Wigner Functions
Definition
1. Introduction
2. Classical vs. Quantum Mechanics
3. Theory of Wigner Functions
4. Applications of Wigner Functions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys.-Math. Soc. Jpn. 3rd Ser. 1940, 22, 264–314. [Google Scholar]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Phys. 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Friebe, C.; Kuhlmann, M.; Lyre, H.; Näger, P.M.; Passon, O.; Stöckler, M. The Philosophy of Quantum Physics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Groenewold, H.J. On the principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Case, W.B. Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 2008, 76, 937–946. [Google Scholar] [CrossRef]
- Ferry, D.K.; Nedjalkov, M. The Wigner Function in Science and Technology; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Weinbub, J.; Ferry, D.K. Recent advances in Wigner function approaches. Appl. Phys. Rev. 2018, 5, 041104. [Google Scholar] [CrossRef]
- Hillery, M.O.S.M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Lee, H.W. Theory and application of the quantum phase-space distribution functions. Phys. Rep. 1995, 259, 147–211. [Google Scholar] [CrossRef]
- Rundle, R.P.; Everitt, M.J. Overview of the phase space formulation of quantum mechanics with application to quantum technologies. Adv. Quantum Technol. 2021, 4, 2100016. [Google Scholar] [CrossRef]
- te Vrugt, M.; Tóth, G.I.; Wittkowski, R. Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility. J. Comput. Electron. 2021, 20, 2209–2231. [Google Scholar] [CrossRef]
- te Vrugt, M.; Wittkowski, R. Orientational order parameters for arbitrary quantum systems. Ann. Phys. (Berlin) 2020, 532, 2000266. [Google Scholar] [CrossRef]
- Meyer, H.; Voigtmann, T.; Schilling, T. On the dynamics of reaction coordinates in classical, time-dependent, many-body processes. J. Chem. Phys. 2019, 150, 174118. [Google Scholar] [CrossRef]
- Wallace, D. Probability and irreversibility in modern statistical mechanics: Classical and quantum. In Quantum Foundations of Statistical Mechanics; Bedingham, D., Maroney, O., Timpson, C., Eds.; Oxford University Press: Oxford, UK, (forthcoming). available at arXiv:2104.11223.
- Gneiting, C.; Fischer, T.; Hornberger, K. Quantum phase-space representation for curved configuration spaces. Phys. Rev. A 2013, 88, 062117. [Google Scholar] [CrossRef]
- Münster, G. Quantentheorie; de Gruyter: Berlin, Germany, 2010. [Google Scholar]
- Fairlie, D.B. Moyal brackets, star products and the generalised Wigner function. Chaos Solitons Fractals 1999, 10, 365–371. [Google Scholar] [CrossRef][Green Version]
- Fischer, T.; Gneiting, C.; Hornberger, K. Wigner function for the orientation state. New J. Phys. 2013, 15, 063004. [Google Scholar] [CrossRef]
- Brif, C.; Mann, A. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 1999, 59, 971–987. [Google Scholar] [CrossRef]
- Waalkens, H.; Schubert, R.; Wiggins, S. Wigner’s dynamical transition state theory in phase space: Classical and quantum. Nonlinearity 2007, 21, R1–R118. [Google Scholar] [CrossRef]
- Weyl, H. Quantenmechanik und Gruppentheorie. Z. Phys. 1927, 46, 1–46. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 1988, 37, 2878. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, P.; Zachariasen, F. Relativistic quantum transport theory approach to multiparticle production. Phys. Rev. D 1976, 13, 950. [Google Scholar] [CrossRef][Green Version]
- Bialynicki-Birula, I.; Gornicki, P.; Rafelski, J. Phase-space structure of the Dirac vacuum. Phys. Rev. D 1991, 44, 1825. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.R.; Bialynicki-Birula, I.; Rafelski, J. Wigner function of relativistic spin-1/2 particles. Phys. Rev. A 1992, 46, 645. [Google Scholar] [CrossRef]
- Hakim, R.; Heyvaerts, J. Covariant Wigner function approach for relativistic quantum plasmas. Phys. Rev. A 1978, 18, 1250. [Google Scholar] [CrossRef]
- Ferry, D.K.; Welland, I. Relativistic Wigner functions in transition metal dichalcogenides. J. Comput. Electron. 2018, 17, 110–117. [Google Scholar] [CrossRef]
- Morgan, P. A relativistic variant of the Wigner function. Phys. Lett. A 2004, 321, 216–224. [Google Scholar] [CrossRef]
- Calzetta, E.; Habib, S.; Hu, B.L. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations. Phys. Rev. D 1988, 37, 2901. [Google Scholar] [CrossRef]
- Fonarev, O.A. Wigner function and quantum kinetic theory in curved space–time and external fields. J. Math. Phys. 1994, 35, 2105–2129. [Google Scholar] [CrossRef]
- Ferry, D.K. Phase-space functions: Can they give a different view of quantum mechanics? J. Comput. Electron. 2015, 14, 864–868. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Coherence properties of optical fields. Rev. Mod. Phys. 1965, 37, 231. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wigner, E.P. Canonical transformation in quantum mechanics. Am. J. Phys. 1990, 58, 439–448. [Google Scholar] [CrossRef]
- Veitch, V.; Wiebe, N.; Ferrie, C.; Emerson, J. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation. New J. Phys. 2013, 15, 013037. [Google Scholar] [CrossRef]
- Xu, X.X.; Yuan, H.C. Quantum phase estimation with local amplified 1001 state based on Wigner-function method. Quantum Inf. Process. 2015, 14, 411–424. [Google Scholar] [CrossRef]
- Ren, G.; Du, J.M.; Yu, H.J.; Zhang, W.h. Evolution of the coherent state via a new time evolution operator. Optik 2016, 127, 3828–3833. [Google Scholar] [CrossRef]
- Alonso, M.A. Wigner functions in optics: Describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photonics 2011, 3, 272–365. [Google Scholar] [CrossRef]
- Barker, J.R.; Murray, S. A quasi-classical formulation of the Wigner function approach to quantum ballistic transport. Phys. Lett. A 1983, 93, 271–274. [Google Scholar] [CrossRef]
- Simoncelli, M.; Marzari, N.; Mauri, F. Wigner formulation of thermal transport in solids. Phys. Rev. X 2022, 12, 041011. [Google Scholar] [CrossRef]
- Wigger, D.; Gehring, H.; Axt, V.M.; Reiter, D.E.; Kuhn, T. Quantum dynamics of optical phonons generated by optical excitation of a quantum dot. J. Comput. Electron. 2016, 15, 1158–1169. [Google Scholar] [CrossRef]
- Hahn, T.; Groll, D.; Krenner, H.J.; Kuhn, T.; Machnikowski, P.; Wigger, D. Photon scattering from a quantum acoustically modulated two-level system. AVS Quantum Sci. 2022, 4, 011403. [Google Scholar] [CrossRef]
- Frensley, W.R. Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 1987, 36, 1570. [Google Scholar] [CrossRef] [PubMed]
- Querlioz, D.; Nguyen, H.N.; Saint-Martin, J.; Bournel, A.; Galdin-Retailleau, S.; Dollfus, P. Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: From quantum to semiclassical transport. J. Comput. Electron. 2009, 8, 324–335. [Google Scholar] [CrossRef]
- Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Soree, B. Quantum transport in an ultra-thin SOI MOSFET: Influence of the channel thickness on the I–V characteristics. Solid State Commun. 2008, 147, 31–35. [Google Scholar] [CrossRef]
- Kohen, D.; Marston, C.C.; Tannor, D.J. Phase space approach to theories of quantum dissipation. J. Chem. Phys. 1997, 107, 5236–5253. [Google Scholar] [CrossRef]
- Coffey, W.T.; Kalmykov, Y.P.; Titov, S.V.; Mulligan, B.P. Wigner function approach to the quantum Brownian motion of a particle in a potential. Phys. Chem. Chem. Phys. 2007, 9, 3361–3382. [Google Scholar] [CrossRef]
- Papendell, B.; Stickler, B.A.; Hornberger, K. Quantum angular momentum diffusion of rigid bodies. New J. Phys. 2017, 19, 122001. [Google Scholar] [CrossRef]
- Vacchini, B.; Hornberger, K. Relaxation dynamics of a quantum Brownian particle in an ideal gas. Eur. Phys. J. Spec. Top. 2007, 151, 59–72. [Google Scholar] [CrossRef][Green Version]
- Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Phys. A Stat. Mech. Its Appl. 1983, 121, 587–616. [Google Scholar] [CrossRef]
- Agarwal, G.S. Brownian motion of a quantum oscillator. Phys. Rev. A 1971, 4, 739. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, J.W.; Guo, H. Quantum Brownian motion model for the stock market. Phys. A Stat. Mech. Its Appl. 2016, 452, 281–288. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, J. Quantum leap: A price leap mechanism in financial markets. Mathematics 2024, 12, 315. [Google Scholar] [CrossRef]
- Ballentine, L.E.; Yang, Y.; Zibin, J.P. Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A 1994, 50, 2854–2859. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ha, M.; Park, J.M.; Jeong, H. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Phys. Rev. E 2020, 101, 022127. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications, 3rd ed.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1996; Volume 18, p. 474. [Google Scholar]
- Habib, S.; Shizume, K.; Zurek, W.H. Decoherence, chaos, and the correspondence principle. Phys. Rev. Lett. 1998, 80, 4361. [Google Scholar] [CrossRef]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470–491. [Google Scholar] [CrossRef]
- Kenfack, A.; Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 2004, 6, 396. [Google Scholar] [CrossRef]
- Hudson, R.L. When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 1974, 6, 249–252. [Google Scholar] [CrossRef]
- Mari, A.; Eisert, J. Positive Wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 2012, 109, 230503. [Google Scholar] [CrossRef]
- Veitch, V.; Ferrie, C.; Gross, D.; Emerson, J. Negative quasi-probability as a resource for quantum computation. New J. Phys. 2012, 14, 113011. [Google Scholar] [CrossRef]
- Delfosse, N.; Allard Guerin, P.; Bian, J.; Raussendorf, R. Wigner function negativity and contextuality in quantum computation on rebits. Phys. Rev. X 2015, 5, 021003. [Google Scholar] [CrossRef]
- Banaszek, K.; Wódkiewicz, K. Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation. Phys. Rev. A 1998, 58, 4345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
te Vrugt, M. Wigner Functions. Encyclopedia 2025, 5, 118. https://doi.org/10.3390/encyclopedia5030118
te Vrugt M. Wigner Functions. Encyclopedia. 2025; 5(3):118. https://doi.org/10.3390/encyclopedia5030118
Chicago/Turabian Stylete Vrugt, Michael. 2025. "Wigner Functions" Encyclopedia 5, no. 3: 118. https://doi.org/10.3390/encyclopedia5030118
APA Stylete Vrugt, M. (2025). Wigner Functions. Encyclopedia, 5(3), 118. https://doi.org/10.3390/encyclopedia5030118