Altermagnetism and Altermagnets: A Brief Review
Abstract
1. Introduction
- The number of magnetic atoms in a unit cell is even.
- The magnetic atoms with opposite spin in AMs are not related by inversion symmetry.
- The presence of inequivalent local environments surrounding each oppositely aligned spin sublattice leads to non-interconvertible local motif–pair spin anisotropy, a key distinguishing feature of altermagnetic order.
- The opposite-spin sublattices are connected by rotation (in spin and real spaces) or combined with translation or inversion symmetry, mirror, glide, or screw.
2. Spin Group Theory Description
3. Experimental Techniques and a Theoretical Approach to Explore Altermagnetism
- High field torque magnetometry applied on to map the Fermi surface [109].
- DFT (Density Functional Theory): First-principles investigations can be efficiently performed at a low computational cost without including SOC on altermagnets. First-principles calculations were performed to provide theoretical predictions to motivate and compare with experimental findings, focusing on various materials including [33,116,117], CrSb [19,20], MnTe [23,24,25], [85,118], and others [119].
4. Examples of Explored Altermagnetic Materials
4.1. and Octupole Moments
4.2. Marcasite(M) with Doping
4.3. Contradicting Reports on the Magnetic Ordering of
4.4. Two-Dimensional AMs and Methods for Designing AMs
4.5. Perovskites
4.6. Superconductivity and Altermagnets
5. Emerging Magneto-Transport Phenomena and Promising Applications
5.1. Magneto-Transport Phenomena
5.2. Spintronics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Khalili Amiri, P.; Phatak, C.; Finocchio, G. Prospects for Antiferromagnetic Spintronic Devices. Annu. Rev. Mater. Res. 2024, 54, 117–142. [Google Scholar] [CrossRef]
- Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 2022, 12, 040501. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 2022, 12, 031042. [Google Scholar] [CrossRef]
- Mazin, I.; Editors, P. Altermagnetism—A new punch line of fundamental magnetism. Phys. Rev. X 2022, 12, 040002. [Google Scholar] [CrossRef]
- Néel, L. Some new results on antiferromagnetism and ferromagnetism. Rev. Mod. Phys. 1953, 25, 58. [Google Scholar] [CrossRef]
- Song, C.; Bai, H.; Zhou, Z.; Han, L.; Reichlova, H.; Dil, J.H.; Liu, J.; Chen, X.; Pan, F. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 2025, 10, 473–485. [Google Scholar] [CrossRef]
- Rashba, E.I. Spin-orbit coupling in condensed matter physics. Sov. Phys. Solid State 1960, 2, 1109. [Google Scholar]
- Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 1955, 100, 580. [Google Scholar] [CrossRef]
- Yuan, L.D.; Wang, Z.; Luo, J.W.; Rashba, E.I.; Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 2020, 102, 014422. [Google Scholar] [CrossRef]
- Fender, S.S.; Gonzalez, O.; Bediako, D.K. Altermagnetism: A chemical perspective. J. Am. Chem. Soc. 2025, 147, 2257–2274. [Google Scholar] [CrossRef] [PubMed]
- Gomonay, O.; Kravchuk, V.; Jaeschke-Ubiergo, R.; Yershov, K.; Jungwirth, T.; Šmejkal, L.; Brink, J.V.D.; Sinova, J. Structure, control, and dynamics of altermagnetic textures. Npj Spintron. 2024, 2, 35. [Google Scholar] [CrossRef]
- Pomeranchuk, I.I. On the stability of a Fermi liquid. Sov. Phys. JETP 1958, 8, 361. [Google Scholar]
- Wu, C.; Sun, K.; Fradkin, E.; Zhang, S.C. Fermi liquid instabilities in the spin channel. Phys. Rev. B—Condensed Matter Mater. Phys. 2007, 75, 115103. [Google Scholar] [CrossRef]
- Smolyanyuk, A.; Šmejkal, L.; Mazin, I.I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro-or altermagnetic. Scipost Phys. Codebases 2024, 30. [Google Scholar] [CrossRef]
- Bai, L.; Feng, W.; Liu, S.; Šmejkal, L.; Mokrousov, Y.; Yao, Y. Altermagnetism: Exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 2024, 34, 2409327. [Google Scholar] [CrossRef]
- Gao, Z.F.; Qu, S.; Zeng, B.; Wen, J.R.; Sun, H.; Guo, P.; Lu, Z.Y. Ai-accelerated discovery of altermagnetic materials. arXiv 2023, arXiv:2311.04418. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, Z.; Chen, X.; Tao, Z.; Liu, Z.; Li, T.; Liu, J.; Sun, J.; Cheng, J.; Liu, J.; et al. Large Band Splitting in g-Wave Altermagnet CrSb. Phys. Rev. Lett. 2024, 133, 206401. [Google Scholar] [CrossRef] [PubMed]
- Reimers, S.; Odenbreit, L.; Šmejkal, L.; Strocov, V.N.; Constantinou, P.; Hellenes, A.B.; Jaeschke Ubiergo, R.; Campos, W.H.; Bharadwaj, V.K.; Chakraborty, A.; et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 2024, 15, 2116. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, Z.; Yang, S.; Li, J.; Zheng, H.; Zhu, W.; Pan, Z.; Xu, Y.; Cao, S.; Zhao, W.; et al. Three-dimensional mapping of the altermagnetic spin splitting in CrSb. Nat. Commun. 2025, 16, 1442. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Zhu, M.Y.; Zhu, Y.P.; Liu, X.R.; Ma, X.M.; Hao, Y.J.; Liu, P.; Qu, G.; Yang, Y.; Jiang, Z.; et al. Observation of Spin Splitting in Room-Temperature Metallic Antiferromagnet CrSb. Adv. Sci. 2024, 11, 2406529. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.; Jung, S.; Jung, J.; Kim, D.; Lee, Y.; Seok, B.; Kim, J.; Park, B.G.; Šmejkal, L.; et al. Broken kramers degeneracy in altermagnetic mnte. Phys. Rev. Lett. 2024, 132, 036702. [Google Scholar] [CrossRef] [PubMed]
- Krempaskỳ, J.; Šmejkal, L.; D’souza, S.; Hajlaoui, M.; Springholz, G.; Uhlířová, K.; Alarab, F.; Constantinou, P.; Strocov, V.; Usanov, D.; et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 2024, 626, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Osumi, T.; Souma, S.; Aoyama, T.; Yamauchi, K.; Honma, A.; Nakayama, K.; Takahashi, T.; Ohgushi, K.; Sato, T. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 2024, 109, 115102. [Google Scholar] [CrossRef]
- Dale, N.; Ashour, O.A.; Vila, M.; Regmi, R.B.; Fox, J.; Johnson, C.W.; Fedorov, A.; Stibor, A.; Ghimire, N.J.; Griffin, S.M. Non-relativistic spin splitting above and below the Fermi level in a g-wave altermagnet. arXiv 2024, arXiv:2411.18761. [Google Scholar]
- Sakhya, A.P.; Mondal, M.I.; Sprague, M.; Regmi, R.B.; Kumay, A.K.; Sheokand, H.; Mazin, I.; Ghimire, N.J.; Neupane, M. Electronic structure of a layered altermagnetic compound CoNb4Se8. arXiv 2025, arXiv:2503.16670. [Google Scholar]
