Assessment of Polyester Fabrics, Effluents and Filtrates after Standard and Innovative Washing Processes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterisation of Polyester Fabric
3.2. Characterisation of the Effluent and Filtrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://de.statista.com/statistik/daten/studie/176748/umfrage/weltproduktion-der-chemiefaser-industrie-nach-chemiefaserarten/ (accessed on 17 June 2022).
- Available online: https://textileexchange.org/textile-exchange-preferred-fiber-and-materials-market-report-2021 (accessed on 17 June 2022).
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying Shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 21191–21199. [Google Scholar] [CrossRef] [PubMed]
- Pribauer, B.; Laminger, T.; Ipsmiller, W.; Koch, D.; Bartl, A. Assessment of microplastics in the Environment—Fibres: The disgregarded twin? Detritus 2019, 9, 1–12. [Google Scholar]
- Čorak, I.; Tarbuk, A.; Đorđević, D.; Višić, K.; Botteri, L. Sustainable Alkaline Hydrolysis of Polyester Fabric at Low Temperature. Materials 2022, 15, 1530. [Google Scholar] [CrossRef] [PubMed]
- Čorak, I.; Pušić, T.; Tarbuk, A. Enzimi za hidrolizu poliestera. Tekstil 2019, 68, 142–151. [Google Scholar]
- Ristić, N.; Jocić, D.; Ristić, I. Modifikovanje poliesterske tkanine obradom u alkalnom rastvoru. Tekst. Ind. 2019, 67, 50–59. [Google Scholar]
- Choobar, B.G.; Shahmirzadi, M.A.A.; Kargari, A.; Manouchehri, M. Fouling mechanism identification and analysis in microfiltration of Laundry wastewater. J. Environ. Chem. Eng. 2019, 7, 103030. [Google Scholar] [CrossRef]
- Tiffin, L.; Hazlehurst, A.; Sumner, M.; Taylor, M. Reliable quantification of microplastic release from the domestic laundry of textile fabrics. J. Text. Inst. 2021, 113, 558–566. [Google Scholar] [CrossRef]
- De Falco, F.; Cocc, M.C.; Avella, M.; Thompson, R.C. Microfiber Release to Water, Via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters. Environ. Sci. Technol. 2020, 54, 3288–3296. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of Fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnés, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Šaravanja, A.; Pušić, T.; Dekanić, T. Microplastics in Wastewater by Washing Polyester Fabrics. Materials 2022, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Synthetic Textiles as a Source of Microplastic from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Čurlin, M.; Pušić, T.; Vojnović, B.; Vinčić, A. STEM approach in assessment of microplastic particles in textile wastewater. Techical Gazzete 2022, 29, 5. [Google Scholar]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibres, including microplastics in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Park, S.; Lee, B.; Ahn, J.; Kim, S. Impact of Chitosan Pretreatment to Reduce Microfibers released from Synthetic Garments during Laundering. Water 2021, 13, 2480. [Google Scholar] [CrossRef]
- Kaurin, T.; Pušić, T.; Čurlin, M. Biopolymer Textile Structure of Chitosan with Polyester. Polymers 2022, 14, 3088. [Google Scholar] [CrossRef]
- Fijan, S.; Fijan, R.; Šostar Turk, S. Implementing sustainable laundering procedure for textile in a commercial laundry and thus decreasing wastewater burden. J. Clean. Prod. 2008, 16, 258–263. [Google Scholar] [CrossRef]
- Sinner, H. Über das Waschen Mit Haushaltwaschmaschinen: In Welchem Umfange Erleichtern Haushaltwaschmaschinen und -Geräte das Wäschehaben Im Haushalt? Haus + Heim-Verl: Hamburg, Germany, 1960. [Google Scholar]
- McIlwraith, H.K.; Lin, J.; Erdle, L.M.; Mallos, N.; Diamond, M.L.; Rochman, C.M. Capturing microfibres-marketed technologies reduce microfiber emissions from washing machines. Mar. Pollut. Bull. 2019, 139, 40–45. [Google Scholar] [CrossRef]
- HRN EN ISO 6330; Textiles—Domestic Washing and Drying Procedures for Textile Testing. Croatian Standard Institute: Zagreb, Croatia, 2021.
- HRN EN 872:2008; Water Quality—Determination of Suspended Solids—Method by Filtration through Glass Fibre Filters. Croatian Standard Institute: Zagreb, Croatia, 2008.
