Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Isolates
2.2. Collection and Preparation of Plant Sample
2.3. Determination of the Plant Extracts’ Yield and Phytochemical Screening
2.4. Analysis of the Phytochemical Composition Using Gas Chromatography–Mass Spectrometry (GC-MS)
2.5. Phenotypic Detection of Extended-Spectrum β-Lactamases (ESBLs) Production in K. pneumoniae Isolates
2.6. Evaluation of the Antibacterial Activity of Both Methanol and Ethanol Extracts of Lawsonia inermis L.
2.7. Preparation of the Crystal of CTX-M Target Protein
2.8. Physicochemical Analysis
2.9. Pharmacokinetic Analysis
2.10. Molecular Docking Analysis
3. Results
3.1. Percentage Yield and Phytochemical Screening
3.2. Compounds Identified from Lawsonia inermis L. Using Gas Chromatography-Mass Spectroscopy (GC-MS)
3.3. Antibacterial Activity of the Methanol and Ethanol Extracts of Lawsonia inermis L.
3.4. Physiochemical Analysis of Compounds Obtained from Lawsonia inermis L.
3.5. Pharmacokinetic Analysis of the Compounds Detected from Lawsonia inermis L.
3.6. Docking Scores and Residues Involved in H-Bond Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustapha, A.; Allamin, I.A.; Ismail, H.Y.; Eze, U.A.; Ibrahim, M.M.; Bello, R.Y.M.; Faruq, A.U. Environmental contribution to antimicrobial resistance: A largely ignored global health issue. Proc. Niger. Acad. Sci. 2021, 14, 61–86. [Google Scholar] [CrossRef]
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? Public Libr. Sci. Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, A.; Chidiebere, O.; Victor, F.I.; Bata, M.M.; Tanko, N.; Yakubu, M.N.; Ali, Z.D.; David, A.S. Antibacterial activity of Nigerian medicinal plants as panacea for antibiotic resistance: A systematic review. J. Med. Herbs 2022, 13, 11–23. [Google Scholar]
- Asokan, G.V.; Tufoof, R.; Eman, A.; Hala, S. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, A.; Disa, H.A.; Balaman, N. Antibacterial activity of Salvadora persica (chewing stick) on Streptococcus mutans isolates from patients attending University of Maiduguri Teaching Hospital’s Dental Unit. Indian J. Res. 2017, 4, 715–717. [Google Scholar]
- Ishola, A.O.; Mustapha, A.; Eze, U.A. The use of essential oils as anti-infective agents in the treatment of respiratory tract bacterial infections: A systematic review and meta-analysis. Gomal J. Med. Sci. 2023, 21, 50–59. [Google Scholar]
- Yang, X.; Li, X.; Qiu, S.; Liu, C.; Chen, S.; Xia, H.; Zeng, Y.; Shi, L.; Chen, J.; Zheng, J.; et al. Global antimicrobial resistance and antibiotic use in COVID-19 patients within health facilities: A systematic review and meta-analysis of aggregated participant data. J. Infect. 2024, 89, 106183. [Google Scholar] [CrossRef]
- Langford, B.J.; Soucy, J.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 302–309. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Esmaeilzadeh, R.R.; Asnaashari, M.; Shahrampour, D.; Bakhshandeh, T. Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Sci. Nutr. 2019, 7, 465–475. [Google Scholar] [CrossRef]
- Wasihun, Y.; Alekaw Habteweld, H.; Dires Ayenew, K. Antibacterial activity and phytochemical components of leaf extract of Calpurnia aurea. Sci. Rep. 2023, 13, 9767. [Google Scholar] [CrossRef]
- Mohammed, E.A.A.; Muddathir, A.M.; Osman, M.A. Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci. Rep. 2020, 10, 17148. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, W.; Dai, R.; Li, B. Recent Progress on the Identification of Phenanthrene Derivatives in Traditional Chinese Medicine and Their Biological Activities. Pharmacol. Res.-Mod. Chin. Med. 2022, 3, 100078. [Google Scholar] [CrossRef]
- Oladosu, I.A.; Balogun, S.O.; Zhi-Qiang, L. Chemical constituents of Allophylus africanus. Chin. J. Nat. Med. 2015, 13, 133–141. [Google Scholar] [PubMed]
- Batiha, G.E.; Teibo, J.O.; Shaheen, H.M.; Babalola, B.A.; Teibo, T.K.A.; Al-kuraish, H.M.; Al-Garbeeb, A.; Alexiou, A.; Papadakis, M. Therapeutic potential of Lawsonia inermis Linn: A comprehensive overview. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 3525–3540. [Google Scholar] [CrossRef]
- Fatahi, B.M.; Salary, S.; Mirzaei, F.; Mahmoodian, H.; Meftahizade, H.; Zareshahi, R. Antibacterial and anti-trichomunas characteristics of local landraces of Lawsonia inermis L. BMC Complement. Med. Ther. 2022, 22, 203. [Google Scholar] [CrossRef]
- World Health Organization. Legal Status of Traditional Medicine as Complementary and Alternative Medicine. A World Review; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Al-Snaf, A. A review on Lawsonia inermis: A potential medicinal plant. Int. J. Curr. Pharm. Res. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Khazaeli, P.; Mehrabani, M.; Mosadegh, A.; Bios, S.; Moshaf, M.H. Identification of luteolin in henna (Lawsonia Inermis) oil, a Persion medicine product, by HPTLC and evaluating its antimicrobial effects. Res. J. Pharmacogn. 2019, 6, 51–55. [Google Scholar]
- Sheikh, B.A. Development of new therapeutics to meet the current challenge of drug-resistant tuberculosis. Curr. Pharm. Biotechnol. 2021, 22, 480–500. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneum infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Walther-Rasmussen, J.; Høiby, N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can. J. Microb. 2004, 50, 137–165. [Google Scholar] [CrossRef] [PubMed]
- Celenza, G.; Pellegrini, C.; Caccamo, M.; Segatore, B.; Amicosante, G.; Perilli, M. Spread of bla CTX-M-type and bla PER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. J. Antimicrob. Chemother. 2006, 57, 975–978. [Google Scholar] [CrossRef]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M enzymes: Origin and diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef]
- Eze, U.A.; Eze, N.M.; Mustapha, A. Enzymatic inactivation of penicillins: An emerging threat to global public health. Int. J. Pharm. Sci. Res. 2015, 6, 3151–3160. [Google Scholar]
- Peirano, G.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob. Agents Chemother. 2020, 64, 10–128. [Google Scholar] [CrossRef]
- Saifi, S.; Ashraf, A.; Hasan, G.M.; Shamsi, A.; Hassan, I. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024, 173, 105811. [Google Scholar] [CrossRef] [PubMed]
- Thamer, F.H.; Thamer, N. Gas chromatography—Mass spectrometry (GC-MS) profiling reveals newly described bioactive compounds in Citrullus colocynthis (L.) seeds oil extracts. Heliyon 2023, 9, e16861. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Singh, L.; Antil, R.; Kumari, S. GC-MS analysis and phytochemical screening of methanolic fruit extract of Citrullus colocynthis (L.) Schrad. J. Pharmacogn. Phytochem. 2019, 8, 3360–3363. [Google Scholar]