- De Vita, A.; Bigi, C.; Romanin, D.; Watson, M.D.; Polewczyk, V.; Zonno, M.; Bertran, F.; Petersen, M.B.; Motti, F.; Vinai, G.; et al. Optical switching in a layered altermagnet. arXiv 2025, arXiv:2502.20010. [Google Scholar]
- Candelora, C.; Xu, M.; Cheng, S.; De Vita, A.; Romanin, D.; Bigi, C.; Petersen, M.B.; LaFleur, A.; Calandra, M.; Miwa, J.; et al. Discovery of intertwined spin and charge density waves in a layered altermagnet. arXiv 2025, arXiv:2503.03716. [Google Scholar]
- Jiang, B.; Hu, M.; Bai, J.; Song, Z.; Mu, C.; Qu, G.; Li, W.; Zhu, W.; Pi, H.; Wei, Z.; et al. A metallic room-temperature d-wave altermagnet. Nat. Phys. 2025, 21, 754–759. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, X.; Yin, Z.; Liu, C.; Deng, L.; Qiao, Y.; Shi, Z.; Zhang, S.; Lin, J.; Liu, Z.; et al. Crystal-symmetry-paired spin-valley locking in a layered room-temperature antiferromagnet. arXiv 2024, arXiv:2407.19555. [Google Scholar]
- Nag, J.; Das, B.; Bhowal, S.; Nishioka, Y.; Bandyopadhyay, B.; Sarker, S.; Kumar, S.; Kuroda, K.; Gopalan, V.; Kimura, A.; et al. GdAlSi: An antiferromagnetic topological Weyl semimetal with nonrelativistic spin splitting. Phys. Rev. B 2024, 110, 224436. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, D.; Lu, W.; Liang, X.; Feng, S.; Yamagami, K.; Osiecki, J.; Leandersson, M.; Thiagarajan, B.; Liu, J.; et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. arXiv 2024, arXiv:2402.04995. [Google Scholar]
- Fedchenko, O.; Minár, J.; Akashdeep, A.; D’Souza, S.W.; Vasilyev, D.; Tkach, O.; Odenbreit, L.; Nguyen, Q.; Kutnyakhov, D.; Wind, N.; et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024, 10, eadj4883. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, D.; Lu, W.; Liang, X.; Feng, S.; Yamagami, K.; Osiecki, J.; Leandersson, M.; Thiagarajan, B.; Liu, J.; et al. Bulk band structure of RuO2 measured with soft x-ray angle-resolved photoemission spectroscopy. Phys. Rev. B 2025, 111, 134450. [Google Scholar] [CrossRef]
- Shao, D.F.; Zhang, S.H.; Li, M.; Eom, C.B.; Tsymbal, E.Y. Spin-neutral currents for spintronics. Nat. Commun. 2021, 12, 7061. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, R.; Šmejkal, L.; Vỳbornỳ, K.; Yahagi, Y.; Sinova, J.; Jungwirth, T.; Železnỳ, J. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 2021, 126, 127701. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Schreiber, N.J.; Jain, R.; Shao, D.F.; Nair, H.P.; Sun, J.; Zhang, X.S.; Muller, D.A.; Tsymbal, E.Y.; Schlom, D.G.; et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 2022, 5, 267–274. [Google Scholar] [CrossRef]
- Naka, M.; Motome, Y.; Seo, H. Perovskite as a spin current generator. Phys. Rev. B 2021, 103, 125114. [Google Scholar] [CrossRef]
- Bai, H.; Han, L.; Feng, X.; Zhou, Y.; Su, R.; Wang, Q.; Liao, L.; Zhu, W.; Chen, X.; Pan, F.; et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 2022, 128, 197202. [Google Scholar] [CrossRef] [PubMed]
- Karube, S.; Tanaka, T.; Sugawara, D.; Kadoguchi, N.; Kohda, M.; Nitta, J. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 2022, 129, 137201. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhang, Y.; Zhou, Y.; Chen, P.; Wan, C.; Han, L.; Zhu, W.; Liang, S.; Su, Y.; Han, X.; et al. Efficient spin-to-charge conversion via altermagnetic spin splitting effect in antiferromagnet RuO2. Phys. Rev. Lett. 2023, 130, 216701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, H.; Han, L.; Chen, C.; Zhou, Y.; Back, C.H.; Pan, F.; Wang, Y.; Song, C. Simultaneous High Charge-Spin Conversion Efficiency and Large Spin Diffusion Length in Altermagnetic RuO2. Adv. Funct. Mater. 2024, 34, 2313332. [Google Scholar] [CrossRef]
- Šmejkal, L.; Hellenes, A.B.; González-Hernández, R.; Sinova, J.; Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 2022, 12, 011028. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wang, Z.A.; Samanta, K.; Zhang, S.H.; Xiao, R.C.; Lu, W.; Sun, Y.; Tsymbal, E.Y.; Shao, D.F. Prediction of giant tunneling magnetoresistance in RuO2/TiO2/RuO2 (110) antiferromagnetic tunnel junctions. Phys. Rev. B 2023, 108, 174439. [Google Scholar] [CrossRef]
- Chi, B.; Jiang, L.; Zhu, Y.; Yu, G.; Wan, C.; Zhang, J.; Han, X. Crystal-facet-oriented altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance. Phys. Rev. Appl. 2024, 21, 034038. [Google Scholar] [CrossRef]
- Das, S.; Suri, D.; Soori, A. Transport across junctions of altermagnets with normal metals and ferromagnets. J. Phys. Condens. Matter 2023, 35, 435302. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Betancourt, R.D.; Zubáč, J.; Geishendorf, K.; Ritzinger, P.; Růžičková, B.; Kotte, T.; Železnỳ, J.; Olejník, K.; Springholz, G.; Büchner, B.; et al. Anisotropic magnetoresistance in altermagnetic MnTe. Npj Spintron. 2024, 2, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Z.; Yuan, X.; Liu, Y.; Zhu, S.; Lu, Z.; Xiong, R. Giant tunneling magnetoresistance in insulated altermagnet/ferromagnet junctions induced by spin-dependent tunneling effect. Phys. Rev. B 2024, 110, 134437. [Google Scholar] [CrossRef]
- Ouassou, J.A.; Brataas, A.; Linder, J. dc Josephson effect in altermagnets. Phys. Rev. Lett. 2023, 131, 076003. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhuang, Z.Y.; Wu, Z.; Yan, Z. Topological superconductivity in two-dimensional altermagnetic metals. Phys. Rev. B 2023, 108, 184505. [Google Scholar] [CrossRef]
- Zhang, S.B.; Hu, L.H.; Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 2024, 15, 1801. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Liu, C.C. Majorana corner modes and tunable patterns in an altermagnet heterostructure. Phys. Rev. B 2023, 108, 205410. [Google Scholar] [CrossRef]
- Papaj, M. Andreev reflection at the altermagnet-superconductor interface. Phys. Rev. B 2023, 108, L060508. [Google Scholar] [CrossRef]
- Banerjee, S.; Scheurer, M.S. Altermagnetic superconducting diode effect. Phys. Rev. B 2024, 110, 024503. [Google Scholar] [CrossRef]
- Sun, C.; Brataas, A.; Linder, J. Andreev reflection in altermagnets. Phys. Rev. B 2023, 108, 054511. [Google Scholar] [CrossRef]
- Brekke, B.; Brataas, A.; Sudbø, A. Two-dimensional altermagnets: Superconductivity in a minimal microscopic model. Phys. Rev. B 2023, 108, 224421. [Google Scholar] [CrossRef]
- Beenakker, C.; Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B 2023, 108, 075425. [Google Scholar] [CrossRef]
- Chakraborty, D.; Black-Schaffer, A.M. Zero-field finite-momentum and field-induced superconductivity in altermagnets. Phys. Rev. B 2024, 110, L060508. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, Q.F. Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet superconductor junctions. Phys. Rev. B 2024, 109, 024517. [Google Scholar] [CrossRef]
- Giil, H.G.; Linder, J. Superconductor-altermagnet memory functionality without stray fields. Phys. Rev. B 2024, 109, 134511. [Google Scholar] [CrossRef]
- Zyuzin, A.A. Magnetoelectric effect in superconductors with d-wave magnetization. Phys. Rev. B 2024, 109, L220505. [Google Scholar] [CrossRef]
- Lu, B.; Maeda, K.; Ito, H.; Yada, K.; Tanaka, Y. φ Josephson junction induced by altermagnetism. Phys. Rev. Lett. 2024, 133, 226002. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Xiang, L.; Xu, F.; Zhang, L.; Tang, G.; Wang, J. Gapless superconducting state and mirage gap in altermagnets. Phys. Rev. B 2024, 109, L201404. [Google Scholar] [CrossRef]
- Bose, A.; Vadnais, S.; Paramekanti, A. Altermagnetism and superconductivity in a multiorbital t-J model. Phys. Rev. B 2024, 110, 205120. [Google Scholar] [CrossRef]
- Mæland, K.; Brekke, B.; Sudbø, A. Many-body effects on superconductivity mediated by double-magnon processes in altermagnets. Phys. Rev. B 2024, 109, 134515. [Google Scholar] [CrossRef]
- Sumita, S.; Naka, M.; Seo, H. Fulde-Ferrell-Larkin-Ovchinnikov state induced by antiferromagnetic order in κ-type organic conductors. Phys. Rev. Res. 2023, 5, 043171. [Google Scholar] [CrossRef]
- Cheng, Q.; Mao, Y.; Sun, Q.F. Field-free Josephson diode effect in altermagnet/normal metal/altermagnet junctions. Phys. Rev. B 2024, 110, 014518. [Google Scholar] [CrossRef]
- Das, S.; Soori, A. Crossed Andreev reflection in altermagnets. Phys. Rev. B 2024, 109, 245424. [Google Scholar] [CrossRef]
- Hu, J.X.; Matsyshyn, O.; Song, J.C. Nonlinear superconducting magnetoelectric effect. Phys. Rev. Lett. 2025, 134, 026001. [Google Scholar] [CrossRef] [PubMed]
- Sukhachov, P.O.; Hodt, E.W.; Linder, J. Thermoelectric effect in altermagnet-superconductor junctions. Phys. Rev. B 2024, 110, 094508. [Google Scholar] [CrossRef]
- Li, Y.X. Realizing tunable higher-order topological superconductors with altermagnets. Phys. Rev. B 2024, 109, 224502. [Google Scholar] [CrossRef]
- Niu, Z.P.; Zhang, Y.M. Electrically controlled crossed Andreev reflection in altermagnet/superconductor/altermagnet junctions. Supercond. Sci. Technol. 2024, 37, 055012. [Google Scholar]
- Niu, Z.P.; Yang, Z. Orientation-dependent Andreev reflection in an altermagnet/altermagnet/superconductor junction. J. Phys. D Appl. Phys. 2024, 57, 395301. [Google Scholar] [CrossRef]
- Zhao, W.; Fukaya, Y.; Burset, P.; Cayao, J.; Tanaka, Y.; Lu, B. Orientation-dependent transport in junctions formed by d-wave altermagnets and d-wave superconductors. Phys. Rev. B 2025, 111, 184515. [Google Scholar] [CrossRef]
- Baltz, V.; Hoffmann, A.; Emori, S.; Shao, D.F.; Jungwirth, T. Emerging materials in antiferromagnetic spintronics. APL Mater. 2024, 12, 030401. [Google Scholar] [CrossRef]
- Qiu, H.; Seifert, T.S.; Huang, L.; Zhou, Y.; Kašpar, Z.; Zhang, C.; Wu, J.; Fan, K.; Zhang, Q.; Wu, D.; et al. Terahertz spin current dynamics in antiferromagnetic hematite. Adv. Sci. 2023, 10, 2300512. [Google Scholar] [CrossRef] [PubMed]
- Reichlova, H.; Kriegner, D.; Mook, A.; Althammer, M.; Thomas, A. Role of topology in compensated magnetic systems. APL Mater. 2024, 12, 010902. [Google Scholar] [CrossRef]
- Li, Y.X.; Liu, Y.; Liu, C.C. Creation and manipulation of higher-order topological states by altermagnets. Phys. Rev. B 2024, 109, L201109. [Google Scholar] [CrossRef]
- Ghorashi, S.A.A.; Hughes, T.L.; Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 2024, 133, 106601. [Google Scholar] [CrossRef] [PubMed]
- Rathore, D. Altermagnetism: Symmetry-driven spin splitting and its role in spintronic technologies. J. Alloys Compd. 2025, 1034, 181292. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, X.; Qin, P.; Liu, Z. Review on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 2024, 124, 030503. [Google Scholar] [CrossRef]
- Kang, W.; Zhang, Y.; Wang, Z.; Klein, J.O.; Chappert, C.; Ravelosona, D.; Wang, G.; Zhang, Y.; Zhao, W. Spintronics: Emerging ultra-low-power circuits and systems beyond MOS technology. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2015, 12, 1–42. [Google Scholar] [CrossRef]
- Joshi, V.K. Spintronics: A contemporary review of emerging electronics devices. Eng. Sci. Technol. Int. J. 2016, 19, 1503–1513. [Google Scholar] [CrossRef]
- Bhowal, S.; Spaldin, N.A. Ferroically Ordered Magnetic Octupoles in d-Wave Altermagnets. Phys. Rev. X 2024, 14, 011019. [Google Scholar] [CrossRef]
- McClarty, P.A.; Rau, J.G. Landau theory of altermagnetism. Phys. Rev. Lett. 2024, 132, 176702. [Google Scholar] [CrossRef] [PubMed]
- Litvin, D.B. Spin point groups. Acta Cryst. 1977, 33, 279–287. [Google Scholar] [CrossRef]
- Litvin, D.B.; Opechowski, W. Spin groups. Physica 1974, 76, 538–554. [Google Scholar] [CrossRef]
- Hertz, H. Ueber sehr schnelle electrische Schwingungen. Ann. Der Phys. 1887, 267, 421–448. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen Der Physik 1905, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Pincelli, T.; Jozwiak, C.; Kondo, T.; Ernstorfer, R.; Sato, T.; Zhou, S. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Prim. 2022, 2, 54. [Google Scholar] [CrossRef]
- Saitoh, Y.; Kimura, H.; Suzuki, Y.; Nakatani, T.; Matsushita, T.; Muro, T.; Miyahara, T.; Fujisawa, M.; Soda, K.; Ueda, S.; et al. Performance of a very high resolution soft x-ray beamline BL25SU with a twin-helical undulator at SPring-8. Rev. Sci. Instrum. 2000, 71, 3254–3259. [Google Scholar] [CrossRef]
- Borisenko, S.V. “One-cubed” ARPES user facility at BESSY II. Synchrotron Radiat. News 2012, 25, 6–11. [Google Scholar] [CrossRef]
- Reininger, R.; Hulbert, S.; Johnson, P.; Sadowski, J.; Starr, D.; Chubar, O.; Valla, T.; Vescovo, E. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies. Rev. Sci. Instrum. 2012, 83, 023102. [Google Scholar] [CrossRef] [PubMed]
- Tamura, L.; Hussain, Z.; Padmore, H.; Robin, D.; Bailey, S.; Feinberg, B.; Falcone, R. Advanced light source update. Synchrotron Radiat. News 2012, 25, 25–30. [Google Scholar] [CrossRef]
- Strocov, V.; Wang, X.; Shi, M.; Kobayashi, M.; Krempasky, J.; Hess, C.; Schmitt, T.; Patthey, L. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: Concepts, technical realisation and scientific applications. Synchrotron Radiat. 2014, 21, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Hoesch, M.; Kim, T.; Dudin, P.; Wang, H.; Scott, S.; Harris, P.; Patel, S.; Matthews, M.; Hawkins, D.; Alcock, S.; et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 2017, 88, 013106. [Google Scholar] [CrossRef] [PubMed]
- Sekiyama, A.; Iwasaki, T.; Matsuda, K.; Saitoh, Y.; Onuki, Y.; Suga, S. Probing bulk states of correlated electron systems by high-resolution resonance photoemission. Nature 2000, 403, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Fadley, C.S. Looking deeper: Angle-resolved photoemission with soft and hard X-rays. Synchrotron Radiat. News 2012, 25, 26–31. [Google Scholar] [CrossRef]
- Moser, S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 2017, 214, 29–52. [Google Scholar] [CrossRef]
- Ohtomo, A.; Hwang, H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Reyren, N.; Thiel, S.; Caviglia, A.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.; Ruetschi, A.S.; Jaccard, D.; et al. Superconducting interfaces between insulating oxides. Science 2007, 317, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Nemšák, S.; Conti, G.; Gray, A.; Palsson, G.; Conlon, C.; Eiteneer, D.; Keqi, A.; Rattanachata, A.; Saw, A.; Bostwick, A.; et al. Energetic, spatial, and momentum character of the electronic structure at a buried interface: The two-dimensional electron gas between two metal oxides. Phys. Rev. B 2016, 93, 245103. [Google Scholar] [CrossRef]
- Berner, G.; Sing, M.; Pfaff, F.; Benckiser, E.; Wu, M.; Christiani, G.; Logvenov, G.; Habermeier, H.U.; Kobayashi, M.; Strocov, V.; et al. Dimensionality-tuned electronic structure of nickelate superlattices explored by soft-x-ray angle-resolved photoelectron spectroscopy. Phys. Rev. B 2015, 92, 125130. [Google Scholar] [CrossRef]
- Jozwiak, C.; Graf, J.; Lebedev, G.; Andresen, N.; Schmid, A.; Fedorov, A.; El Gabaly, F.; Wan, W.; Lanzara, A.; Hussain, Z. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 2010, 81, 053904. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T. Recent trends in spin-resolved photoelectron spectroscopy. J. Phys. Condens. Matter 2017, 29, 483001. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Moreschini, L.; Lanzara, A. Present and future trends in spin ARPES. Europhys. Lett. 2021, 134, 57001. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Li, T.; Liu, J.; Cheng, S.; Shi, Y.; Deng, L.; Zhang, M.; Li, C.; Ding, J.; et al. Absence of Altermagnetic Spin Splitting Character in Rutile Oxide RuO2. Phys. Rev. Lett. 2024, 133, 176401. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.; Pokharel, G.; Shtefiienko, K.; Bhandari, S.R.; Graf, D.E.; Rai, D.; Shrestha, K. Electronic structure of the altermagnet candidate FeSb2: High-field torque magnetometry and density functional theory studies. Phys. Rev. B 2025, 111, 075141. [Google Scholar] [CrossRef]
- Keßler, P.; Garcia-Gassull, L.; Suter, A.; Prokscha, T.; Salman, Z.; Khalyavin, D.; Manuel, P.; Orlandi, F.; Mazin, I.I.; Valentí, R.; et al. Absence of magnetic order in RuO2: Insights from μ SR spectroscopy and neutron diffraction. Npj Spintron. 2024, 2, 50. [Google Scholar] [CrossRef]
- Lovesey, S.; Khalyavin, D.; Van Der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B 2023, 108, 174437. [Google Scholar] [CrossRef]
- Hariki, A.; Okauchi, T.; Takahashi, Y.; Kuneš, J. Determination of the Néel vector in rutile altermagnets through x-ray magnetic circular dichroism: The case of MnF2. Phys. Rev. B 2024, 110, L100402. [Google Scholar] [CrossRef]
- Hariki, A.; Takahashi, Y.; Kuneš, J. X-ray magnetic circular dichroism in RuO2. Phys. Rev. B 2024, 109, 094413. [Google Scholar] [CrossRef]
- Amin, O.; Dal Din, A.; Golias, E.; Niu, Y.; Zakharov, A.; Fromage, S.; Fields, C.; Heywood, S.; Cousins, R.; Maccherozzi, F.; et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 2024, 636, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Hariki, A.; Dal Din, A.; Amin, O.; Yamaguchi, T.; Badura, A.; Kriegner, D.; Edmonds, K.; Campion, R.; Wadley, P.; Backes, D.; et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 2024, 132, 176701. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.H.; Hariki, A.; Lee, K.W.; Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 2019, 99, 184432. [Google Scholar] [CrossRef]
- Yuan, L.D.; Wang, Z.; Luo, J.W.; Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 2021, 5, 014409. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, H.; Janson, O.; Fulga, I.C.; van den Brink, J.; Facio, J.I. Spin-split collinear antiferromagnets: A large-scale ab-initio study. Mater. Today Phys. 2023, 32, 100991. [Google Scholar] [CrossRef]
- Mazin, I.I.; Koepernik, K.; Johannes, M.D.; González-Hernández, R.; Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl. Acad. Sci. USA 2021, 118, e2108924118. [Google Scholar] [CrossRef] [PubMed]
- Ryden, W.; Lawson, A. Magnetic susceptibility of IrO2 and RuO2. J. Chem. Phys. 1970, 52, 6058–6061. [Google Scholar] [CrossRef]
- Berlijn, T.; Snijders, P.C.; Delaire, O.; Zhou, H.D.; Maier, T.A.; Cao, H.B.; Chi, S.X.; Matsuda, M.; Wang, Y.; Koehler, M.R.; et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 2017, 118, 077201. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Strempfer, J.; Rao, R.; Occhialini, C.; Pelliciari, J.; Choi, Y.; Kawaguchi, T.; You, H.; Mitchell, J.; Shao-Horn, Y.; et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 2019, 122, 017202. [Google Scholar] [CrossRef] [PubMed]
- Smolyanyuk, A.; Mazin, I.I.; Garcia-Gassull, L.; Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 2024, 109, 134424. [Google Scholar] [CrossRef]
- Brahimi, S.; Rai, D.P.; Lounis, S. Confinement-induced altermangetism in RuO2 ultrathin films. arXiv 2024, arXiv:2412.15377. [Google Scholar]
- Jeong, S.G.; Choi, I.H.; Nair, S.; Buiarelli, L.; Pourbahari, B.; Oh, J.Y.; Bassim, N.; Seo, A.; Choi, W.S.; Fernandes, R.M.; et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO2 films. arXiv 2024, arXiv:2405.05838. [Google Scholar]
- Weber, M.; Wust, S.; Haag, L.; Akashdeep, A.; Leckron, K.; Schmitt, C.; Ramos, R.; Kikkawa, T.; Saitoh, E.; Kläui, M.; et al. All optical excitation of spin polarization in d-wave altermagnets. arXiv 2024, arXiv:2408.05187. [Google Scholar]
- Reichlova, H.; Lopes Seeger, R.; González-Hernández, R.; Kounta, I.; Schlitz, R.; Kriegner, D.; Ritzinger, P.; Lammel, M.; Leiviskä, M.; Birk Hellenes, A.; et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 2024, 15, 4961. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Fu, X.; Peng, R.; Cheng, X.; Dai, J.; Liu, L.; Li, Y.; Zhang, Y.; Zhu, W.; Bai, H.; et al. Electrical 180 switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 2024, 10, eadn0479. [Google Scholar] [CrossRef] [PubMed]
- Hiraishi, M.; Okabe, H.; Koda, A.; Kadono, R.; Muroi, T.; Hirai, D.; Hiroi, Z. Nonmagnetic Ground State in RuO2 Revealed by Muon Spin Rotation. Phys. Rev. Lett. 2024, 132, 166702. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; Marmodoro, A.; Ahn, K.H.; González-Hernández, R.; Turek, I.; Mankovsky, S.; Ebert, H.; D’Souza, S.W.; Šipr, O.; Sinova, J.; et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 2023, 131, 256703. [Google Scholar] [CrossRef] [PubMed]
- Gohlke, M.; Corticelli, A.; Moessner, R.; McClarty, P.A.; Mook, A. Spurious symmetry enhancement in linear spin wave theory and interaction-induced topology in magnons. Phys. Rev. Lett. 2023, 131, 186702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Jin, T.; Sbiaa, R.; Kläui, M.; Bedanta, S.; Fukami, S.; Ravelosona, D.; Yang, S.H.; Liu, X.; Piramanayagam, S. Domain wall memory: Physics, materials, and devices. Phys. Rep. 2022, 958, 1–35. [Google Scholar] [CrossRef]
- Liu, Q.; Kang, J.; Wang, P.; Gao, W.; Qi, Y.; Zhao, J.; Jiang, X. Inverse Magnetocaloric Effect in Altermagnetic 2D Non-van der Waals FeX (X= S and Se) Semiconductors. Adv. Funct. Mater. 2024, 34, 2402080. [Google Scholar] [CrossRef]
- Milivojević, M.; Orozović, M.; Picozzi, S.; Gmitra, M.; Stavrić, S. Interplay of altermagnetism and weak ferromagnetism in two-dimensional RuF4. 2D Mater. 2024, 11, 035025. [Google Scholar] [CrossRef]
- Dmitrienko, V.; Ovchinnikova, E.; Collins, S.; Nisbet, G.; Beutier, G.; Kvashnin, Y.; Mazurenko, V.; Lichtenstein, A.; Katsnelson, M. Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nat. Phys. 2014, 10, 202–206. [Google Scholar] [CrossRef]
- Zhou, Z.; Cheng, X.; Hu, M.; Chu, R.; Bai, H.; Han, L.; Liu, J.; Pan, F.; Song, C. Manipulation of the altermagnetic order in CrSb via crystal symmetry. Nature 2025, 638, 645–650. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, D.; Luo, N.; Zeng, J.; Chen, K.Q.; Tang, L.M. Nonrelativistic spin-momentum coupling in antiferromagnetic twisted bilayers. Phys. Rev. Lett. 2023, 130, 046401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, J.; Liu, C.C. Twisted magnetic van der Waals bilayers: An ideal platform for altermagnetism. Phys. Rev. Lett. 2024, 133, 206702. [Google Scholar] [CrossRef] [PubMed]
- Miao, N.; Xu, B.; Zhu, L.; Zhou, J.; Sun, Z. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Peng, R.; Dai, Y.; Huang, B.; Duan, L.; Ma, Y. Antiferromagnetic ferroelastic multiferroics in single-layer VOX (X= Cl, Br) predicted from first-principles. Appl. Phys. Lett. 2021, 119, 173103. [Google Scholar] [CrossRef]
- Shen, Z.X.; Su, C.; He, L. High-throughput computation and structure prototype analysis for two-dimensional ferromagnetic materials. Npj Comput. Mater. 2022, 8, 132. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, R.; Luo, N.; Zou, X. Two-dimensional magnetic materials: Structures, properties and external controls. Nanoscale 2021, 13, 1398–1424. [Google Scholar] [CrossRef] [PubMed]
- Torelli, D.; Moustafa, H.; Jacobsen, K.W.; Olsen, T. High-throughput computational screening for two-dimensional magnetic materials based on experimental databases of three-dimensional compounds. Npj Comput. Mater. 2020, 6, 158. [Google Scholar] [CrossRef]
- Pan, B.; Zhou, P.; Lyu, P.; Xiao, H.; Yang, X.; Sun, L. General Stacking Theory for Altermagnetism in Bilayer Systems. Phys. Rev. Lett. 2024, 133, 166701. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ye, H.; Liang, L.; Ding, N.; Dong, S.; Wang, S.S. Stacking-dependent ferroicity of a reversed bilayer: Altermagnetism or ferroelectricity. Phys. Rev. B 2024, 110, 224418. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, T.; Li, Y.; Qiao, L.; Ma, X.; Liu, C.; Hu, T.; Gao, H.; Ren, W. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano Lett. 2023, 24, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Su, X.; Chen, J.; Jin, C.; Chen, L. Two-Dimensional Metal-Organic Frameworks Towards Spintronics. Angew. Chem. 2023, 135, e202305408. [Google Scholar] [CrossRef]
- Che, Y.; Lv, H.; Wu, X.; Yang, J. Realizing altermagnetism in two-dimensional metal–organic framework semiconductors with electric-field-controlled anisotropic spin current. Chem. Sci. 2024, 15, 13853–13863. [Google Scholar] [CrossRef] [PubMed]
- López-Cabrelles, J.; Mañas-Valero, S.; Vitórica-Yrezábal, I.J.; Šiškins, M.; Lee, M.; Steeneken, P.G.; Van Der Zant, H.S.; Minguez Espallargas, G.; Coronado, E. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs). J. Am. Chem. Soc. 2021, 143, 18502–18510. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bezzerga, D.; Marfoua, B.; Hong, J. Altermagnetism, piezovalley, and ferroelectricity in two-dimensional Cr2SeO altermagnet. Npj 2D Mater. Appl. 2025, 9, 18. [Google Scholar] [CrossRef]
- Guo, S.D.; Guo, X.S.; Cheng, K.; Wang, K.; Ang, Y.S. Piezoelectric altermagnetism and spin-valley polarization in Janus monolayer Cr2SO. Appl. Phys. Lett. 2023, 123, 082401. [Google Scholar] [CrossRef]
- Chakraborty, A.; González Hernández, R.; Šmejkal, L.; Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 2024, 109, 144421. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, Z.; Wang, H.; Gong, J.; Wang, D.; Wang, B. High-pressure modulation of altermagnetism in MnF2. Appl. Phys. Lett. 2025, 126, 082409. [Google Scholar] [CrossRef]
- Devaraj, N.; Bose, A.; Narayan, A. Interplay of altermagnetism and pressure in hexagonal and orthorhombic MnTe. Phys. Rev. Mater. 2024, 8, 104407. [Google Scholar] [CrossRef]
- Leeb, V.; Mook, A.; Šmejkal, L.; Knolle, J. Spontaneous Formation of Altermagnetism from Orbital Ordering. Phys. Rev. Lett. 2024, 132, 236701. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yoshida, Y.; Lee, C.C.; Chang, T.R.; Jeng, H.T.; Lin, H.; Haga, Y.; Fisk, Z.; Hasegawa, Y. Atomic-scale visualization of surface-assisted orbital order. Sci. Adv. 2017, 3, eaao0362. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Hill, J.; Gibbs, D.; Blume, M.; Koyama, I.; Tanaka, M.; Kawata, H.; Arima, T.; Tokura, Y.; Hirota, K.; et al. Resonant x-ray scattering from orbital ordering in LaMnO3. Phys. Rev. Lett. 1998, 81, 582. [Google Scholar] [CrossRef]
- Murakami, Y.; Kawada, H.; Kawata, H.; Tanaka, M.; Arima, T.; Moritomo, Y.; Tokura, Y. Direct observation of charge and orbital ordering in La0.5Sr1.5MnO4. Phys. Rev. Lett. 1998, 80, 1932. [Google Scholar] [CrossRef]
- Mizokawa, T.; Khomskii, D.; Sawatzky, G. Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3. Phys. Rev. B 1999, 60, 7309. [Google Scholar] [CrossRef]
- Khaliullin, G.; Horsch, P.; Oleś, A.M. Spin order due to orbital fluctuations: Cubic vanadates. Phys. Rev. Lett. 2001, 86, 3879. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke-Ubiergo, R.; Bharadwaj, V.K.; Jungwirth, T.; Šmejkal, L.; Sinova, J. Supercell altermagnets. Phys. Rev. B 2024, 109, 094425. [Google Scholar] [CrossRef]
- Naka, M.; Motome, Y.; Seo, H. Altermagnetic perovskites. Npj Spintron. 2025, 3, 1. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; et al. Advances in the application of perovskite materials. Nano-Micro Lett. 2023, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Naidu, K.C.B. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar]
- Bati, A.S.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Sanga, L.; Lalengmawia, C.; Renthlei, Z.; Chanu, S.T.; Hima, L.; Singh, N.S.; Yvaz, A.; Bhattarai, S.; Rai, D. A review on perovskite materials for photovoltaic applications. Next Mater. 2025, 7, 100494. [Google Scholar] [CrossRef]
- Naka, M.; Motome, Y.; Seo, H. Anomalous Hall effect in antiferromagnetic perovskites. Phys. Rev. B 2022, 106, 195149. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiebig, M.; Cano, A. Ruddlesden-Popper and perovskite phases as a material platform for altermagnetism. arXiv 2024, arXiv:2401.12910. [Google Scholar] [CrossRef]
- Komarek, A.; Streltsov, S.; Isobe, M.; Möller, T.; Hoelzel, M.; Senyshyn, A.; Trots, D.; Fernández-Díaz, M.; Hansen, T.; Gotou, H.; et al. CaCrO3: An anomalous antiferromagnetic metallic oxide. Phys. Rev. Lett. 2008, 101, 167204. [Google Scholar] [CrossRef] [PubMed]
- Bordet, P.; Chaillout, C.; Marezio, M.; Huang, Q.; Santoro, A.; Cheong, S.; Takagi, H.; Oglesby, C.; Batlogg, B. Structural aspects of the crystallographic-magnetic transition in LaVO3 around 140 K. J. Solid State Chem. 1993, 106, 253–270. [Google Scholar] [CrossRef]
- Miyasaka, S.; Okimoto, Y.; Iwama, M.; Tokura, Y. Spin-orbital phase diagram of perovskite-type RVO3 (R = rare-earth ion or Y). Phys. Rev. B 2003, 68, 100406. [Google Scholar] [CrossRef]
- Miyasaka, S.; Okuda, T.; Tokura, Y. Critical behavior of metal-insulator transition in La1−xSrx VO3. Phys. Rev. Lett. 2000, 85, 5388. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, I. Magneto-optical effect in the weak ferromagnets LaMO3 (M = Cr, Mn, and Fe). Phys. Rev. B 1997, 55, 8060. [Google Scholar] [CrossRef]
- Kajimoto, R.; Yoshizawa, H.; Tomioka, Y.; Tokura, Y. Stripe-type charge ordering in the metallic A-type antiferromagnet Pr0.5Sr0.5MnO3. Phys. Rev. B 2002, 66, 180402. [Google Scholar] [CrossRef]
- Okugawa, T.; Ohno, K.; Noda, Y.; Nakamura, S. Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3 (M = Cr, Mn, Fe). J. Phys. Condens. Matter 2018, 30, 075502. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.S.; Alonso, J.; Muonz, A.; Fernández-Díaz, M.; Goodenough, J. Magnetic structure of LaCrO 3 perovskite under high pressure from in situ neutron diffraction. Phys. Rev. Lett. 2011, 106, 057201. [Google Scholar] [CrossRef] [PubMed]
- Jüdin, V.; Sherman, A. Weak ferromagnetism of YCrO3. Solid State Commun. 1966, 4, 661–663. [Google Scholar] [CrossRef]
- Tiwari, B.; Surendra, M.K.; Rao, M.R. HoCrO3 and YCrO3: A comparative study. J. Phys. Condens. Matter 2013, 25, 216004. [Google Scholar] [CrossRef] [PubMed]
- Skumryev, V.; Ott, F.; Coey, J.; Anane, A.; Renard, J.P.; Pinsard-Gaudart, L.; Revcolevschi, A. Weak ferromagnetism in LaMnO3. Eur. Phys. J. B-Condens. Matter Complex Syst. 1999, 11, 401–406. [Google Scholar] [CrossRef]
- Bousquet, E.; Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 2016, 28, 123001. [Google Scholar] [CrossRef] [PubMed]
- White, R. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 1969, 40, 1061–1069. [Google Scholar] [CrossRef]
- Dixon, C.A.; Kavanagh, C.M.; Knight, K.S.; Kockelmann, W.; Morrison, F.D.; Lightfoot, P. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3. J. Solid State Chem. 2015, 230, 337–342. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Kollipara, V.S. Evaluating the structure-property correlation in Y1-xNdxFeO3 (0 ≤ x ≤ 0.15) perovskites. Ceram. Int. 2021, 47, 30797–30806. [Google Scholar] [CrossRef]
