2012; pp. 160–171. [Google Scholar]
- European Commission. Production and Consumption. 2024. Available online: https://www.eea.europa.eu/en/topics/in-depth/production-and-consumption (accessed on 23 March 2025).
- Redclift, M. Wasted, Counting the Costs of Global Consumption; Routledge: London, UK, 2020. [Google Scholar]
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 2021, 27, 1328–1348. [Google Scholar]
- Pérez-Silos, I.; Álvarez-Martínez, J.M.; Barquín, J. Large-scale afforestation for ecosystem service provisioning: Learning from the past to improve the future. Landsc. Ecol. 2021, 36, 3329–3343. [Google Scholar]
- Tanner, A.M.; Johnston, A.L. The Impact of Rural Electric Access on Deforestation Rates. World Dev. 2017, 94, 174–185. [Google Scholar]
- Ly, A.; Chakir, R.; Creti, A. Electrification or deforestation? Evidence from household practices in Côte d’Ivoire. Energy Econ. 2024, 136, 107717. [Google Scholar]
- Tal, A. Making Climate Tech Work, Policies That Drive Innovation; Island Press: Washington, DC, USA, 2024. [Google Scholar]
- Digitemie, W.N.; Ekemezie, I.O. Assessing the role of carbon pricing in global climate change mitigation strategies. Magna Sci. Adv. Res. Rev. 2024, 10, 22–31. [Google Scholar]
- Clausing, K.; Elkerbout, M.; Nehrkorn, K.; Wolfram, C. How Carbon Border Adjustments Might Drive Global Climate Policy Momentum; Resources for the Future, Report: Washington, DC, USA, 2024. [Google Scholar]
- Schauman, S.A.; Peñuelas, J.; Jobbágy, E.G.; Baldi, G. The geometry of global protected lands. Nat. Sustain. 2024, 7, 82–89. [Google Scholar] [CrossRef]
- Wilson, E.O. Half-Earth: Our Planet’s Fight for Life; Liveright: New York, NY, USA, 2016. [Google Scholar]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.J.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for Conserving Connectivity Through Ecological Networks and Corridors; 20203336784; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Beltrão, M.G.; Gonçalves, C.F.; Brancalion, P.H.; Carmignotto, A.P.; Silveira, L.F.; Galetti, P.M.; Galetti, M. Priority areas and implementation of ecological corridor through forest restoration to safeguard biodiversity. Sci. Rep. 2024, 14, 30837. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, H.; Gentry, R.; Halpern, R.S. Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biol. Conserv. 2017, 215, 162–168. [Google Scholar] [CrossRef]
- Pham, C.V.; Wang, H.C.; Chen, S.H.; Lee, J.M. The threshold effect of overfishing on global fishery outputs: International evidence from a sustainable fishery perspective. Fishes 2023, 8, 71. [Google Scholar] [CrossRef]
- Khondoker, M.; Mandal, S.; Gurav, R.; Hwang, S. Freshwater shortage, salinity increase, and global food production: A need for sustainable irrigation water desalination—A scoping review. Earth 2023, 4, 223–240. [Google Scholar] [CrossRef]
- Roth, M.B.; Tal, A. The ecological tradeoffs of desalination in land-constrained countries seeking to mitigate climate change. Desalination 2022, 529, 115607. [Google Scholar]
- Tzanakakis, V.A.; Capodaglio, A.G.; Angelakis, A.N. Insights into global water reuse opportunities. Sustainability 2023, 15, 13007. [Google Scholar] [CrossRef]
- Fito, J.; Van Hulle, S.W. Wastewater reclamation and reuse potentials in agriculture: Towards environmental sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
- Tal, A. Rethinking the Sustainability of Israel’s Irrigation Practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar]
- Wen, X.; Zhen, L.; Jiang, Q.O.; Xiao, Y. A global review of the development and application of soil erosion control techniques. Environ. Res. Lett. 2023, 18, 033003. [Google Scholar] [CrossRef]
- Jain, S.; Srivastava, A.; Khadke, L.; Chatterjee, U.; Elbeltagi, A. Global-scale water security and desertification management amidst climate change. Environ. Sci. Pollut. Res. 2024, 31, 58720–58744. [Google Scholar] [CrossRef]
- United Nations. 2024 World Fertility Report; UN DESA/POP/2024/TR/NO.10; United Nations: New York, NY, USA, 2024. [Google Scholar]
- Fauser, B.C.; Adamson, G.D.; Boivin, J.; Chambers, G.M.; de Geyter, C.; Dyer, S.; Inhorn, M.C.; Schmidt, L.; Serour, G.I.; Tarlatzis, B.; et al. Declining global fertility rates and the implications for family planning and family building: An IFFS consensus document based on a narrative review of the literature. Hum. Reprod. Update 2024, 30, 153–173. [Google Scholar] [CrossRef]
Country | Percent Forest Lost (2001–2022) | Population Growth (%) |
---|---|---|
Paraguay | 29% | 32.60% |
Indonesia | 19% | 28.50% |
Argentina | 17% | 22.90% |
Mozambique | 15% | 91.20% |
Brazil | 13% | 21.30% |
Tanzania | 12% | 96% |
Myanmar | 11% | 19.50% |
Democratic | ||
Republic of Congo | 9.90% | 110% |
Angola | 7.10% | 123.60% |
Country | 2005 Mton CO2eq | 2023 Mton CO2eq | % Change | Population In Mil. 2005 | Population (Mil)-2023 | % Change |
---|---|---|---|---|---|---|
Cambodia | 27.3 | 48.7 | 78.4 | 13.2 | 17.0 | 28.8 |
Chad | 35.6 | 98.3 | 176.1 | 10.0 | 18.2 | 82.0 |
Burkina Faso | 20.3 | 34.4 | 69.5 | 13.8 | 23.2 | 68.1 |
Benin | 8.1 | 16.7 | 106.2 | 8.1 | 13.7 | 69.1 |
Bolivia | 31.9 | 55.2 | 73.0 | 9.3 | 12.3 | 32.3 |
Brazil | 1025.0 | 1300.0 | 26.8 | 186.7 | 216.4 | 15.9 |
Colombia | 158.0 | 224.0 | 41.8 | 42.2 | 52.0 | 23.2 |
China | 8191.0 | 15,943.0 | 94.6 | 1304.8 | 1425.6 | 9.3 |
Chile | 91.1 | 121.4 | 33.3 | 16.1 | 19.6 | 21.7 |
Egypt | 256.0 | 335.9 | 31.2 | 79.0 | 114.4 | 44.8 |
India | 2120.0 | 4133.0 | 95.0 | 1154.6 | 1428.6 | 23.7 |
Indonesia | 649.0 | 1200.0 | 84.9 | 228.8 | 277.5 | 21.3 |
Jordan | 24.7 | 33.4 | 35.2 | 5.6 | 11.3 | 101.8 |
Mexico | 624.0 | 712.0 | 14.1 | 105.4 | 128.4 | 21.8 |
Israel | 71.8 | 79.5 | 10.7 | 6.7 | 9.1 | 35.8 |
Tajikistan | 11.8 | 21.4 | 81.4 | 6.9 | 10.1 | 46.4 |
Tanzania | 46.5 | 89.8 | 93.1 | 39.4 | 67.4 | 71.1 |
Turkey | 327.8 | 606.4 | 85.0 | 68.7 | 85.3 | 24.2 |
UAE | 155.5 | 267.8 | 72.2 | 4.2 | 9.5 | 126.2 |
Vietnam | 226.4 | 524.1 | 131.5 | 83.1 | 98.8 | 18.9 |
Country | 2005 Mton CO2eq | 2023 Mton CO2eq | % Change | Population In Mil. 2005 | Population (Mil)-2023 | % Change |
United States | 7123.6 | 5960.8 | −16.3 | 296.8 | 339.9 | 14.5 |
United Kingdom | 672.9 | 379.3 | −43.6 | 60.3 | 67.7 | 12.3 |
Germany | 983.7 | 681.8 | −30.7 | 81.2 | 83.2 | 2.5 |
France/Monaco | 542.9 | 385.5 | −29.0 | 60.5 | 64.7 | 6.9 |
Italy | 580.4 | 374.1 | −35.5 | 58.1 | 58.8 | 1.2 |
Spain | 452.7 | 285.3 | −37.0 | 43.6 | 47.5 | 8.9 |
Japan | 1401.1 | 1041.0 | −25.7 | 127.7 | 123.2 | −3.5 |
South Korea | 573.3 | 653.8 | 14.0 | 47.8 | 51.7 | 8.2 |
Denmark | 66.0 | 41.8 | −36.7 | 5.4 | 5.8 | 7.4 |
Sweden | 70.9 | 49.1 | −30.7 | 9.0 | 10.6 | 17.8 |
Portugal | 83.2 | 53.0 | −36.3 | 10.5 | 10.2 | −2.9 |
Netherlands | 221.3 | 150.7 | −31.9 | 16.2 | 17.6 | 8.6 |
Belgium | 143.0 | 106.3 | −25.7 | 10.5 | 11.6 | 10.5 |
Greece | 128.1 | 69.2 | −46.0 | 11.1 | 10.3 | −7.2 |
Finland | 73.7 | 43.4 | −41.1 | 5.2 | 5.5 | 5.8 |
Austria | 96.2 | 72.9 | −24.2 | 8.2 | 8.9 | 8.5 |
Ireland | 76.0 | 57.8 | −23.9 | 4.1 | 5.0 | 22.0 |
Norway | 58.6 | 56.7 | −3.2 | 4.6 | 5.4 | 17.4 |
Cuba | 44.1 | 39.4 | −10.7 | 11.2 | 11.1 | −0.9 |
Czech Republic | 153.4 | 114.4 | −25.4 | 10.2 | 10.4 | 2.0 |
Slovenia | 23.5 | 15.9 | −32.3 | 2.0 | 2.1 | 5.0 |
Country | Population Growth 1996/2008 | Population Growth 1986/2008 |
---|---|---|
Indonesia | 18.18% | 40.69% |
Malaysia | 33.98% | 78.06% |
Papua New Guinea | 51.06% | 102.86% |
China | 8.31% | 33.00% |
India | 22.69% | 51.32% |
Australia | 16.48% | 32.50% |
USA | 13.23% | 28.95% |
Country | Population Percent Increase |
---|---|
Kuwait | 104.76% |
Cyprus | 27.00% |
Oman | 95.83% |
Qatar | 250.65% |
Bahrain | 80.72% |
Lebanon | 15.56% |
UAE | 143.59% |
Saudi Arabia | 58.47% |
Israel | 50.77% |
Egypt | 47.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tal, A. The Environmental Impacts of Overpopulation. Encyclopedia 2025, 5, 45. https://doi.org/10.3390/encyclopedia5020045
Tal A. The Environmental Impacts of Overpopulation. Encyclopedia. 2025; 5(2):45. https://doi.org/10.3390/encyclopedia5020045
Chicago/Turabian StyleTal, Alon. 2025. "The Environmental Impacts of Overpopulation" Encyclopedia 5, no. 2: 45. https://doi.org/10.3390/encyclopedia5020045
APA StyleTal, A. (2025). The Environmental Impacts of Overpopulation. Encyclopedia, 5(2), 45. https://doi.org/10.3390/encyclopedia5020045