Previous Issue
Volume 4, March
 
 

Biomass, Volume 4, Issue 2 (June 2024) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 3961 KiB  
Article
Edible Paper Sheets from Alternanthera philoxeroides and Hypophthalmichthys molitrix: Smart Biomass Valorization
by Sharmin Suraiya, Mst. Ayesha Siddika Mohona, Mst Fatema, Monjurul Haq, Md. Anisur Rahman and Subrata Mondal
Biomass 2024, 4(2), 414-428; https://doi.org/10.3390/biomass4020020 (registering DOI) - 9 May 2024
Viewed by 109
Abstract
Alternanthera philoxeroides and Hypophthalmichthys molitrix offer significant nutritional benefits. This study evaluates the proximate composition, amino acid profile, GC-MS analysis, FT-IR spectroscopy, SEM and EDX, and color values of edible paper sheets (EPSs) derived from Alternanthera philoxeroides incorporating different levels of Hypophthalmichthys molitrix [...] Read more.
Alternanthera philoxeroides and Hypophthalmichthys molitrix offer significant nutritional benefits. This study evaluates the proximate composition, amino acid profile, GC-MS analysis, FT-IR spectroscopy, SEM and EDX, and color values of edible paper sheets (EPSs) derived from Alternanthera philoxeroides incorporating different levels of Hypophthalmichthys molitrix flesh. The protein content in the EPSs varied based on fish flesh incorporation, peaking at 52.66% in Ap100/Hm300 (Non-boil). Protein and carbohydrate contents showed an inverse correlation across EPSs, with the highest carbohydrate content of 60.89% in sample Ap400/Hm0 (Boil). Lipid content was also found to correlate with H. molitrix flesh content in EPSs, ranging from 1.59% to 18.41%. Amino acid analysis identified 11 types, with methionine as the most prevalent, followed by leucine, phenylalanine, and lysine. GC-MS analysis revealed 51 bioactive compounds, including carbonic acid, hentriacontane, and various fatty acids. FT-IR analysis showed characteristic bonds, while color analysis displayed L* values ranging from 24.37 to 30.97. SEM analyses depicted the microstructure, surface view, and elemental composition of the EPSs, and EDX showed an abundance of Ca, N, K, O, C, Mg, Na, P, Cl, Mn, and Fe. Therefore, EPSs prepared from A. philoxeroides and H. molitrix could offer a promising approach for effectively utilizing aquatic biomass and providing both plant and animal nutrients to consumers. Full article
Show Figures

Graphical abstract

12 pages, 1576 KiB  
Article
Enhancing the Extraction of Phenolic Antioxidants from Amazonian Assai (Euterpe oleracea Martius) Fruit Waste through Response Surface Methodology Optimization
by Yasmin Cunha-Silva, David Dias, Luiz Felipe Ravazi Pereira, Carlos Victor Lamarão Pereira, Emerson Silva Lima, Klenicy Kazumy de Lima Yamaguchi and Valdir Florêncio da Veiga-Junior
Biomass 2024, 4(2), 402-413; https://doi.org/10.3390/biomass4020019 (registering DOI) - 9 May 2024
Viewed by 78
Abstract
Assai (Euterpe oleracea Martius) is a superfruit widely consumed in several countries, mainly produced in the Amazon region. The significant growth of the market for this fruit has raised environmental concerns regarding the disposal of production waste, especially the seeds that are [...] Read more.
Assai (Euterpe oleracea Martius) is a superfruit widely consumed in several countries, mainly produced in the Amazon region. The significant growth of the market for this fruit has raised environmental concerns regarding the disposal of production waste, especially the seeds that are not utilized and represent approximately 80% of the fruit. In the present study, strategies were developed for transforming these seed wastes into new products, using green solvents for extraction under conditions conducive to technology transfer and with feasible quality control through simple bench techniques, which represents an ideal approach for establishing a truly sustainable process. A significant interaction between solvent and extraction method was observed, impacting both yields and total phenols. Phenolic compounds are substances known for their health benefits, functioning as antioxidants and consequently aiding in disease prevention. The phenolic content observed in the extractions increased from 22.68% to 44.74% under optimal conditions during extraction via hot maceration (50 °C) in 100% ethanol for 2 h, which also enhanced yield and increased antioxidant capacity. The extracts displayed remarkable free radical scavenging activities (IC50 = 6.54 μg/mL in ABTS and IC50 = 14.71 μg/mL in DPPH), approaching the Trolox and quercetin standards, respectively. The optimized method paved the way for the industrial-scale utilization of the residues of this valuable Amazonian fruit. Full article
Show Figures