- Shane, J.; Lyons, D.; Kestigian, M. Antiferromagnetic resonance in NaMnF3. J. Appl. Phys. 1967, 38, 1280–1282. [Google Scholar] [CrossRef]
- Beckman, O.; Knox, K. Magnetic Properties of KMnF3. I. Crystallographic Studies. Phys. Rev. 1961, 121, 376. [Google Scholar] [CrossRef]
- Heeger, A.; Beckman, O.; Portis, A. Magnetic Properties of KMnF3. II. Weak Ferromagnetism. Phys. Rev. 1961, 123, 1652. [Google Scholar] [CrossRef]
- Sattigeri, R.M.; Cuono, G.; Autieri, C. Altermagnetic surface states: Towards the observation and utilization of altermagnetism in thin films, interfaces and topological materials. Nanoscale 2023, 15, 16998–17005. [Google Scholar] [CrossRef] [PubMed]
- Mazin, I.I. Notes on altermagnetism and superconductivity. arXiv 2022, arXiv:2203.05000. [Google Scholar] [CrossRef]
- Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef]
- Chen, H.; Niu, Q.; MacDonald, A.H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 2014, 112, 017205. [Google Scholar] [CrossRef] [PubMed]
- Kübler, J.; Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 2014, 108, 67001. [Google Scholar] [CrossRef]
- Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Sürgers, C.; Kittler, W.; Wolf, T.; Löhneysen, H.v. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3. AIP Adv. 2016, 6, 055604. [Google Scholar] [CrossRef]
- Boldrin, D.; Samathrakis, I.; Zemen, J.; Mihai, A.; Zou, B.; Johnson, F.; Esser, B.D.; McComb, D.W.; Petrov, P.K.; Zhang, H.; et al. Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films. Phys. Rev. Mater. 2019, 3, 094409. [Google Scholar] [CrossRef]
- Šmejkal, L.; MacDonald, A.H.; Sinova, J.; Nakatsuji, S.; Jungwirth, T. Anomalous hall antiferromagnets. Nat. Rev. Mater. 2022, 7, 482–496. [Google Scholar] [CrossRef]
- Ghimire, N.J.; Botana, A.; Jiang, J.; Zhang, J.; Chen, Y.S.; Mitchell, J. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 2018, 9, 3280. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhou, X.; Šmejkal, L.; Wu, L.; Zhu, Z.; Guo, H.; González-Hernández, R.; Wang, X.; Yan, H.; Qin, P.; et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022, 5, 735–743. [Google Scholar] [CrossRef]
- Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 2020, 102, 075112. [Google Scholar] [CrossRef]
- Attias, L.; Levchenko, A.; Khodas, M. Intrinsic anomalous Hall effect in altermagnets. Phys. Rev. B 2024, 110, 094425. [Google Scholar] [CrossRef]
- Leiviskä, M.; Rial, J.; Bad’ura, A.; Seeger, R.L.; Kounta, I.; Beckert, S.; Kriegner, D.; Joumard, I.; Schmoranzerová, E.; Sinova, J.; et al. Anisotropy of the anomalous Hall effect in thin films of the altermagnet candidate Mn5Si3. Phys. Rev. B 2024, 109, 224430. [Google Scholar] [CrossRef]
- Tschirner, T.; Keßler, P.; Gonzalez Betancourt, R.D.; Kotte, T.; Kriegner, D.; Büchner, B.; Dufouleur, J.; Kamp, M.; Jovic, V.; Smejkal, L.; et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater. 2023, 11, 101103. [Google Scholar] [CrossRef]
- Jin, H.; Tan, Z.; Gong, Z.; Wang, J. Anomalous Hall effect in two-dimensional vanadium tetrahalogen with altermagnetic phase. Phys. Rev. B 2024, 110, 155125. [Google Scholar] [CrossRef]
- Gonzalez Betancourt, R.; Zubáč, J.; Gonzalez-Hernandez, R.; Geishendorf, K.; Šobáň, Z.; Springholz, G.; Olejník, K.; Šmejkal, L.; Sinova, J.; Jungwirth, T.; et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 2023, 130, 036702. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.T.; Yamauchi, K. Ab initio prediction of anomalous Hall effect in antiferromagnetic CaCrO3. Phys. Rev. B 2023, 107, 155126. [Google Scholar] [CrossRef]
- Hou, X.Y.; Yang, H.C.; Liu, Z.X.; Guo, P.J.; Lu, Z.Y. Large intrinsic anomalous Hall effect in both Nb2FeB2 and Ta2FeB2 with collinear antiferromagnetism. Phys. Rev. B 2023, 107, L161109. [Google Scholar] [CrossRef]
- Wang, M.; Tanaka, K.; Sakai, S.; Wang, Z.; Deng, K.; Lyu, Y.; Li, C.; Tian, D.; Shen, S.; Ogawa, N.; et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 2023, 14, 8240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feng, W.; Zhang, R.W.; Šmejkal, L.; Sinova, J.; Mokrousov, Y.; Yao, Y. Crystal thermal transport in altermagnetic RuO2. Phys. Rev. Lett. 2024, 132, 056701. [Google Scholar] [CrossRef] [PubMed]
- Kluczyk, K.; Gas, K.; Grzybowski, M.; Skupiński, P.; Borysiewicz, M.; Fąs, T.; Suffczyński, J.; Domagala, J.; Grasza, K.; Mycielski, A.; et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 2024, 110, 155201. [Google Scholar] [CrossRef]
- Šmejkal, L.; Mokrousov, Y.; Yan, B.; MacDonald, A.H. Topological antiferromagnetic spintronics. Nat. Phys. 2018, 14, 242–251. [Google Scholar] [CrossRef]
- Thomson, W. XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 1857, 8, 546–550. [Google Scholar]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472. [Google Scholar] [CrossRef] [PubMed]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 1995, 139, L231–L234. [Google Scholar] [CrossRef]
- Moodera, J.S.; Kinder, L.R.; Wong, T.M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273. [Google Scholar] [CrossRef] [PubMed]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353. [Google Scholar] [CrossRef] [PubMed]
- Jabeur, K.; Buda-Prejbeanu, L.; Prenat, G.; Di Pendina, G. Study of two writing schemes for a magnetic tunnel junction based on spin orbit torque. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energetic Electron. Commun. Eng. 2013, 7, 1054–1059. [Google Scholar]
- Nguyen, V.; Rao, S.; Wostyn, K.; Couet, S. Recent progress in spin-orbit torque magnetic random-access memory. Npj Spintron. 2024, 2, 48. [Google Scholar] [CrossRef]
- Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548. [Google Scholar] [CrossRef]
- Bader, S.D.; Parkin, S.S.P. Spintronics. Annu. Rev. Condens. Matter Phys. 2010, 1, 71–88. [Google Scholar] [CrossRef]
- Manchon, A.; Železnỳ, J.; Miron, I.M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004. [Google Scholar] [CrossRef]
- Železnỳ, J.; Gao, H.; Vỳbornỳ, K.; Zemen, J.; Mašek, J.; Manchon, A.; Wunderlich, J.; Sinova, J.; Jungwirth, T. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014, 113, 157201. [Google Scholar] [CrossRef] [PubMed]
