Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Biomass, Volume 3, Issue 4 (December 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 3235 KiB  
Article
Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction
by Vassilis Athanasiadis, Theodoros Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, Dimitrios Palaiogiannis and Stavros I. Lalas
Biomass 2023, 3(4), 422-440; https://doi.org/10.3390/biomass3040025 - 4 Dec 2023
Cited by 2 | Viewed by 1082
Abstract
The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the [...] Read more.
The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the frame of sustainability and a circular economy. For this reason, a comprehensive multi-factor extraction approach was employed. Specifically, diverse methods including a pulsed electric field and ultrasonication combined with simple stirring were explored. Through this systematic approach, the most efficient extraction process was determined, resulting in elevated yields of bioactive compounds, including polyphenols, ascorbic acid, and total carotenoids. Among the identified phenolic compounds, rutin emerged as the most abundant, with concentrations reaching up to 172.86 μg/g. Utilizing partial least squares analysis, the maximum predicted values for the bioactive compounds were determined, with total polyphenols reaching 7.17 mg GAE/g, ascorbic acid at 4.93 mg/g, and total carotenoids at 386.47 μg CtE/g. The antioxidant activity of the extracts was evaluated with the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and H2O2 scavenging assays. The recorded antioxidant performance underscored the substantial potential of persimmon peels as a source of cost-effective extracts with high antioxidant activity. This study not only contributes to optimizing the bioactive compounds’ extraction from persimmon peel but also highlights the process’s viability by producing valuable extracts with antioxidant properties at low cost. Full article
(This article belongs to the Special Issue Food Science and Emerging Technologies in Biomass Processing)
Show Figures

Graphical abstract

19 pages, 3294 KiB  
Article
A Comparison of Forest Biomass and Conventional Harvesting Effects on Estimated Erosion, Best Management Practice Implementation, Ground Cover, and Residual Woody Debris in Virginia
by Austin M. Garren, Michael Chad Bolding, Scott M. Barrett, Eric M. Hawks, Wallace Michael Aust and Thomas Adam Coates
Biomass 2023, 3(4), 403-421; https://doi.org/10.3390/biomass3040024 - 17 Nov 2023
Viewed by 797
Abstract
Expanding markets for renewable energy feedstocks have increased demand for woody biomass. Concerns associated with forest biomass harvesting include increased erosion, the applicability of conventional forestry Best Management Practices (BMPs) for protecting water quality, and reduced woody debris retention for soil nutrients and [...] Read more.
Expanding markets for renewable energy feedstocks have increased demand for woody biomass. Concerns associated with forest biomass harvesting include increased erosion, the applicability of conventional forestry Best Management Practices (BMPs) for protecting water quality, and reduced woody debris retention for soil nutrients and cover. We regionally compared the data and results from three prior independent studies that estimated erosion, BMP implementation, and residual woody debris following biomass and conventional forest harvests in the Mountains, Piedmont, and Coastal Plain of Virginia. Estimated erosion was higher in the Mountains due to steep slopes and operational challenges. Mountain skid trails were particularly concerning, comprising only 8.47% of the total area but from 37.9 to 81.1% of the total site-wide estimated erosion. BMP implementation varied by region and harvest type, with biomass sites having better implementation than conventional sites, and conventional Mountain sites having lower implementation than other regions. Sufficient woody debris remained for BMPs on both harvest types in all regions, with conventional Mountain sites retaining twice that of Coastal Plain sites. BMPs reduced the estimated erosion on both site types suggesting increased implementation could reduce potential erosion in problematic areas. Therefore, proper BMP implementation should be ensured, particularly in Mountainous terrain, regardless of harvest type. Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
Show Figures

Figure 1

1 pages, 155 KiB  
Editorial
Renewal of Scope for Biomass
by Lasse Rosendahl
Biomass 2023, 3(4), 402; https://doi.org/10.3390/biomass3040023 - 15 Nov 2023
Viewed by 601
Abstract
Biomass was started in 2021 with the aim of providing an open access platform for scientific communications within the field of biomass and its uses [...] Full article
35 pages, 1125 KiB  
Review
Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review
by Theodoros Chatzimitakos, Vassilis Athanasiadis, Dimitrios Kalompatsios, Martha Mantiniotou, Eleni Bozinou and Stavros I. Lalas
Biomass 2023, 3(4), 367-401; https://doi.org/10.3390/biomass3040022 - 6 Nov 2023
Cited by 4 | Viewed by 2366
Abstract
The food processing industry is a continuously developing sector that uses innovative technologies to efficiently process food products. During processing, food industries generate substantial amounts of by-products in the form of waste materials. This food waste consists of organic matter rich in bioactive [...] Read more.
The food processing industry is a continuously developing sector that uses innovative technologies to efficiently process food products. During processing, food industries generate substantial amounts of by-products in the form of waste materials. This food waste consists of organic matter rich in bioactive compounds, such as polyphenols, carotenoids, and flavonoids. Improper management of food waste can adversely affect both the environment and human health, leading to environmental pollution and the release of greenhouse gas emissions. Thus, proper food waste management has become an urgent global issue. The presence of bioactive compounds (mainly polyphenols, flavonoids, and anthocyanins, but also carotenoids, alkaloids, proteins, lipids, and carbohydrates) in food waste holds the potential to transform them into valuable resources. Several sectors, including food and energy, have recognized food waste as an innovative source. Recently, much emphasis has been placed on optimizing the extraction yield of such bioactive compounds through the utilization of environmentally friendly and sustainable methodologies and solvents. Pulsed electric field (PEF)-assisted extraction is an emerging technique that holds promise for the utilization of waste materials. PEF technology can efficiently optimize the extraction of valuable compounds within a shorter time while minimizing solvent and energy consumption. In this review, we provide a comprehensive overview of the current state of PEF technology and its implications for recovering bioactive compounds from food waste. The integration of innovative technologies like PEF in the food processing industry can play a crucial role in managing food waste sustainably, reducing environmental impact, and harnessing the full potential of bioactive compounds contained in these waste materials. The objective of this critical review is to provide an overview of the utilization of PEF pretreatment for food by-products and to conduct a comparative analysis with other extraction techniques. Full article
(This article belongs to the Special Issue Fate and Migration of Biomass Products)
Show Figures

Figure 1

31 pages, 27516 KiB  
Article
Admissibility Grid to Support the Decision for the Preferential Routing of Portuguese Endogenous Waste Biomass for the Production of Biogas, Advanced Biofuels, Electricity and Heat
by Ana T. Crujeira, Maria A. Trancoso, Ana Eusébio, Ana Cristina Oliveira, Paula C. Passarinho, Mariana Abreu, Isabel P. Marques, Paula A. S. S. Marques, Susana Marques, Helena Albergaria, Filomena Pinto, Paula Costa, Rui André, Francisco Gírio and Patrícia Moura
Biomass 2023, 3(4), 336-366; https://doi.org/10.3390/biomass3040021 - 16 Oct 2023
Cited by 1 | Viewed by 1554
Abstract
A methodology was developed to assess the allocation of different types of endogenous waste biomass to eight technologies for producing electricity, heat, biogas and advanced biofuels. It was based on the identification of key physicochemical parameters for each conversion process and the definition [...] Read more.
A methodology was developed to assess the allocation of different types of endogenous waste biomass to eight technologies for producing electricity, heat, biogas and advanced biofuels. It was based on the identification of key physicochemical parameters for each conversion process and the definition of limit values for each parameter, applied to two different matrices of waste biomass. This enabled the creation of one Admissibility Grid with target values per type of waste biomass and conversion technology, applicable to a decision process in the routing to energy production. The construction of the grid was based on the evaluation of 24 types of waste biomass, corresponding to 48 sets of samples tested, for which a detailed physicochemical characterization and an admissibility assessment were made. The samples were collected from Municipal Solid Waste treatment facilities, sewage sludges, agro-industrial companies, poultry farms, and pulp and paper industries. The conversion technologies and energy products considered were (trans)esterification to fatty acid methyl esters, anaerobic digestion to methane, fermentation to bioethanol, dark fermentation to biohydrogen, combustion to electricity and heat, gasification to syngas, and pyrolysis and hydrothermal liquefaction to bio-oils. The validation of the Admissibility Grid was based on the determination of conversion rates and product yields over 23 case studies that were selected according to the best combinations of waste biomass type versus technological solution and energy product. Full article
Show Figures

Figure 1

13 pages, 2082 KiB  
Article
Sugar Extraction from Secondary Agricultural Waste Biomass Using Hydrothermal Carbonization and Direct Contact Membrane Distillation
by Viral Sagar, Joan G. Lynam and Amelia G. Parrenin
Biomass 2023, 3(4), 323-335; https://doi.org/10.3390/biomass3040020 - 7 Oct 2023
Cited by 1 | Viewed by 1608
Abstract
Sustainable and renewable sources of liquid and solid fuels are essential to prevent fossil fuel use from damaging the environment. Secondary agricultural residues, which are already transported to food processing centers, have great potential to be converted into biofuels. The wastes from coffee [...] Read more.
Sustainable and renewable sources of liquid and solid fuels are essential to prevent fossil fuel use from damaging the environment. Secondary agricultural residues, which are already transported to food processing centers, have great potential to be converted into biofuels. The wastes from coffee roasting, sugar production, and rice milling have been investigated using hydrothermal carbonization (HTC) to produce aqueous products containing monosaccharides alongside solid biofuels. These sugar-laden liquid products were characterized after pretreating coffee silverskins, sugarcane bagasse, and rice husks with HTC. They were then concentrated using direct contact membrane distillation (DCMD), a low-energy process that can use waste heat from other biorefinery processes. The higher heating value of the solid products was also characterized by bomb calorimetry. The liquid products from HTC of these wastes from food production were found to contain varying concentrations of glucose, xylose, galactose, and arabinose. DCMD was capable of concentrating the liquid products up to three times their original concentrations. Little difference was found among the higher heating values of the solid products after 180 °C HTC pretreatment compared to 200 °C pretreatment. HTC of waste from food processing can provide solid biofuels and liquid products containing sugars that can be concentrated using DCMD. Full article
(This article belongs to the Special Issue Hydrothermal Treatment in Biomass)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop