Child Telomere Length at 11–12 Years of Age Is Not Associated with Pregnancy Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Characteristics
2.3. Assessment of Telomere Length
2.4. Potential Confounding
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andraweera, P.H.; Condon, B.; Collett, G.; Gentilcore, S.; Lassi, Z.S. Cardiovascular risk factors in those born preterm—systematic review and meta-analysis. J. Dev. Orig. Health Dis. 2020, 12, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, M.M.; Lassi, Z.S.; Ali, A.; Arstall, M.A.; Roberts, C.T.; Andraweera, P.H. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: A systematic review and meta-analysis. Endocrine 2020, 71, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, M.M.; Lassi, Z.S.; Roberts, C.T.; Andraweera, P.H. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: Systematic review and meta-analysis. J. Dev. Orig. Health Dis. 2020, 11, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Ghaderian, M.; Hemmat, M.; Behdad, S.; Saeedi, M.; Shahsanaei, F. Fetal Cardiac Functional Abnormalities Assessed by Echocardiography in Mothers Suffering Gestational Diabetes Mellitus: A Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2020, 46, 100658. [Google Scholar] [CrossRef] [PubMed]
- Blotsky, A.L.; Rahme, E.; Dahhou, M.; Nakhla, M.; Dasgupta, K. Gestational diabetes associated with incident diabetes in childhood and youth: A retrospective cohort study. Can. Med. Assoc. J. 2019, 191, E410–E417. [Google Scholar] [CrossRef] [PubMed]
- Kajantie, E.; Eriksson, J.G.; Osmond, C.; Thornburg, K.; Barker, D.J. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: The Helsinki birth cohort study. Stroke 2009, 40, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Salam, R.A.; Das, J.K.; Bhutta, Z.A. Impact of intrauterine growth restriction on long-term health. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhou, Z.; Wei, S.; Liu, Z.; Pooley, K.A.; Dunning, A.M.; Svenson, U.; Roos, G.; Hosgood, H.D., 3rd; Shen, M.; et al. Shortened telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE 2011, 6, e20466. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Pare, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef]
- Cross, J.A.; Temple, R.C.; Hughes, J.C.; Dozio, N.C.; Brennan, C.; Stanley, K.; Murphy, H.R.; Fowler, D.; Hughes, D.A.; Sampson, M.J. Cord blood telomere length, telomerase activity and inflammatory markers in pregnancies in women with diabetes or gestational diabetes. Diabet. Med. 2010, 27, 1264–1270. [Google Scholar] [CrossRef]
- Gilfillan, C.; Naidu, P.; Gunawan, F.; Hassan, F.; Tian, P.; Elwood, N. Leukocyte Telomere Length in the Neonatal Offspring of Mothers with Gestational and Pre-Gestational Diabetes. PLoS ONE 2016, 11, e0163824. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.M.; Werlang, I.C.R.; Rechenmacher, C.; de Morais, R.V.; Barbé-Tuana, F.M.; Grun, L.K.; Guma, F.T.C.R.; Homrich da Silva, C.; Bernardi, J.R.; Michalowski, M.B.; et al. Telomere length in healthy newborns is not affected by adverse intrauterine environments. Genet. Mol. Biol. 2021, 44, e20200411. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, J.; Wu, Y.; Zhang, H.; Luo, Q.; Han, C.; Ye, X.; Wang, H.; He, J.; Huang, H.; et al. Reduced fetal telomere length in gestational diabetes. PLoS ONE 2014, 9, e86161. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, U.; Schwab, M.; Griese, E.U.; Fritz, P.; Klotz, U. Telomeres in neonates: New insights in fetal hematopoiesis. Pediatr. Res. 2001, 49, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Vasu, V.; Turner, K.J.; George, S.; Greenall, J.; Slijepcevic, P.; Griffin, D.K. Preterm infants have significantly longer telomeres than their term born counterparts. PLoS ONE 2017, 12, e0180082. [Google Scholar] [CrossRef] [PubMed]
- Akkad, A.; Hastings, R.; Konje, J.C.; Bell, S.C.; Thurston, H.; Williams, B. Telomere length in small-for-gestational-age babies. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Frenck, R.W., Jr.; Blackburn, E.H.; Shannon, K.M. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA 1998, 95, 5607–5610. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, I.; Kimura, M.; Yashin, A.; Aviv, A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Exp. Hematol. 2009, 37, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Hjort, L.; Vryer, R.; Grunnet, L.G.; Burgner, D.; Olsen, S.F.; Saffery, R.; Vaag, A. Telomere length is reduced in 9- to 16-year-old girls exposed to gestational diabetes in utero. Diabetologia 2018, 61, 870–880. [Google Scholar] [CrossRef]
- McAninch, D.; Bianco-Miotto, T.; Gatford, K.L.; Leemaqz, S.Y.; Andraweera, P.H.; Garrett, A.; Plummer, M.D.; Dekker, G.A.; Roberts, C.T.; Smithers, L.G.; et al. The metabolic syndrome in pregnancy and its association with child telomere length. Diabetologia 2020, 63, 2140–2149. [Google Scholar] [CrossRef]
- Growing Up in Australia’s Child Health CheckPoint: Standard Operating Procedure: Telomere Length Quantification; Murdoch Children’s Research Institute: Melbourne, Australia, 2018.
- Soloff, C.; Lawrence, D.; Johnstone, R. The Longitudinal Study of Australian Children: Sample Design: LSAC Technical Paper Number 1; May 2005. Available online: https://api.research-repository.uwa.edu.au/ws/portalfiles/portal/73664759/tp1.pdf (accessed on 12 August 2021).
- Mohal, J.; Lansangan, C.; Gasser, C.; Howell, L.; Hockey, P.; Duffy, J.; Renda, J.; Scovelle, A.; Jessup, K.; Daraganova, G.; et al. Growing Up in Australia: The Longitudinal Study of Australian Children—Data User Guide. Release 2023, 9, C2. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Lycett, K.; Vryer, R.; Burgner, D.P.; Ranganathan, S.; Grobler, A.C.; Wake, M.; Saffery, R. Telomere length: Population epidemiology and concordance in Australian children aged 11-12 years and their parents. BMJ Open 2019, 9, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Hutchesson, M.J.; Cooray, S.D.; Bahri Khomami, M.; Zaman, S.; Segan, L.; Teede, H.; Moran, L.J. A review of maternal overweight and obesity and its impact on cardiometabolic outcomes during pregnancy and postpartum. Ther. Adv. Reprod. Health 2021, 15, 2633494120986544. [Google Scholar] [CrossRef]
- Cawthon, R.M.; Smith, K.R.; O’Brien, E.; Sivatchenko, A.; Kerber, R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003, 361, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Epel, E.S.; Lin, J.; Buss, C.; Shahbaba, B.; Blackburn, E.H.; Simhan, H.N.; Wadhwa, P.D. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am. J. Obstet. Gynecol. 2013, 208, 134.e1–134.e7. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Barchitta, M.; Magnano San Lio, R.; La Rosa, M.C.; La Mastra, C.; Favara, G.; Ferlito, M.; Giunta, G.; Panella, M.; Cianci, A.; et al. The Effect of Alcohol on Telomere Length: A Systematic Review of Epidemiological Evidence and a Pilot Study during Pregnancy. Int. J. Environ. Res. Public Health 2021, 18, 5038. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Lin, P.D.; Rifas-Shiman, S.L.; Rahman, M.L.; Gold, D.R.; Baccarelli, A.A.; Claus Henn, B.; Amarasiriwardena, C.; Wright, R.O.; Coull, B.; et al. Prospective Associations of Early Pregnancy Metal Mixtures with Mitochondria DNA Copy Number and Telomere Length in Maternal and Cord Blood. Environ. Health Perspect. 2021, 129, 117007. [Google Scholar] [CrossRef] [PubMed]
- Daneels, L.; Martens, D.S.; Arredouani, S.; Billen, J.; Koppen, G.; Devlieger, R.; Nawrot, T.S.; Ghosh, M.; Godderis, L.; Pauwels, S. Maternal Vitamin D and Newborn Telomere Length. Nutrients 2021, 13, 2012. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.O.; Ibrahimou, B.; Yusuf, K.K.; Mauck, D.E.; Salihu, H.M. The effect of maternal vitamin C intake on fetal telomere length. J. Matern. Fetal Neonatal Med. 2021, 34, 1143–1148. [Google Scholar] [CrossRef]
- Habibi, N.; Bianco-Miotto, T.; Phoi, Y.Y.; Jankovic-Karasoulos, T.; Roberts, C.T.; Grieger, J.A. Maternal diet and offspring telomere length: A systematic review. Nutr. Rev. 2021, 79, 148–159. [Google Scholar] [CrossRef]
- Gurugubelli Krishna, R.; Bhat, B.V.; Bobby, Z.; Papa, D.; Badhe, B.; Chinnakali, P. Are Global DNA methylation and telomere length useful biomarkers for identifying intrauterine growth restricted neonates? J. Matern. Fetal Neonatal Med. 2021, 34, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Perales-Puchalt, A.; Soberon, N.; Monterde, M.; Hervas-Marin, D.; Foronda, M.; Desantes, D.; Soler, I.; Perales-Marin, A.; Pellicer, A.; Blasco, M.A. Maternal telomere length is shorter in intrauterine growth restriction versus uncomplicated pregnancies, but not in the offspring or in IVF-conceived newborns. Reprod. Biomed. Online 2019, 38, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Baser, E.; Inandiklioglu, N.; Aydogan Kirmizi, D.; Ercan, F.; Caniklioglu, A.; Kara, M.; Onat, T.; Yalvac, E.S. Placental and Umbilical Cord Blood Oxidative Stress Level and Telomere Homeostasis in Early Onset Severe Preeclampsia. Z. Geburtshilfe Neonatol. 2023, 227, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Du, J.; Xiao, Z.; Jiang, Y.; Jin, L.; Weng, Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: A prospective case-control study. BMC Pregnancy Childbirth 2022, 22, 483. [Google Scholar] [CrossRef] [PubMed]
- Sukenik-Halevy, R.; Amiel, A.; Kidron, D.; Liberman, M.; Ganor-Paz, Y.; Biron-Shental, T. Telomere homeostasis in trophoblasts and in cord blood cells from pregnancies complicated with preeclampsia. Am. J. Obstet. Gynecol. 2016, 214, 283.e1–283.e7. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Li, K.; Xie, C.; Wen, X. Adverse Birth Outcomes and Birth Telomere Length: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 215, 64–74.e6. [Google Scholar] [CrossRef] [PubMed]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef]
- Lin, J.; Cheon, J.; Brown, R.; Coccia, M.; Puterman, E.; Aschbacher, K.; Sinclair, E.; Epel, E.; Blackburn, E.H. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes. J. Immunol. Res. 2016, 2016, 5371050. [Google Scholar] [CrossRef]
Characteristics | Frequency (%) |
---|---|
Mother | |
Age (years) (n = 840) | |
<24 | 51 (6.1) |
25–29 | 187 (22.3) |
30–34 | 335 (39.9) |
35–39 | 220 (26.2) |
≥40 | 47 (5.6) |
Ethnicity (n = 840) | |
Australian or New Zealander | 702 (83.6) |
Asian | 54 (6.4) |
European | 62 (7.4) |
African | 11 (1.3) |
American | 11 (1.3) |
Highest education qualification at Wave 1 (n = 829) | |
Certificate | 354 (42.7) |
Diploma (advanced/graduate) | 158 (19.0) |
Bachelor/Postgraduate | 317 (38.2) |
SEIFA index 1 (n = 841) | |
<Q10 | 47 (5.6) |
Q10–<Q25 | 68 (8.1) |
Q25–<Q50 | 122 (14.5) |
Q50–<Q75 | 232 (27.6) |
Q75–<Q90 | 181 (21.5) |
>Q90 | 191 (22.7) |
Folic acid supplement during pregnancy (n = 841), Yes | 587 (69.8) |
Smoked during pregnancy (n = 767), Yes | 96 (12.5) |
Father | |
Ethnicity (n = 807) | |
Australian or New Zealander | 650 (80.5) |
Asian | 54 (6.7) |
European | 73 (9.0) |
African | 21 (2.6) |
American | 9 (1.1) |
Child (n = 841) | |
Male | 413 (49.1) |
Female | 428 (50.9) |
Pregnancy Complication | Yes, n (%) | No, n (%) | Mean Difference in Telomere Length (95% CI) |
---|---|---|---|
High blood pressure (n = 765) | 39 (5.1) | 726 (94.9) | 0.00 (−0.12, 0.12) 1 |
Gestational diabetes mellitus (n = 764) | 27 (3.5) | 737 (96.5) | 0.05 (−0.10, 0.19) 1 |
Small for gestational age (n = 832) | 60 (7.2) | 772 (92.8) | 0.07 (−0.04, 0.19) 2 |
Large for gestational age (n = 832) | 92 (11.1) | 740 (88.9) | −0.06 (−0.15, 0.03) 3 |
Preterm birth (n = 839) | 47 (5.6) | 792 (94.4) | −0.10 (−0.21, 0.01) 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco-Miotto, T.; Hossain, S.; Habibi, N.; Haag, D.G.; Grieger, J.A. Child Telomere Length at 11–12 Years of Age Is Not Associated with Pregnancy Complications. DNA 2024, 4, 180-188. https://doi.org/10.3390/dna4020011
Bianco-Miotto T, Hossain S, Habibi N, Haag DG, Grieger JA. Child Telomere Length at 11–12 Years of Age Is Not Associated with Pregnancy Complications. DNA. 2024; 4(2):180-188. https://doi.org/10.3390/dna4020011
Chicago/Turabian StyleBianco-Miotto, Tina, Sadia Hossain, Nahal Habibi, Dandara G. Haag, and Jessica A. Grieger. 2024. "Child Telomere Length at 11–12 Years of Age Is Not Associated with Pregnancy Complications" DNA 4, no. 2: 180-188. https://doi.org/10.3390/dna4020011
APA StyleBianco-Miotto, T., Hossain, S., Habibi, N., Haag, D. G., & Grieger, J. A. (2024). Child Telomere Length at 11–12 Years of Age Is Not Associated with Pregnancy Complications. DNA, 4(2), 180-188. https://doi.org/10.3390/dna4020011