- Wadley, P.; Howells, B.; Železnỳ, J.; Andrews, C.; Hills, V.; Campion, R.P.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S.; et al. Electrical switching of an antiferromagnet. Science 2016, 351, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Wadley, P.; Reimers, S.; Grzybowski, M.J.; Andrews, C.; Wang, M.; Chauhan, J.S.; Gallagher, B.L.; Campion, R.P.; Edmonds, K.W.; Dhesi, S.S.; et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 2018, 13, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Q.; Koepernik, K.; Rezaev, R.; Janson, O.; Železnỳ, J.; Jungwirth, T.; Felser, C.; van den Brink, J.; Sun, Y. Different types of spin currents in the comprehensive materials database of nonmagnetic spin Hall effect. Npj Comput. Mater. 2021, 7, 167. [Google Scholar] [CrossRef]
- Tanaka, K.; Nomoto, T.; Arita, R. First-principles study of the tunnel magnetoresistance effect with Cr-doped RuO2 electrode. Phys. Rev. B 2024, 110, 064433. [Google Scholar] [CrossRef]
- Qin, P.; Yan, H.; Wang, X.; Chen, H.; Meng, Z.; Dong, J.; Zhu, M.; Cai, J.; Feng, Z.; Zhou, X.; et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 2023, 613, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.; Kim, G.H.; Lee, J.; Jung, H.; Seo, U.; So, G.; Lee, J.; Lee, S.; Park, M.; Yang, S.; et al. Tunneling Magnetoresistance in Altermagnetic RuO 2-Based Magnetic Tunnel Junctions. Phys. Rev. Lett. 2025, 134, 246703. [Google Scholar] [CrossRef]
- Duine, R.; Lee, K.J.; Parkin, S.S.; Stiles, M.D. Synthetic antiferromagnetic spintronics. Nat. Phys. 2018, 14, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Schlauderer, S.; Lange, C.; Baierl, S.; Ebnet, T.; Schmid, C.P.; Valovcin, D.; Zvezdin, A.; Kimel, A.; Mikhaylovskiy, R.; Huber, R. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 2019, 569, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Bennett, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys. 1982, 21, 905–940. [Google Scholar] [CrossRef]
- Hong, J.; Lambson, B.; Dhuey, S.; Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2016, 2, e1501492. [Google Scholar] [CrossRef] [PubMed]
- Gaudenzi, R.; Burzurí, E.; Maegawa, S.; Van Der Zant, H.; Luis, F. Quantum Landauer erasure with a molecular nanomagnet. Nat. Phys. 2018, 14, 565–568. [Google Scholar] [CrossRef]
- Kimel, A.; Kalashnikova, A.; Pogrebna, A.; Zvezdin, A. Fundamentals and perspectives of ultrafast photoferroic recording. Phys. Rep. 2020, 852, 1–46. [Google Scholar] [CrossRef]
- Han, L.; Fu, X.; He, W.; Zhu, Y.; Dai, J.; Yang, W.; Zhu, W.; Bai, H.; Chen, C.; Wan, C.; et al. Observation of non-volatile anomalous Nernst effect in altermagnet with collinear Néel vector. arXiv 2024, arXiv:2403.13427. [Google Scholar]
- Yang, Y.; Li, J.; Yin, J.; Xu, S.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; Novoselov, K.S.; Mishchenko, A. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 2020, 6, eabd3655. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Che, B.; Xu, M.; Ang, Z.P.; Di, J.; Gao, H.J.; Yang, H.; Zhou, J.; Liu, Z. Recent advances in synthesis and study of 2D twisted transition metal dichalcogenide bilayers. Small Struct. 2021, 2, 2000153. [Google Scholar] [CrossRef]
- Puretzky, A.A.; Liang, L.; Li, X.; Xiao, K.; Sumpter, B.G.; Meunier, V.; Geohegan, D.B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ling, X.; Liang, L.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M.S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Xin, W.; Jiang, W.S.; Liu, Z.B.; Chen, Y.; Tian, J.G. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 2016, 28, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, B.; Tian, M.; Ceballos, F.; Lin, M.W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A.A.; Rouleau, C.M.; Yoon, M.; et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Suriyage, M.; Khan, A.R.; Gao, M.; Zhao, J.; Liu, B.; Hasan, M.M.; Rahman, S.; Chen, R.s.; Lam, P.K.; et al. Twisted van der Waals quantum materials: Fundamentals, tunability, and applications. Chem. Rev. 2024, 124, 1992–2079. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Wang, E.; Bao, C.; Zhang, Y.; Zhang, K.; Bao, K.; Chan, C.K.; Chen, C.; Avila, J.; Asensio, M.C.; et al. Quasicrystalline 30 twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proc. Natl. Acad. Sci. USA 2018, 115, 6928–6933. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.y.; Kim, S.; Jung, S.W.; Hwang, J.; Kim, Y. Recent technical advancements in ARPES: Unveiling quantum materials. Curr. Appl. Phys. 2024, 60, 43–56. [Google Scholar] [CrossRef]
- Samanta, K.; Ležaić, M.; Merte, M.; Freimuth, F.; Blügel, S.; Mokrousov, Y. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 2020, 127. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, W.; Yang, X.; Guo, G.Y.; Yao, Y. Crystal chirality magneto-optical effects in collinear antiferromagnets. Phys. Rev. B 2021, 104, 024401. [Google Scholar] [CrossRef]
- Iguchi, S.; Kobayashi, H.; Ikemoto, Y.; Furukawa, T.; Itoh, H.; Iwai, S.; Moriwaki, T.; Sasaki, T. Magneto-optical detection of altermagnetism in organic antiferromagnet. arXiv 2024, arXiv:2409.15696. [Google Scholar]
- Flebus, B.; Grundler, D.; Rana, B.; Otani, Y.; Barsukov, I.; Barman, A.; Gubbiotti, G.; Landeros, P.; Akerman, J.; Ebels, U.; et al. The 2024 magnonics roadmap. J. Phys. Condens. Matter 2024, 36, 363501. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamang, R.; Gurung, S.; Rai, D.P.; Brahimi, S.; Lounis, S. Altermagnetism and Altermagnets: A Brief Review. Magnetism 2025, 5, 17. https://doi.org/10.3390/magnetism5030017
Tamang R, Gurung S, Rai DP, Brahimi S, Lounis S. Altermagnetism and Altermagnets: A Brief Review. Magnetism. 2025; 5(3):17. https://doi.org/10.3390/magnetism5030017
Chicago/Turabian StyleTamang, Rupam, Shivraj Gurung, Dibya Prakash Rai, Samy Brahimi, and Samir Lounis. 2025. "Altermagnetism and Altermagnets: A Brief Review" Magnetism 5, no. 3: 17. https://doi.org/10.3390/magnetism5030017
APA StyleTamang, R., Gurung, S., Rai, D. P., Brahimi, S., & Lounis, S. (2025). Altermagnetism and Altermagnets: A Brief Review. Magnetism, 5(3), 17. https://doi.org/10.3390/magnetism5030017