Graphical abstract

39 pages, 4818 KiB  
Review
Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric
by Hamdam Gaminian, Behzad Ahvazi, J. John Vidmar, Usukuma Ekuere and Sharon Regan
Biomass 2024, 4(2), 363-401; https://doi.org/10.3390/biomass4020018 - 6 May 2024
Viewed by 411
Abstract
There has been a growing interest in recycling and upcycling different waste streams due to concerns for environmental protection. This has prompted the desire to develop circular economies and optimize the utilization of bioresources for different industrial sectors. Turning agricultural and forestry waste [...] Read more.
There has been a growing interest in recycling and upcycling different waste streams due to concerns for environmental protection. This has prompted the desire to develop circular economies and optimize the utilization of bioresources for different industrial sectors. Turning agricultural and forestry waste streams into high-performance materials is a promising and meaningful strategy for creating value-added materials. Lignocellulose fibres from plants are emerging as a potential candidate for eco-friendly feedstock in the textile industry. Nonwoven fabric is one of the most innovative and promising categories for the textile industry since it currently utilizes about 66% synthetic materials. In the upcoming wave of nonwoven products, we can expect an increased utilization of natural and renewable materials, particularly with a focus on incorporating lignocellulosic materials as both binders and fibre components. The introduction of low-cost fibres from waste residue materials to produce high-performance nonwoven fabrics represents a shift towards more environmentally sustainable paradigms in various applications and they represent ecological and inexpensive alternatives to conventional petroleum-derived materials. Here, we review potential technologies for using agricultural waste fibres in nonwoven products. Full article
Show Figures

Figure 1

14 pages, 2237 KiB  
Article
Utilization of Blackmouth Catshark (Galeus melastomus) Skins as an Alternative Source of Gelatin: Extraction and Physicochemical Characterization in Comparison to Porcine Skin Gelatin
by Panayotis D. Karayannakidis, Soumela E. Chatziantoniou and Chong M. Lee
Biomass 2024, 4(2), 349-362; https://doi.org/10.3390/biomass4020017 (registering DOI) - 6 May 2024
Viewed by 224
Abstract
The present study investigated the potential use of blackmouth catshark (Galeus melastomus) skins for gelatin production by employing a combined alkaline and acidic process. The yield of dry gelatin was relatively high (13.95%), showing a high protein content (87.80%), but low [...] Read more.
The present study investigated the potential use of blackmouth catshark (Galeus melastomus) skins for gelatin production by employing a combined alkaline and acidic process. The yield of dry gelatin was relatively high (13.95%), showing a high protein content (87.80%), but low moisture (10.64%), ash (1.34%) and lipid (0.03%) contents, on a wet weight basis. Fish skin gelatin showed better color properties (>L*, <+b* values) than porcine skin gelatin and exhibited similar gel strength (315.4 g) and higher viscosity (5.90 cP) than the latter (p < 0.05). Although the electrophoretic study revealed that fish skin gelatin was degraded to a lesser extent than its mammalian counterpart, the resulting fish skin gelatin gels melted at a significantly lower temperature (Tm = 21.5 °C), whereas the reverse process (i.e., gelling) also occurred at a lower temperature (Ts = 10.6 °C) and required more time (ts = 29.5 min) compared to porcine skin gelatin gels (Tm = 30.4 °C, Ts = 19.4 °C and ts = 20.7 min). These differences were attributed to the different imino acid content, which was greater in mammalian gelatin (p < 0.05). The results suggested that the skins from blackmouth catshark can be potentially used as an alternative raw material for gelatin production, which will fill the needs of more diverse cultures that do not consume pork- or cow-related products. Full article
Show Figures

Figure 1

20 pages, 1189 KiB  
Review
Algae: Nature’s Renewable Resource for Fuels and Chemicals
by Sourabh Chakraborty and Nurhan Turgut Dunford
Biomass 2024, 4(2), 329-348; https://doi.org/10.3390/biomass4020016 - 16 Apr 2024
Viewed by 794
Abstract
Microalgae-based renewable energy, industrial chemicals, and food have received great attention during the last decade. This review article highlights the versatility of algal biomass as a feedstock for producing various commodities and high-value products, including aromatic hydrocarbons and lipids within biorefinery systems. Lipid [...] Read more.
Microalgae-based renewable energy, industrial chemicals, and food have received great attention during the last decade. This review article highlights the versatility of algal biomass as a feedstock for producing various commodities and high-value products, including aromatic hydrocarbons and lipids within biorefinery systems. Lipid content and the composition of algal biomass cultivated in various media, specifically in wastewater streams generated at agricultural and industrial production facilities, are reviewed. Technical and chemical aspects of algal biomass conversion via thermochemical techniques including pyrolysis, hydrothermal liquefaction, and hydrothermal carbonization are discussed. The properties of the final products are reviewed based on the conversion process employed. Studies published within the last 5 years are reviewed. The importance of further research on inexpensive and more effective catalysts and the development of downstream processes to upgrade crude products obtained from thermal conversion processes is emphasized. This review concludes with an in-depth discussion of the opportunities and challenges involved in algal biomass-based bioproduct manufacturing and commercialization. Full article
Show Figures

Figure 1

16 pages, 3464 KiB  
Review
Biotransformation of Pollutants by Pycnoporus spp. in Submerged and Solid-State Fermentation: Mechanisms, Achievements, and Perspectives
by Vinícius Mateus Salvatori Cheute, Thaís Marques Uber, Luís Felipe Oliva dos Santos, Emanueli Backes, Marina Proença Dantas, Alex Graça Contato, Rafael Castoldi, Cristina Giatti Marques de Souza, Rúbia Carvalho Gomes Corrêa, Adelar Bracht and Rosane Marina Peralta
Biomass 2024, 4(2), 313-328; https://doi.org/10.3390/biomass4020015 - 16 Apr 2024
Viewed by 441
Abstract
Substantial amounts of organo-pollutants, often persistent and toxic, are generated globally each year, posing a threat to soil, water, groundwater, and air. The pollutants encompass a wide range of substances from various sources, which include solid as well as liquid ones, such as [...] Read more.
Substantial amounts of organo-pollutants, often persistent and toxic, are generated globally each year, posing a threat to soil, water, groundwater, and air. The pollutants encompass a wide range of substances from various sources, which include solid as well as liquid ones, such as landfill leachates and wastewaters. The compounds include paper and pulp mill byproducts, pharmaceuticals, diverse types of plastics, hydrocarbons, pigments, and dyes, as well as pesticides and insecticides. Fungal bioremediation stands out as a promising technology that uses the metabolic potential of fungi to eliminate or mitigate the impact of pollutants. Notably, species of the genus Pycnoporus exhibit significant capabilities for degrading a broad spectrum of toxic molecules. This degradation is facilitated by released ligninolytic enzymes, especially laccase, and cellular enzymes pertaining to the cytochrome P450 monooxygenase system. The laccase, which is overproduced by the genus Pycnoporus, is quite remarkable for its high redox potential. The objective of this review is to highlight the proficiency of the Pycnoporus genus in the degradation of pollutants in submerged and solid-state fermentation. Recent studies conducted over the past decade consistently highlight the Pycnoporus genus as a robust contender in the realm of white biotechnology. Full article
Show Figures

Figure 1

27 pages, 1767 KiB  
Review
Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production
by Hisham Ahmed, Rasaq S. Abolore, Swarna Jaiswal and Amit K. Jaiswal
Biomass 2024, 4(2), 286-312; https://doi.org/10.3390/biomass4020014 - 12 Apr 2024
Viewed by 640
Abstract
With growing concern over environmental sustainability and dwindling fossil resources, it is crucial to prioritise the development of alternative feedstocks to replace fossil resources. Spent coffee grounds (SCGs) are an environmental burden with an estimated six million tons being generated on a wet [...] Read more.
With growing concern over environmental sustainability and dwindling fossil resources, it is crucial to prioritise the development of alternative feedstocks to replace fossil resources. Spent coffee grounds (SCGs) are an environmental burden with an estimated six million tons being generated on a wet basis annually, globally. SCGs are rich in cellulose, lignin, protein, lipids, polyphenols and other bioactive compounds which are important raw materials for use in industries including pharmaceuticals and cosmetics. Furthermore, the energy sector has the potential to capitalize on the high calorific value of SCGs for biofuel and biogas production, offering a sustainable alternative to fossil fuels. SCGs are readily available, abundant, and cheap, however, SCGs are currently underutilized, and a significant amount are dumped into landfills. This review explores the potential of SCGs as a source of a value-added compound through various conversion technologies employed in the valorisation of SCGs into biochar, biofuel, and important chemical building blocks. The state-of-the-art, current knowledge, future research to stimulate the creation of sustainable products, and the challenges and economic feasibility of exploring SCGs in a biorefinery context are presented. Full article
(This article belongs to the Special Issue Fate and Migration of Biomass Products)
Show Figures

Figure 1

13 pages, 2518 KiB  
Article
Study of Compost Based on Sewage Sludge and Different Structural Materials
by Przemysław Kosobucki
Biomass 2024, 4(2), 273-285; https://doi.org/10.3390/biomass4020013 - 4 Apr 2024
Viewed by 575
Abstract
The characterization of compost compositions on the basis of sewage sludge and structural materials (straw, sawdust, bark) composting is described. A comparison of the methods most often used for composting and characterization of structural materials is also presented. Sewage sludge and structural materials [...] Read more.
The characterization of compost compositions on the basis of sewage sludge and structural materials (straw, sawdust, bark) composting is described. A comparison of the methods most often used for composting and characterization of structural materials is also presented. Sewage sludge and structural materials were mixed in different ratios and composted in piles (laboratory scale) for 3 months. During this time, the composting process was controlled using standard methods. The bioavailability of some xenobiotics in an agriculture experiment (using beans) was also investigated. Full article
Show Figures