- Luxbacher, T.; Bukšek, H.; Petrinić, I.; Pušić, T. Mjerenje zeta potencijala ravnih čvrstih površina pomoću elektrokinetičkog analizatora SurPASS. Tekstil 2009, 58, 401–409. [Google Scholar]
- AATCC Test Method No. 124; Test Method for Smoothness Appearance of Fabrics after Home Laundering. American Association of Textile Chemists and Colorists (AATCC): Research Triangle Park, NC, USA, 2018.
- HRN EN ISO 12945-2:2003; Textiles—Determination of Fabric Propensity to Surface Fuzzing and to Pilling—Part 2: Modified Martindale Method. Croatian Standard Institute: Zagreb, Croatia, 2003.
- HRN EN ISO 13934-1:2013; Textiles—Tensile Properties of Fabrics—Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method. Croatian Standard Institute: Zagreb, Croatia, 2013.
- HRN EN 27888:2008; Water Quality—Determination of Electrical Conductivity. Croatian Standard Institute: Zagreb, Croatia, 2008.
- HRN EN ISO 10523:2012; Water Quality—Determination of pH. Croatian Standard Institute: Zagreb, Croatia, 2012.
- HRN EN ISO 7027-1: 2016; Water Quality—Determination of Turbidity—Part 1: Quantitative Methods. Croatian Standard Institute: Zagreb, Croatia, 2016.
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson, Prentice Hall: London, UK, 2005; pp. 213–223. [Google Scholar]
- Gaylarde, C.; Baptista-Neto, J.A.; Da Fonseca, E.M. Plastic microfibre pollution: How important is clothes’ laundering? Heliyon 2021, 7, e07105. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Laitala, K.; Klepp, I.G. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 2019, 652, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Grancarić, A.M.; Tarbuk, A.; Pušić, T. Electrokinetic properties of textile fabrics. Coloration Technol. 2005, 121, 221–227. [Google Scholar] [CrossRef]
- Bišćan, J. Electrokinetic Data: Approaches, Interpretations and Applications. Croat. Chem. Acta 2007, 80, 357–365. [Google Scholar]
- Čurlin, M.; Pušić, T.; Vojnović, B.; Dimitrov, N. Particle Characterization of Washing Process Effluents by Laser Diffraction Technique. Materials 2021, 14, 7781. [Google Scholar] [CrossRef] [PubMed]
- Özkan, I.; Gündoğdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. J. Text. Inst. 2021, 112, 264–272. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, T.; Mitrano, M.D.; Heuberger, M.; Hufenus, R.; Nowack, B. A systematic study of microplastic fiber release from 12 different polyester textiles during washing. Environ. Sci. Technol. 2020, 54, 4847–4855. [Google Scholar] [CrossRef]
N | N-St_10 | N-In_10 | |||
---|---|---|---|---|---|
pH | ζ (mV) | pH | ζ (mV) | pH | ζ (mV) |
9.95 | −17.80 | 9.54 | −32.70 | 9.96 | −35.0 |
6.39 | −13.30 | 6.82 | −30.30 | 6.55 | −29.0 |
5.62 | −10.90 | 6.19 | −28.10 | 5.94 | −25.0 |
4.98 | −8.22 | 5.85 | −25.70 | 5.44 | −21.0 |
4.45 | −5.25 | 5.34 | −21.60 | 4.84 | −15.0 |
3.75 | −1.58 | 4.83 | −15.30 | 3.97 | −7.0 |
3.2 | 0.454 | 3.97 | −6.59 | 3.39 | 0.97 |
2.71 | 1.594 | 3.47 | 2.17 | 2.9 | 9.95 |
2.45 | 1.786 | 2.97 | 13.60 | 2.55 | 8.30 |
Number of Rubs | ||||||
---|---|---|---|---|---|---|
125 | 500 | 1000 | 2000 | 5000 | 7000 | |
N | 5 | 5 | 5 | 5 | 4–5 | 3–4 |
N-St_10 | 5 | 5 | 5 | 5 | 4 | 3–4 |
N-In_10 | 5 | 5 | 5 | 5 | 5 | 4 |
Sample | ΔF(%) | ε (%) |
---|---|---|
N | - | 20.03 |
N-St_10 | 17.8 | 22.18 |
N-In_10 | 4.2 | 21.25 |
Effluent | TSS (mg/L) | TS (mg/L) | TDS (mg/L) | pH | κ (µs/cm2) | Turbidity (NTU) |
---|---|---|---|---|---|---|
St_1 | 114.75 | 735.67 | 561.9 | 8.20 | 825.00 | 52.63 |
St_2 | 118.17 | 716.33 | 590.95 | 8.06 | 797.67 | 62.7 |
St_3 | 126.17 | 701.33 | 580.68 | 8.14 | 792.00 | 66.3 |
St_4 | 121.67 | 677.0 | 535.24 | 8.08 | 754.67 | 64.47 |
St_5 | 121.17 | 634.67 | 552.86 | 7.97 | 811.67 | 70.2 |
St_6-10 | 124.50 | 663.00 | 527.86 | 8.06 | 740.00 | 56.8 |
Effluent | TSS (mg/L) | TS (mg/L) | TDS (mg/L) | pH | κ (µs/cm2) | Turbidity (NTU) |
---|---|---|---|---|---|---|
In_1 | 127.0 | 680.7 | 560.95 | 8.39 | 732.0 | 72.7 |
In_2 | 125.0 | 654.0 | 556.43 | 8.42 | 710.0 | 70.8 |
In_3 | 137.0 | 634.7 | 508.57 | 8.40 | 680.0 | 76.9 |
In_4 | 179.0 | 628.0 | 481.91 | 8.58 | 624.7 | 88.5 |
In_5 | 210.0 | 733.3 | 508.57 | 8.53 | 670.0 | 102.1 |
In_6-10 | 156.3 | 645.5 | 507.86 | 8.26 | 702.5 | 56.4 |
Filtrate | pH | κ (µS/cm2) | Turbidity (NTU) |
---|---|---|---|
St_1f | 8.45 | 883.33 | 1.53 |
St_2f | 8.55 | 796.00 | 1.4 |
St_3f | 8.47 | 774.67 | 3.43 |
St_4f | 8.44 | 714.00 | 3.08 |
St_5f | 8.56 | 738.00 | 4.19 |
St_6-10f | 8.37 | 666.00 | 3.99 |
Filtrate | pH | κ (µS/cm2) | Turbidity (NTU) |
---|---|---|---|
In_1f | 8.54 | 731.0 | 2.42 |
In_2f | 8.57 | 704.0 | 6.19 |
In_3f | 8.53 | 680.0 | 5.47 |
In_4f | 8.51 | 638.0 | 5.48 |
In_5f | 8.49 | 655.0 | 4.60 |
In_6-10f | 8.48 | 692.5 | 2.91 |
Washing Cycles | |||||||
---|---|---|---|---|---|---|---|
Protocol | 1st | 2nd | 3th | 4th | 5th | 6–10th | Σ |
Counted MFs | |||||||
St | 103 | 97 | 114 | 37 | 34 | 35 | 420 |
In | 143 | 164 | 105 | 88 | 70 | 23 | 593 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pušić, T.; Vojnović, B.; Čurlin, M.; Bekavac, I.; Kaurin, T.; Grgić, K.; Šimić, K.; Kovačević, Z. Assessment of Polyester Fabrics, Effluents and Filtrates after Standard and Innovative Washing Processes. Microplastics 2022, 1, 494-504. https://doi.org/10.3390/microplastics1030035
Pušić T, Vojnović B, Čurlin M, Bekavac I, Kaurin T, Grgić K, Šimić K, Kovačević Z. Assessment of Polyester Fabrics, Effluents and Filtrates after Standard and Innovative Washing Processes. Microplastics. 2022; 1(3):494-504. https://doi.org/10.3390/microplastics1030035
Chicago/Turabian StylePušić, Tanja, Branka Vojnović, Mirjana Čurlin, Ivica Bekavac, Tea Kaurin, Katia Grgić, Kristina Šimić, and Zorana Kovačević. 2022. "Assessment of Polyester Fabrics, Effluents and Filtrates after Standard and Innovative Washing Processes" Microplastics 1, no. 3: 494-504. https://doi.org/10.3390/microplastics1030035
APA StylePušić, T., Vojnović, B., Čurlin, M., Bekavac, I., Kaurin, T., Grgić, K., Šimić, K., & Kovačević, Z. (2022). Assessment of Polyester Fabrics, Effluents and Filtrates after Standard and Innovative Washing Processes. Microplastics, 1(3), 494-504. https://doi.org/10.3390/microplastics1030035