- Lee, K.; Kim, D. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes 2019, 10, 906. [Google Scholar] [CrossRef]
- Bharathi, A.; Roopan, S.M.; Vasavi, C.S.; Munusami, P.; Gayathri, G.A.; Gayathri, M. In silico molecular docking and in vitro antidiabetic studies of dihydropyrimido [4, 5-a] acridin-2-amines. BioMed Res. Int. 2014, 2014, 971569. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.A.; Mustapha, A.; Qazi, S.; Raza, K.; Allamin, I.A.; Ibrahim, M.M.; Mohammed, M.M. In silico molecular docking and molecular dynamic simulation of potential inhibitors of 3C-like main proteinase (3CLpro) from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using selected African medicinal plants. Adv. Tradit. Med. 2022, 22, 107–123. [Google Scholar] [CrossRef]
- Zannat, K.E.; Saha, S.K.; Tanzim, S.M.; Afrin, A.; Saha, B.C.; Joynal, J.B.; Aktar, M.; Nira, N.H.; Akhter, N.; Hossain, M.A. Antibacterial Effects of Chloroform Henna (Lawsonia inermis) Leaf Extracts against Two Nosocomial Infection Causing Pathogens: Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae: A Comparative Study. Mymensingh Med. J. MMJ 2023, 32, 620–626. [Google Scholar]
- Arun, P.; Purushotham, K.G.; Jayarani, J.; Kumara, V. In vitro Antibacterial activity and Flavonoid contents of Lawsonia inermis (Henna). Int. J. PharmTech Res. 2010, 2, 1178–1181. [Google Scholar]
- Pasandi, P.A.; Farahbakhsh, H. Lawsonia inermis L. leaves aqueous extract as a natural antioxidant and antibacterial product. Nat. Prod. Res. 2020, 34, 3399–3403. [Google Scholar] [CrossRef]
- Abdallah, E.M.; Aldamegh, M.A. Antibacterial and Toxicological assessment of Lawsonia inermis Linn. (Henna) leaves on Rat. Res. J. Biol. Sci. 2011, 6, 275–280. [Google Scholar]
- El-Kamali, H.H.; EL-Karim, E.M.W. Evaluation of Antibacterial Activity of Some Medicinal Plants Used in Sudanese Traditional Medicine for Treatment of Wound Infections. Acad. J. Plant Sci. 2009, 2, 246–251. [Google Scholar]
- Idris, A.H.; Haruna, Z.; Iliyasu, M.Y.; Sahal, M.R.; Inusa, T.; Salisu, A.; Isma’il, S.; Umar, R.D.; Kabeer, Z.M.; Tahir, H.; et al. Antibacterial Activity of Lawsonia inermis Leaf Extracts against Multidrug-resistant Pseudomonas aeruginosa from Infected Wounds. Eur. J. Med. Plants 2023, 34, 1–8. [Google Scholar] [CrossRef]
- Cheesbrough, M. (Ed.) Biochemical tests to identify bacteria. In Laboratory Practice in Tropical Countries; Cambridge Edition; Cambridge University Press: Cambridge, UK, 2002; pp. 36–70. [Google Scholar]
- Nabi, M.; Zargar, M.I.; Tabassum, N.; Ganai, B.A.; Wani, S.U.D.; Alshehri, S.; Alam, P.; Shakeel, F. Phytochemical profiling and antibacterial activity of methanol leaf extract of Skimmia anquetilia. Plants 2022, 11, 1667. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci. World J. 2017, 2017, 5873648. [Google Scholar] [CrossRef]
- Wakil, S.; Isa, M.A.; Mustapha, A. Phenotypic and Molecular Detection of Resistance Genes from Multi-drug-Resistant Escherichia coli Isolated from Patients Attending Selected Hospitals in Damaturu, Yobe State, Nigeria. Int. J. Res. Rev. 2021, 8, 396–407. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; M.1.0.0.S.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Johansson, M.U.; Zoete, V.; Michielin, O.; Guex, N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform. 2012, 13, 173. [Google Scholar] [CrossRef]
- Ramachandran, S.; Kota, P.; Ding, F.; Dokholyan, N.V. Automated minimization of steric clashes in protein structures. Proteins Struct. Funct. Bioinform. 2011, 79, 261–270. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. Datawarrior: An open-source program for Chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstorm, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective receptor flexibility. J. Comput. Chem. 1998, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Hariono, M.; Abdullah, N.; Damodaran, K.V.; Kamarulzaman, E.E.; Mohamed, N.; Hassan, S.S.; Shamsuddin, S.; Wahab, H.A. Potential new H1N1 neuraminidase inhibitors from ferulic acid and vanillin: Molecular modelling, synthesis and in vitro assay. Sci. Rep. 2016, 6, 38692. [Google Scholar] [CrossRef]
- Jeyaseelan, E.C.; Jenothiny, S.; Pathmanathan, M.K.; Jeyadevan, J.P. Antibacterial activity of sequentially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermis L. from Jaffna. Asian Pac. J. Trop. Biomed. 2012, 2, 798–802. [Google Scholar] [CrossRef]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Gochev, V.; Yonchev, Y.; Nikolov, N.; Zheljazkov, V.D. Terpenoids in the essential oil and concentrated aromatic products obtained from Nicotiana glutinosa L. Leaves. Molecules 2019, 25, 30. [Google Scholar] [CrossRef] [PubMed]
- Augostine, C.R.; Avery, S.V. Discovery of natural products with antifungal potential through combinatorial synergy. Front. Microbiol. 2022, 13, 866840. [Google Scholar] [CrossRef] [PubMed]
- Iobbi, V.; Brun, P.; Bernabé, G.; Dougue Kentsop, R.A.; Donadio, G.; Ruffoni, B.; Fossa, P.; Bisio, A.; De Tommasi, N. Labdane diterpenoids from Salvia tingitana Etl. synergize with clindamycin against methicillin-resistant Staphylococcus aureus. Molecules 2021, 26, 6681. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, K.; Guo, Y. Discovery of sclareol and sclareolide as filovirus entry inhibitors. J. Asian Nat. Prod. Res. 2020, 22, 464–473. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Goyal, S.N.; Agrawal, Y.O.; Subramanya, S.B.; Bastaki, S.M.; Ojha, S. Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-bisabolol. Nutrients 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.F.G.; Colares, A.V.; Nonato, C.F.A.; Galvão-Rodrigues, F.F.; Mota, M.L.; Moraes Braga, M.F.B.; Costa, J. In vitro antimicrobial activity of the essential oil from Vanillosmopsis arborea Barker (Asteraceae) and its major constituent, α-Bisabolol. Microb. Pathog. 2018, 125, 144–149. [Google Scholar] [CrossRef]
- Oliveira, F.S.; de Freitas, T.S.; da Cruz, R.P.; do Socorro Costa, M.; Pereira, R.L.S.; Quintans-Júnior, L.J.; de Araújo Andrade, T.; dos Passos Menezes, P.; de Sousa, B.M.H.; Nunes, P.S.; et al. Evaluation of the antibacterial and modulatory potential of α-Bisabolol, β-cyclodextrin and α-Bisabolol/β-cyclodextrin complex. Biomed. Pharm. 2017, 92, 1111–1118. [Google Scholar] [CrossRef]
- Abbas, Z.; Siddiqui, B.S.; Shahzad, S.; Sattar, S.; Begum, S.; Batool, A.; Choudhary, M.I. Lawsozaheer, a new chromone produced by an endophytic fungus Paecilomyces variotii isolated from Lawsonia Alba Lam. inhibits the growth of Staphylococcus aureus. Nat. Prod. Res. 2020, 35, 4448–4453. [Google Scholar] [CrossRef]
- Yang, C.-S.; Chen, J.-J.; Huang, H.-C.; Huang, G.-J.; Wang, S.-Y.; Sung, P.-J.; Cheng, M.-J.; Wu, M.-D.; Kuo, Y.-H. New benzenoid derivatives and other constituents from Lawsonia inermis with inhibitory activity against NO production. Molecules 2017, 22, 936–944. [Google Scholar] [CrossRef]
- Moutawalli, A.; Benkhouili, F.Z.; Doukkali, A.; Benzeid, H.; Zahidi, A. The biological and pharmacologic actions of Lawsonia inermis L. Phytomed. Plus 2023, 3, 100468. [Google Scholar] [CrossRef]
- Nigussie, D.; Davey, G.; Legesse, B.A.; Fekadu, A.; Makonnen, E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement. Med. Ther. 2021, 21, 2. [Google Scholar] [CrossRef]
- Nimbeshaho, F.; Mwangi, C.; Orina, F.; Chacha, M.; Adipo, N.; Moody, J.; Kigondu, E. Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya. J. Med. Plants Res. 2020, 14, 129–143. [Google Scholar]
- Nyalo, P.O.; Omwenga, G.I.; Ngugi, M.P. Antibacterial activity and GC-MS analysis of ethyl acetate extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). Heliyon 2023, 9, e14461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Usman, R.A.; Rabiu, U. Antimicrobial activity of Lawsonia inermis (henna) extracts. Bayero J. Pure Appl. Sci. 2006, 11, 167–671. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeny, P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
Phytochemical | Methanol | Ethanol |
---|---|---|
Alkaloids | + | + |
Tannins | + | + |
Flavonoids | + | + |
Anthraquinones | + | + |
S/N | PubChem ID | Compound | Formula | Molecular Weight | Retention Time (min) | Peaks |
---|---|---|---|---|---|---|
1 | 6590 | Ethyl acetate | C4H8O2 | 88 | 3.716 | 1 |
2 | 536425 | Heptane, 4-azido | C7H15N3 | 141 | 4.817 | 2 |
3 | 225038 | Pentyl glycolate | C7H14O3 | 146 | 4.817 | 2 |
4 | 76029 | Propanoic acid, 2-(aminooxy)- | C3H7NO3 | 105 | 5.689 | 3 |
5 | 5363192 | 7-Hydroxy-3-(1,1-dimethylprop-2-enyl) coumarin | C14H14O3 | 230 | 5.689 | 3 |
6 | 543621 | Pentanoic acid, 2-(aminooxy)- | C5H11NO3 | 133 | 5.689 | 3 |
7 | 440869 | 2-[1,2-Dihydroxyethyl]-9-[β-d-ribofuranosyl] hypoxanthine | C12H16N4O7 | 328 | 5.689 | 3 |
8 | 536980 | 2-Heptanone, 6-methyl-5-methylene- | C9H16O | 140 | 6.048 | 4 |
9 | 534592 | 4,5,9-Trihydroxy-dodeca-1,11-diene | C12H22O3 | 214 | 6.675 | 5 |
10 | 5363192 | 7-Hydroxy-3-(1,1-dimethylprop-2-enyl) coumarin | C14H14O3 | 230 | 7.067 | 6 |
11 | 536411 | 8,8-Dimethyl-7,9-dioxabicyclo [4.3.0] nonane-3-carboxylicacid, methyl ester | C11H18O4 | 214 | 7.067 | 6 |
12 | 5283028 | trans-Traumatic acid | C12H20O4 | 228 | 7.067 | 6 |
13 | 537288 | 9,9-Dimethoxybicyclo [3.3.1] nona-2,4-dione | C11H16O4 | 212 | 7.299 | 7 |
14 | 8180 | Undecanoic acid | C11H22O2 | 186 | 7.299 | 7 |
15 | 11996452 | Viridiflorol | C15H26O | 222 | 7.966 | 8 |
16 | 8842 | Citronellol | C10H20O | 156 | 8.069 | 9 |
17 | 6421299 | 2,2,3,3,4,4-Hexamethyltetrahydrofuran | C10H20O | 156 | 8.395 | 11 |
18 | 163263 | 1-Naphthalenepropanol, α-ethenyldecahydro-5-(hydroxymethyl)-α,2,5,5,8a-pentamethyl- | C20H36O2 | 308 | 10.606 | 13 |
19 | 5367736 | Cyclopropanol, 1-(3,7-dimethyl-1-octenyl)- | C13H24O | 196 | 12.235 | 15 |
20 | 535324 | Bicyclo [3.2.1]oct-3-en-2-one, 3,8-dihydroxy-1-methoxy-7-(7-methoxy-1,3-benzodioxol-5-yl)-6-methyl-5-(2-propenyl)-, [1R-(6-endo,7-exo,8-syn)]- | C21H24O7 | 388 | 12.235 | 15 |
21 | 5363274 | 1,2-dihydro-8-hydroxylinalool | C10H20O2 | 172 | 13.916 | 16 |
22 | 101282029 | Bicyclo [3.2.1]oct-3-en-2-one, 3,8-dihydroxy-1-methoxy-7-(7-methoxy-1,3-benzodioxol-5-yl)-6-methyl-5-(2-propenyl)-, [1R-(6-endo,7-exo,8-syn)]- | C21H24O7 | 225 | 18.174 | 18 |
23 | 5365831 | 4,4,8-Trimethyl-non-5-enal | C12H22O | 182 | 18.174 | 18 |
24 | 319068771 | 3-Cyclohexene-1-methanol, α,4-dimethyl-α-(4-methyl-3-pentenyl)-, [R-(R*,R*)]- | C15H26O | 222 | 18.174 | 18 |
25 | 296248 | photocitral B | C10H16O | 152 | 20.436 | 19 |
26 | 551300 | 1,2-Pentanediol, 5-(6-bromodecahydro-2-hydroxy-2,5,5a,8a-tetramethyl-1-naphthalenyl)-3-methylene- | C20H35BrO3 | 402 | 22.915 | 20 |
27 | 537118 | 2-Isopropyl-5-methylcyclohexyl 3-(1-(4-chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate | C30H33ClO6 | 525 | 24.465 | 22 |
Extract/Zone of Inhibition (mm) | ||
---|---|---|
Concentration (mg/mL) | Ethanol | Methanol |
25 | 11.0 ± 0.0 bc | 11.3 ± 0.6 bc |
50 | 6.3 ± 0.6 e | 12.0 ± 0.0 b |
75 | 8.0 ± 1.0 d | 7.3 ± 0.6 de |
100 | 10.0 ± 1.0 c | 13.7 ± 1.2 a |
S/N | PubChem ID | Molecular Weight (≤500) | Number of HBA (≤10) | Number of HBD (≤5) | MolLogP (≤5) | Drug Likeness |
---|---|---|---|---|---|---|
1 | CID_6590 | 88.1055 | 2 | 1 | 0.3736 | −2.82 |
2 | CID_536425 | 388.415 | 7 | 2 | 2.6761 | −0.89897 |
3 | CID_225038 | 146.185 | 3 | 1 | 0.9716 | −10.318 |
4 | CID_76029 | 105.093 | 4 | 2 | −1.3119 | −1.4365 |
5 | CID_5363192 | 230.262 | 3 | 1 | 3.0993 | −4.5992 |
6 | CID_543621 | 133.146 | 4 | 2 | −0.4031 | −3.384 |
7 | CID_440869 | 328.280 | 11 | 6 | −3.3826 | 7.1752 |
8 | CID_536980 | 140.225 | 1 | 0 | 2.8354 | −11.248 |
9 | CID_534592 | 214.304 | 3 | 3 | 2.0848 | −7.1915 |
10 | CID_5363192 | 230.262 | 3 | 1 | 3.0993 | −4.5992 |
11 | CID_536411 | 214.260 | 4 | 0 | 0.9337 | −4.8099 |
12 | CID_5283028 | 228.287 | 4 | 2 | 2.7164 | −15.097 |
13 | CID_537288 | 212.244 | 4 | 0 | 0.8154 | −16.496 |
14 | CID_8180 | 186.294 | 2 | 1 | 3.7905 | −25.216 |
15 | CID_11996452 | 222.370 | 1 | 1 | 3.2008 | −1.9678 |
16 | CID_8842 | 156.268 | 1 | 1 | 3.3494 | −8.6831 |
17 | CID_6421299 | 156.268 | 1 | 0 | 2.3703 | −13.972 |
18 | CID_163263 | 308.504 | 2 | 2 | 4.6198 | −8.3601 |
19 | CID_5367736 | 196.333 | 1 | 1 | 3.8371 | −2.2587 |
20 | CID_535324 | 388.415 | 7 | 2 | 2.6761 | −0.89897 |
21 | CID_5363274 | 172.267 | 2 | 2 | 2.4899 | −1.7531 |
22 | CID_101282029 | 388.415 | 7 | 2 | 2.6761 | −0.89897 |
23 | CID_5365831 | 182.306 | 1 | 0 | 3.7692 | −6.1572 |
24 | CID_319068771 | 222.370 | 1 | 1 | 4.4711 | −1.4665 |
25 | CID_296248 | 152.236 | 1 | 0 | 1.676 | −7.016 |
26 | CID_551300 | 403.399 | 3 | 3 | 4.3349 | −11.802 |
27 | CID_537118 | 525.039 | 6 | 0 | 7.3414 | −22.803 |
S/N | Compound Name | BBB | CYP2D6 Inhibitor | HIA | Mutagens | Tumorigenesis | Reproductive Toxicity | Irritant |
---|---|---|---|---|---|---|---|---|
1 | CID_6590 | - | - | - | None | None | None | High |
2 | CID_536425 | - | - | - | None | None | None | None |
3 | CID_225038 | - | - | - | Low | None | None | Low |
4 | CID_76029 | - | - | - | High | None | None | None |
5 | CID_5363192 | - | - | - | None | None | None | None |
6 | CID_543621 | - | - | - | None | None | None | None |
7 | CID_440869 | - | - | - | None | None | None | None |
8 | CID_536980 | - | - | - | None | None | None | High |
9 | CID_534592 | - | - | - | None | None | None | Low |
10 | CID_5363192 | - | - | - | None | None | None | None |
11 | CID_536411 | - | - | - | None | None | None | None |
12 | CID_5283028 | - | - | - | None | None | None | None |
13 | CID_537288 | - | - | - | None | None | None | None |
14 | CID_8180 | - | - | - | None | None | None | High |
15 | CID_11996452 | - | - | - | None | High | None | High |
16 | CID_8842 | - | - | - | None | None | High | High |
17 | CID_6421299 | - | - | - | None | None | None | None |
18 | CID_163263 | - | - | - | None | None | None | Low |
19 | CID_5367736 | - | - | - | None | None | None | None |
20 | CID_535324 | - | - | - | None | None | None | None |
21 | CID_5363274 | - | - | - | None | None | None | High |
22 | CID_101282029 | - | - | - | None | None | None | None |
23 | CID_5365831 | - | - | - | High | None | None | High |
24 | CID_319068771 | - | - | - | None | None | None | High |
25 | CID_296248 | - | - | - | None | None | None | High |
26 | CID_551300 | - | - | - | High | None | None | Low |
27 | CID_537118 | - | - | - | None | None | High | High |
S/No | Compound ID | Docking Score (kcal/mol) | Residues Involve in H-Bonds | Distance (Ǻ) |
---|---|---|---|---|
1 | CID_536425 | −4.98 | ||
2 | CID_5363192 | −6.00 | Leu200, Pro201, Gln197 Val206 | 2.79, 2.70, 2.78, 2.67 2.94 |
3 | CID_543621 | −3.62 | ||
4 | CID_440869 | −9.76 | Gly262 Lys257 | 3.09, 2.89 |
5 | CID_5363192 | −6.00 | Leu200, Gln197, Pro201, Val206 | 2.83, 2.76, 2.75, 2.67 |
6 | CID_536411 | −5.85 | Gly262 | 2.90 |
7 | CID_5283028 | −5.74 | Lys227, Arg229, Trp204, Gly199 Lys257 | 2.68, 3.22, 2.62, 3.18 2.71, 2.75 |
8 | CID_537288 | −4.62 | ||
9 | CID_6421299 | −4.54 | ||
10 | CID_5367736 | −4.96 | ||
11 | CID_535324 | −6.11 | Trp204 Val206 | 2.84 2.77 |
12 | CID_101282029 | −4.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, A.; AlSharksi, A.N.; Eze, U.A.; Samaila, R.K.; Ukwah, B.N.; Anyiam, A.F.; Samarasinghe, S.; Ibrahim, M.A. Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae. BioMed 2024, 4, 277-292. https://doi.org/10.3390/biomed4030022
Mustapha A, AlSharksi AN, Eze UA, Samaila RK, Ukwah BN, Anyiam AF, Samarasinghe S, Ibrahim MA. Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae. BioMed. 2024; 4(3):277-292. https://doi.org/10.3390/biomed4030022
Chicago/Turabian StyleMustapha, Adam, Ahmed Nouri AlSharksi, Ukpai A. Eze, Rahma Kudla Samaila, Boniface Nwofoke Ukwah, Arinze Favour Anyiam, Shivanthi Samarasinghe, and Musa Adamu Ibrahim. 2024. "Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae" BioMed 4, no. 3: 277-292. https://doi.org/10.3390/biomed4030022
APA StyleMustapha, A., AlSharksi, A. N., Eze, U. A., Samaila, R. K., Ukwah, B. N., Anyiam, A. F., Samarasinghe, S., & Ibrahim, M. A. (2024). Phytochemical Composition, In Silico Molecular Docking Analysis and Antibacterial Activity of Lawsonia inermis Linn Leaves Extracts against Extended Spectrum Beta-Lactamases-Producing Strains of Klebsiella pneumoniae. BioMed, 4(3), 277-292. https://doi.org/10.3390/biomed4030022