Figure 1

30 pages, 1737 KiB  
Review
A Review on Biochar as an Adsorbent for Pb(II) Removal from Water
by Pushpita Kumkum and Sandeep Kumar
Biomass 2024, 4(2), 243-272; https://doi.org/10.3390/biomass4020012 - 2 Apr 2024
Viewed by 606
Abstract
Heavy metal contamination in drinking water is a growing concern due to its severe health effects on humans. Among the many metals, lead (Pb), which is a toxic and harmful element, has the most widespread global distribution. Pb pollution is a major problem [...] Read more.
Heavy metal contamination in drinking water is a growing concern due to its severe health effects on humans. Among the many metals, lead (Pb), which is a toxic and harmful element, has the most widespread global distribution. Pb pollution is a major problem of water pollution in developing countries and nations. The most common sources of lead in drinking water are lead pipes, faucets, and plumbing fixtures. Adsorption is the most efficient method for metal removal, and activated carbon has been used widely in many applications as an effective adsorbent, but its high production costs have created the necessity for a low-cost alternative adsorbent. Biochar can be a cost-effective substitute for activated carbon in lead adsorption because of its porous structure, irregular surface, high surface-to-volume ratio, and presence of oxygenated functional groups. Extensive research has explored the remarkable potential of biochar in adsorbing Pb from water and wastewater through batch and column studies. Despite its efficacy in Pb removal, several challenges hinder the real application of biochar as an adsorbent. These challenges include variability in the adsorption capacity due to the diverse range of biomass feedstocks, production processes, pH dependence, potential desorption, or a leaching of Pb from the biochar back into the solution; the regeneration and reutilization of spent biochar; and a lack of studies on scalability issues for its application as an adsorbent. This manuscript aims to review the last ten years of research, highlighting the opportunities and engineering challenges associated with using biochar for Pb removal from water. Biochar production and activation methods, kinetics, adsorption isotherms, mechanisms, regeneration, and adsorption capacities with process conditions are discussed. The objective is to provide a comprehensive resource that can guide future researchers and practitioners in addressing engineering challenges. Full article
Show Figures

Figure 1

26 pages, 3606 KiB  
Perspective
High Added-Value by-Products from Biomass: A Case Study Unveiling Opportunities for Strengthening the Agroindustry Value Chain
by Filipe Kayodè Felisberto Dos Santos, Ian Gardel Carvalho Barcellos-Silva, Odilon Leite-Barbosa, Rayssa Ribeiro, Yasmin Cunha-Silva and Valdir Florencio Veiga-Junior
Biomass 2024, 4(2), 217-242; https://doi.org/10.3390/biomass4020011 - 1 Apr 2024
Viewed by 1362
Abstract
The current era witnesses a remarkable advancement in biomass utilization, guided by the principles of green chemistry and biorefinery and the comprehensive exploitation of plant-based raw materials. Predominantly, large-scale production methods have been pursued, akin to approaches in the oil industry, enabling the [...] Read more.
The current era witnesses a remarkable advancement in biomass utilization, guided by the principles of green chemistry and biorefinery and the comprehensive exploitation of plant-based raw materials. Predominantly, large-scale production methods have been pursued, akin to approaches in the oil industry, enabling the incorporation of novel products into energy and petrochemical markets. However, the viability of such systems on a small and medium scale is hindered by logistical challenges and the constraints of economies of scale. For small agricultural producers and food processing companies, the complete utilization of biomass transcends environmental responsibility, evolving into a strategy for survival through the diversification of by-products with enhanced value. The state of Rio de Janeiro in Brazil presents a range of population dynamics, geographical features, climate conditions, and agricultural production patterns that closely resemble those found in various tropical countries and agricultural regions worldwide. This region, sustaining a green belt supporting 17 million people, provides an apt case study for investigating chemical compounds with potential value among agro-industrial residues, which can motivate the creation of a lucrative biotechnological industry. Examples include naringenin and hesperidin from oranges and lemons, epi-gallo-catechin gallate from bananas, caffeic acids from coffee, and the bromelain enzyme from pineapples. This study addresses the challenges associated with developing biotechnological alternatives within the agroindustry, considering economic, technological, logistical, and market-related aspects. The insights from examining the Brazilian state of Rio de Janeiro will contribute to the broader discourse on sustainable biomass utilization and the creation of value-added by-products. Full article
(This article belongs to the Special Issue Biorefineries, Circular Cities, and the Bioeconomy)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop