Microplastics: A Review of Policies and Responses
Abstract
:1. Introduction
2. Materials and Methods
3. Policies Tackling (Micro)Plastic Contamination
3.1. Overview
3.2. Pioneer Conventions
3.3. Policies and Initiatives Tackling Plastics
3.4. Policies and Initiatives Directly Tackling Microplastics
4. Upstream Responses to Prevent Microplastic Pollution
4.1. Circular Economy
4.2. Behavioral Changes
4.3. Bio-Based Polymers
4.4. Market-Based Instruments (MBIs)
- User/Consumer/Beneficiary pays: A levy is applied to users/consumers using products that are harmful to the environment or citizens receiving a benefit. For example, a user of a clean beach contributes to beach clean-up, or users must pay a 10% fee on the use of plastic bags (in Portugal this measure led to a decrease of about 60% in plastic bag consumption per person per shopping trip [77]). However, these measures tend to fail without well-implemented monitoring systems [125].
- Polluter pays principle (PPP): Polluters are responsible for addressing pollution. That encourages companies to find alternatives within their manufacturing processes [151], e.g., the Alliance to End Plastic Waste will invest up to USD 1.5 billion over the next five years on projects targeting a plastic-free ocean [78], and Extended Producer Responsibility (EPR) to achieve zero plastics in landfill by 2025 in Europe [152]. Regarding microplastics, the polluter can pay for mitigation strategies, such as research on eco-design or innovative cleaning-up initiatives [153] and microplastic removal from WWTP [154].
- Deposit-refund programs: Strategy already implemented in several countries to encourage citizens to return containers that can help prevent the entry of such objects into the environment, e.g., returnable beverage bottles. The deposit–refund systems in Denmark, the USA, Canada and Australia for bottles are a success and could serve as a benchmark for worldwide implementation [155].
- Incentives/subsidies: Mechanisms that maintain prices below market levels for consumers or higher than market levels for producers. Examples include the fishing gear buyback program (700 tons of waste recovered in South Korea between 2007 and 2011 [156]); fiscal subsidies to recycling companies, fishers and other enterprises using recycled material [148]; and the European Maritime and Fisheries Fund promoting the Fishing for Litter activities [66,140].
- Liability/Fines/Charges/Fees/Taxes/Bans: Constant reinforcements and audits can discourage microplastics use during manufacturing. Although tracing back the microplastic producers is a strenuous task, especially in developing countries, the money acquired from fines [57], SUP surcharges and other liabilities could be invested in alternative upstream responses.
- Banning SUP: Bans on SUP commodities, such as plastic bags and plastic-based microbeads, have the potential to prevent microplastics pollution from both primary and secondary sources [102,157] and to disrupt consumers’ behavior by undermining the possibility of acquiring SUP [158]; however, the unintended impacts of bans should be meticulously reviewed beforehand, e.g., impacts of disposable paper cups with plastic coating [159].
- Ecolabeling: Reduce the adverse environmental impacts of products and raise awareness among consumers when purchasing products [160]. Ecolabels are only given to products respecting strict criteria and are regulated (ER Regulation 66/2010 on EU Ecolabel). For instance, rinse-off cosmetic products with microplastics cannot acquire the EU Ecolabel [35], and only products containing an elevated proportion of recycled plastics obtain the Nordic Swan Ecolabel [108]. Although imposing ecological requirements can represent a solution to cope with this issue, consumers would seldom choose labeled microplastic-free products when the label comes along with an additional “ecological” cost [160]. However, microplastics-free labels convey information about companies’ environmental consciousness and enforce the idea of communicating political and ethical preferences through conscious consumption [160].
- Private governance: MBI efficiency tackling microplastics is only feasible with non-fragmented governance involving third-party organizations [161,162]. Even though challenging certification systems could be used as transnational instruments for environmental standards through the orchestration of several actors and directives, certification labels to prevent microplastic pollution are not as effective as top-down governance methods encouraging consumers to pay more for eco-friendly alternatives through state regulatory frameworks [160].
4.5. Primary Microfibers from Clothing
4.6. Tire and Road Wear Particles (TRWP)
4.7. Antifouling Paints
5. Downstream Strategies to Mitigate Microplastics Pollution
5.1. Degradation of Microplastics
5.2. Waste to Energy
5.3. Water Treatment Plants
- Filters (e.g., granular activated carbon, carbon block faucet and reverse osmosis filters) are efficient for recovering microfibers, and air flotation combined with activated sludge technologies can remove microplastics from the WWTP sludge [47].
5.4. Cleanups and Removal Strategies
6. Fisheries and Aquaculture as Examples of Multifaceted Responses to Both Prevent and Mitigate Microplastics Pollution
7. Study Characteristics and Pitfalls
8. Conclusions and Authors’ Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Policies Tackling Plastic Litter and Microplastics Pollution
Appendix A.1. 1970s
Appendix A.2. 1980s
Appendix A.3. 1990s
Appendix A.4. 2000s
Appendix A.5. 2010–2017
Appendix A.6. 2018
Appendix A.7. 2019
Appendix A.8. 2020
References
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015; ISBN 9783319165103. [Google Scholar]
- Campanale, C.; Galafassi, S.; Savino, I.; Massarelli, C.; Ancona, V.; Volta, P.; Uricchio, V.F. Microplastics Pollution in the Terrestrial Environments: Poorly Known Diffuse Sources and Implications for Plants. Sci. Total Environ. 2022, 805, 150431. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S.M.; Uddin, S.; Al-Yamani, F. An Assessment of Microplastics Threat to the Marine Environment: A Short Review in Context of the Arabian/Persian Gulf. Mar. Environ. Res. 2020, 159, 104961. [Google Scholar] [CrossRef] [PubMed]
- Coyle, R.; Hardiman, G.; Driscoll, K.O. Microplastics in the Marine Environment: A Review of Their Sources, Distribution Processes and Uptake into Ecosystems. Case Stud. Chem. Environ. Eng. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Cheshire, A.C.; Adler, E.; Barbière, J.; Cohen, Y. UNEP/IOC. Guidelines on Survey and Monitoring of Marine Litter; UNEP Regional Seas Reports and Studies, No. 186; IOC Technical Series No. 83; UNEP: Geneva, Switzerland, 2009; p. 120. [Google Scholar]
- Puskic, P.S.; Coghlan, A.R. Minimal meso-plastics detected in Australian coastal reef fish. Mar. Pollut. Bull. 2021, 173, 113074. [Google Scholar] [CrossRef] [PubMed]
- Bessa, F.; Frias, J.; Kögel, T.; Lusher, A.; Andrade, J.; Antunes, J.; Sobral, P.; Pagter, E.; Nash, R.; O’Connor, I.; et al. Harmonized Protocol for Monitoring Microplastics in Biota. 2019. Available online: https://www.researchgate.net/publication/332157735_Harmonized_protocol_for_monitoring_microplastics_in_biota (accessed on 6 December 2022).
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Efimova, I.; Bagaeva, M.; Bagaev, A.; Kileso, A.; Chubarenko, I.P. Secondary Microplastics Generation in the Sea Swash Zone with Coarse Bottom Sediments: Laboratory Experiments. Front. Mar. Sci. 2018, 5, 313. [Google Scholar] [CrossRef] [Green Version]
- Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef] [Green Version]
- Van Wijnen, J.; Ragas, A.M.J.; Kroeze, C. Modelling Global River Export of Microplastics to the Marine Environment: Sources and Future Trends. Sci. Total Environ. 2019, 673, 392–401. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Waters, C.N.; Ivar do Sul, J.A.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The Geological Cycle of Plastics and Their Use as a Stratigraphic Indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef]
- Li, H.; Lu, X.; Wang, S.; Zheng, B.; Xu, Y. Vertical Migration of Microplastics along Soil Profile under Different Crop Root Systems. Environ. Pollut. 2021, 278, 116833. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in Soil: A Review on Methods, Occurrence, Sources, and Potential Risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Scott, J.; Zheng, W.; McNeish, R.E.; Holm, N.; Hoellein, T.J.; Baranski, E.L. Microplastic Contamination in Karst Groundwater Systems. Groundwater 2019, 57, 189–196. [Google Scholar] [CrossRef]
- Kane, I.A.; Clare, M.A.; Miramontes, E.; Wogelius, R.; Rothwell, J.J.; Garreau, P.; Pohl, F. Seafloor Microplastic Hotspots Controlled by Deep-Sea Circulation. Science 2020, 368, 1140. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-Levels of Microplastic Pollution in a Large, Remote, Mountain Lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and Wonderful? Microplastics Prevail in Snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [Green Version]
- Cózar, A.; Martí, E.; Duarte, C.M.; García-de-Lomas, J.; Van Sebille, E.; Ballatore, T.J.; Eguíluz, V.M.; González-Gordillo, J.I.; Pedrotti, M.L.; Echevarría, F. The Arctic Ocean as a Dead End for Floating Plastics in the North Atlantic Branch of the Thermohaline Circulation. Sci. Adv. 2017, 3, e1600582. [Google Scholar] [CrossRef] [Green Version]
- Ory, N.C.; Lehmann, A.; Javidpour, J.; Stöhr, R.; Walls, G.L.; Clemmesen, C. Factors Influencing the Spatial and Temporal Distribution of Microplastics at the Sea Surface—A Year-Long Monitoring Case Study from the Urban Kiel Fjord, Southwest Baltic Sea. Sci. Total Environ. 2020, 736, 139493. [Google Scholar] [CrossRef]
- Prata, J.C.; Castro, J.L.; Da Costa, J.P.; Cerqueira, M.; Duarte, A.C.; Rocha-Santos, T. Airborne Microplastics. In Handbook of Microplastics in the Environment; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–25. [Google Scholar]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and Importance of Microplastics in the Marine Environment: A Review of the Sources, Fate, Effects, and Potential Solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Cózar, A.; Aliani, S.; Basurko, O.C.; Arias, M.; Isobe, A.; Topouzelis, K.; Rubio, A.; Morales-Caselles, C. Marine Litter Windrows: A Strategic Target to Understand and Manage the Ocean Plastic Pollution. Front. Mar. Sci. 2021, 8, 98. [Google Scholar] [CrossRef]
- Morales-Caselles, C.; Viejo, J.; Martí, E.; González-Fernández, D.; Pragnell-Raasch, H.; González-Gordillo, J.I.; Montero, E.; Arroyo, G.M.; Hanke, G.; Salvo, V.S.; et al. An Inshore–Offshore Sorting System Revealed from Global Classification of Ocean Litter. Nat. Sustain. 2021, 4, 484–493. [Google Scholar] [CrossRef]
- CONTAM, E.P. on C. in the F.C. Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. EFSA J. 2016, 14, e04501. [CrossRef] [Green Version]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, Y.; Li, W.; Wang, J.; Zhang, X.; He, J.; Li, J.; Ma, Y.; Niu, Z. Co-Effects of Biofouling and Inorganic Matters Increased the Density of Environmental Microplastics in the Sediments of Bohai Bay Coast. Sci. Total Environ. 2020, 717, 134431. [Google Scholar] [CrossRef]
- Miranda, M.N.; Silva, A.M.T.; Pereira, M.F.R. Microplastics in the Environment: A DPSIR Analysis with Focus on the Responses. Sci. Total Environ. 2020, 718, 134968. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V.R.; Sonke, J.E. Examination of the Ocean as a Source for Atmospheric Microplastics. PLoS ONE 2020, 15, e0232746. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.M.; Arneborg, L.; Broström, G.; Almroth, B.C.; Gipperth, L.; Hassellöv, M. The Unaccountability Case of Plastic Pellet Pollution. Mar. Pollut. Bull. 2018, 129, 52–60. [Google Scholar] [CrossRef]
- Avio, C.G.; Pittura, L.; D’errico, G.; Abel, S.; Amorello, S.; Marino, G.; Gorbi, S.; Regoli, F. Distribution and Characterization of Microplastic Particles and Textile Microfibers in Adriatic Food Webs: General Insights for Biomonitoring Strategies. Environ. Pollut. 2020, 258, 113766. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.-J. Microplastics in Wastewater Treatment Plants: Detection, Occurrence and Removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I. A Fine Kettle of Fish: The Fishing Industry and Environmental Impacts. Curr. Opin. Environ. Sci. Health 2020, 13, 1–5. [Google Scholar] [CrossRef]
- Aj, V.; Depoorter, L.; Dröge, R.; Kuenen, J.; Devalk, E. Emission of Microplastics and Potential Mitigation Measures: Abrasive Cleaning Agents, Paints and Tyre Wear; National Institute for Public Health and the Environment: Utrecht, The Netherlands, 2016; Volume 4, pp. 1–73.
- Ryan, P.G. The Transport and Fate of Marine Plastics in South Africa and Adjacent Oceans. S. Afr. J. Sci. 2020, 116, 1–9. [Google Scholar] [CrossRef]
- Agamuthu, P.; Mehran, S.B.; Norkhairah, A.; Norkhairiyah, A. Marine Debris: A Review of Impacts and Global Initiatives. Waste Manag. Res. 2019, 37, 987–1002. [Google Scholar] [CrossRef]
- Meulen, M.; Devriese, L.; Lee, J.; Maes, T.; van Dalfsen, J.; Huvet, A.; Soudant, P.; Robbens, J.; Vethaak, A. Socio-Economic Impact of Microplastics in the 2 Seas, Channel and France Manche Region: An Initial Risk Assessment. Meded. ILVO 2015, 177, 39. [Google Scholar]
- Lambert, S.; Wagner, M. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. In Freshwater Microplastics; Springer: Cham, Switzerland, 2018; pp. 1–23. [Google Scholar]
- Browne, M.A.; Galloway, T.; Thompson, R. Microplastic—An Emerging Contaminant of Potential Concern? Integr. Environ. Assess. Manag. 2007, 3, 559–561. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, Migration and Toxicology of Microplastics in Soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Sala, B.; Balasch, A.; Eljarrat, E.; Cardona, L. First Study on the Presence of Plastic Additives in Loggerhead Sea Turtles (Caretta Caretta) from the Mediterranean Sea. Environ. Pollut. 2021, 283, 117108. [Google Scholar] [CrossRef]
- Aznar-Alemany, Ò.; Sala, B.; Jobst, K.J.; Reiner, E.J.; Borrell, A.; Aguilar, À.; Eljarrat, E. Temporal Trends of Halogenated and Organophosphate Contaminants in Striped Dolphins from the Mediterranean Sea. Sci. Total Environ. 2021, 753, 142205. [Google Scholar] [CrossRef]
- Sala, B.; Giménez, J.; de Stephanis, R.; Barceló, D.; Eljarrat, E. First Determination of High Levels of Organophosphorus Flame Retardants and Plasticizers in Dolphins from Southern European Waters. Environ. Res. 2019, 172, 289–295. [Google Scholar] [CrossRef] [Green Version]
- González-Soto, N.; Hatfield, J.; Katsumiti, A.; Duroudier, N.; Lacave, J.M.; Bilbao, E.; Orbea, A.; Navarro, E.; Cajaraville, M.P. Impacts of Dietary Exposure to Different Sized Polystyrene Microplastics Alone and with Sorbed Benzo[a]Pyrene on Biomarkers and Whole Organism Responses in Mussels Mytilus Galloprovincialis. Sci. Total Environ. 2019, 684, 548–566. [Google Scholar] [CrossRef]
- Lin, W.; Li, X.; Yang, M.; Lee, K.; Chen, B.; Zhang, B. Chapter Six-Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. In Advances in Marine Biology; Chen, B., Zhang, B., Zhu, Z., Lee, K., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 81, pp. 167–211. ISBN 0065-2881. [Google Scholar]
- Singh, R.P.; Mishra, S.; Das, A.P. Synthetic Microfibers: Pollution Toxicity and Remediation. Chemosphere 2020, 257, 127199. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 2020, 11, 5324. [Google Scholar] [CrossRef]
- Duncan, R.N. The 1972 Convention on the Prevention of Marine Pollution by Dumping of Wastes at Sea. J. Mar. L. Com. 1973, 5, 299. [Google Scholar]
- Laursen, F. Marine Policies of the European Community. In North-South Perspectives on Marine Policy; Routledge: Oxford, UK, 2019; pp. 45–65. [Google Scholar]
- EU Circular Economy Action Plan for a Cleaner and More Competitive Europe. Brussels, 2020. Available online: https://ec.europa.eu/environment/circular-economy/pdf/new_circular_economy_action_plan.pdf (accessed on 6 December 2020).
- Boehmer-Christiansen, S. Marine Pollution Control in Europe: Regional Approaches, 1972–1980. Mar. Policy 1984, 8, 44–55. [Google Scholar] [CrossRef]
- Paris-Convention Convention for the Prevention of Marine Pollution from Landbased Sources. Available online: https://english.dipublico.org/965/convention-for-the-prevention-of-marine-pollution-from-land-based-sources-paris-convention (accessed on 6 December 2020).
- Constable, A.J.; de la Mare, W.K.; Agnew, D.J.; Everson, I.; Miller, D. Managing Fisheries to Conserve the Antarctic Marine Ecosystem: Practical Implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J. Mar. Sci. 2000, 57, 778–791. [Google Scholar] [CrossRef]
- Raubenheimer, K.; McIlgorm, A. Can the Basel and Stockholm Conventions Provide a Global Framework to Reduce the Impact of Marine Plastic Litter? Mar. Policy 2018, 96, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Pettipas, S.; Bernier, M.; Walker, T.R. A Canadian Policy Framework to Mitigate Plastic Marine Pollution. Mar. Policy 2016, 68, 117–122. [Google Scholar] [CrossRef]
- Brink, T.; Lutchman, P.; Bassi, I.; Speck, S.; Sheavly, S.; Register, S.K.; Woolaway, C. Guidelines on the Use of Market-Based Instruments to Address the Problem of Marine Litter; IEEP: Brussels, Belgium; Sheavly Consultants: Virginia Beach, VA, USA, 2009; p. 60. [Google Scholar]
- The Helsinki Convention. Available online: https://cn.bing.com/search?q=HELCOM+The+Helsinki+Convention+1992%2C+2020.&qs=n&form=QBRE&sp=-1&pq=helcom+the+helsinki+convention+1992%2C+2020.&sc=10-42&sk=&cvid=5F1117022B434363B7813305D0E9E1F8&ghsh=0&ghacc=0&ghpl= (accessed on 6 December 2020).
- Baltic Sea Action Plan. Available online: https://cn.bing.com/search?q=Regional+Action+Plan+for+Marine+Litter+in+the+Baltic+Sea%3B+Baltic+Marine+Environment+Protection+Commission&qs=n&form=QBRE&sp=-1&pq=&sc=0-0&sk=&cvid=ACF8E392A1454D8597993C2698AF1C66&ghsh=0&ghacc=0&ghpl= (accessed on 6 December 2020).
- Global Programme of Action for the Protection of the Marine Environment from Land-Based Activities and Other Activities Relevant to the Process of Amendment of the Lbs Protocol and Its Implementation. Available online: https://www.unep.org/resources/toolkits-manuals-and-guides/global-programme-action-protection-marine-environment-land (accessed on 6 December 2020).
- Our Oceans, Seas and Coasts. Available online: https://www.academia.edu/39166493/Our_Oceans_Seas_and_Coasts (accessed on 6 December 2020).
- Fossi, M.C.; Vlachogianni, T.; Galgani, F.; Innocenti, F.D.; Zampetti, G.; Leone, G. Assessing and Mitigating the Harmful Effects of Plastic Pollution: The Collective Multi-Stakeholder Driven Euro-Mediterranean Response. Ocean Coast. Manag. 2020, 184, 105005. [Google Scholar] [CrossRef]
- Kuo, F.-J.; Huang, H.-W. Strategy for Mitigation of Marine Debris: Analysis of Sources and Composition of Marine Debris in Northern Taiwan. Mar. Pollut. Bull. 2014, 83, 70–78. [Google Scholar] [CrossRef]
- Karasik, R.; Vegh, T.; Diana, Z.; Bering, J.; Caldas, J.; Pickle, A.; Rittschof, D.; Virdin, J. 20 Years of Government Responses to the Global Plastic Pollution Problem: The Plastics Policy Inventory; Nix: Durham, UK, 2020. [Google Scholar]
- Wingfield, S.; Lim, M. The United Nations Basel Convention’s Global Plastic Waste Partnership: History, Evolution and Progress. In Microplastic Environment Pattern Process; Springer: Berlin/Heidelberg, Germany, 2022; pp. 323–331. [Google Scholar]
- EMSA Port Reception Facilities-PRF Directive 2000/59/EC 2000. 2020. Available online: https://www.legislation.gov.uk/eudr/2000/59/contents (accessed on 6 December 2020).
- Bottari, T.; Savoca, S.; Mancuso, M.; Capillo, G.; GiuseppePanarello, G.; MartinaBonsignore, M.; Crupi, R.; Sanfilippo, M.; D’Urso, L.; Compagnini, G.; et al. Plastics Occurrence in the Gastrointestinal Tract of Zeus Faber and Lepidopus Caudatus from the Tyrrhenian Sea. Mar. Pollut. Bull. 2019, 146, 408–416. [Google Scholar] [CrossRef]
- Oceans and the Law of the Sea. 2005. Available online: https://www.un.org/en/global-issues/oceans-and-the-law-of-the-sea (accessed on 6 December 2020).
- Zhang, K.; Shi, H.; Peng, J.; Wang, Y.; Xiong, X.; Wu, C.; Lam, P.K.S. Microplastic Pollution in China’s Inland Water Systems: A Review of Findings, Methods, Characteristics, Effects, and Management. Sci. Total Environ. 2018, 630, 1641–1653. [Google Scholar] [CrossRef]
- Eriksen, M.; Borgogno, F.; Villarrubia-Gómez, P.; Anderson, E.; Box, C.; Trenholm, N. Mitigation Strategies to Reverse the Rising Trend of Plastics in Polar Regions. Environ. Int. 2020, 139, 105704. [Google Scholar] [CrossRef]
- Arctic Marine Litter Project No Title. Available online: http://www.wur.eu/arcticmarinelitter (accessed on 22 September 2021).
- Plastic Cycle Value Chain Agreement. Available online: https://www.kunststofkringloop.nl/english/ (accessed on 6 December 2020).
- Basel-Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal Protocol on Liability and Compensation for Damage Resulting from Transboundary Movements of Hazardous Wastes and Their Disposal. Available online: https://www.unep.org/resources/report/basel-convention-control-transboundary-movements-hazardous-wastes (accessed on 6 December 2020).
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, Sources, Human Health Impacts and Mitigation of Microplastic Pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef]
- DIRECTIVE (EU) 2018/851 on the Reduction of the Impact of Certain Plastic Products on the Environment 2018. Available online: https://www.legislation.gov.uk/eudr/2018/851/introduction# (accessed on 6 December 2020).
- DIRECTIVE (EU) 2019/904 on the Reduction of the Impact of Certain Plastic Products on the Environment 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32019L0904 (accessed on 6 December 2020).
- Martinho, G.; Balaia, N.; Pires, A. The Portuguese Plastic Carrier Bag Tax: The Effects on Consumers’ Behavior. Waste Manag. 2017, 61, 3–12. [Google Scholar] [CrossRef]
- Barceló, D.; Picó, Y. Microplastics in the Global Aquatic Environment: Analysis, Effects, Remediation and Policy Solutions. J. Environ. Chem. Eng. 2019, 7, 103421. [Google Scholar] [CrossRef]
- Surfrider Historic Single-Use Plastic Bans Passes in Honolulu 2019. 2020. Available online: https://www.surfrider.org/coastal-blog/entry/historic-single-use-plastic-ban-passes-in-honolulu (accessed on 6 December 2020).
- Fu, D.; Chen, C.M.; Qi, H.; Fan, Z.; Wang, Z.; Peng, L.; Li, B. Occurrences and Distribution of Microplastic Pollution and the Control Measures in China. Mar. Pollut. Bull. 2020, 153, 110963. [Google Scholar] [CrossRef]
- EU European Strategy for Plastics in a Circular Economy 2018, SWD. 2018. Available online: https://www.eesc.europa.eu/en/agenda/our-events/events/eu-strategy-plastics-circular-economy (accessed on 6 December 2020).
- Villarrubia-Gómez, P.; Cornell, S.E.; Fabres, J. Marine Plastic Pollution as a Planetary Boundary Threat—The Drifting Piece in the Sustainability Puzzle. Mar. Policy 2018, 96, 213–220. [Google Scholar] [CrossRef]
- Rajmohan, K.V.S.; Ramya, C.; Raja Viswanathan, M.; Varjani, S. Plastic Pollutants: Effective Waste Management for Pollution Control and Abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- UNEP 74/19. Oceans and the Law of the Sea 2019. Available online: https://www.unep.org/news-and-stories/news/un-environment-programme-unep-during-high-level-week-74th-session-un-general (accessed on 6 December 2020).
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- GPML Global Partnership on Marine Litter 2012. 2020. Available online: https://www.gpmarinelitter.org/ (accessed on 6 December 2020).
- Critchell, K.; Bauer-Civiello, A.; Benham, C.; Berry, K.; Eagle, L.; Hamann, M.; Hussey, K.; Ridgway, T. Chapter 34-Plastic Pollution in the Coastal Environment: Current Challenges and Future Solutions. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 595–609. ISBN 978-0-12-814003-1. [Google Scholar]
- US-Congress H.R.1321-Microbead-Free Waters Act of 2015. 2015. Available online: https://www.congress.gov/bill/114th-congress/house-bill/1321 (accessed on 6 December 2020).
- UK The Environmental Protection (Microbeads) (England) Regulations 2017. 2017. Available online: https://www.legislation.gov.uk/ukdsi/2017/9780111162118 (accessed on 6 December 2020).
- ICRI International Coral Reef Initiative 2016. Available online: https://www.unep.org/explore-topics/oceans-seas/what-we-do/working-regional-seas/partners/international-coral-reef (accessed on 6 December 2020).
- Secretariat of the Antarctic Treaty. Reducing Plastic Pollution in Antarctica and the Southern Ocean: Resolution 5 (2019)—ATCM XLII–CEP XXII, Prague (2019). Available online: https://www.ats.aq/devAS/Meetings/Measure/705 (accessed on 6 December 2020).
- Jemec Kokalj, A.; Kuehnel, D.; Puntar, B.; Žgajnar Gotvajn, A.; Kalčikova, G. An Exploratory Ecotoxicity Study of Primary Microplastics versus Aged in Natural Waters and Wastewaters. Environ. Pollut. 2019, 254, 112980. [Google Scholar] [CrossRef]
- CANADA Microbeads in Toiletries Regulations 2017, 151. Available online: https://delltech.com/blog/canadian-microbeads-in-toiletries-regulations/#:~:text=In%20June%202017%2C%20the%20Microbeads%20in%20Toiletries%20Regulations,microbeads%2C%20including%20non-prescription%20drugs%20and%20natural%20health%20products (accessed on 6 December 2020).
- UNEA Annex I. UNEA Resolution 1/6 Marine Plastic Debris and Microplastics. 2016. Available online: https://nicholasinstitute.duke.edu/plastics-policies/unea-resolution-16-marine-plastic-debris-and-microplastics (accessed on 6 December 2020).
- UNEP 2/11. Marine Plastic Litter and Microplastics. 2016. Available online: https://leap.unep.org/content/unea-resolution/marine-plastic-litter-and-microplastics (accessed on 6 December 2020).
- SDG Sustainable Development Goals—14 Life Below Water 2017. Available online: https://oceanliteracy.unesco.org/sustainable-development-goal-14-life-below-water/ (accessed on 6 December 2020).
- Walker, T.R. (Micro) Plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 2021, 30, 100497. [Google Scholar] [CrossRef]
- UNEP 3/7. Marine Litter and Microplastics 2018. Available online: https://www.unep.org/resources/emerging-issues/marine-plastics-litter-and-microplastic (accessed on 6 December 2020).
- Perry, F. The Coronavirus Pandemic Has Totally Derailed the War on Plastic 2020. 2020. Available online: https://www.wired.co.uk/article/coronavirus-plastic-pollution-environment (accessed on 6 December 2020).
- Hartley, K.; van Santen, R.; Kirchherr, J. Policies for Transitioning towards a Circular Economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Calisto Friant, M.; Vermeulen, W.J.V.; Salomone, R. Analysing European Union Circular Economy Policies: Words versus Actions. Sustain. Prod. Consum. 2021, 27, 337–353. [Google Scholar] [CrossRef]
- Lyons, B.P.; Cowie, W.J.; Maes, T.; Le Quesne, W.J.F. Marine Plastic Litter in the ROPME Sea Area: Current Knowledge and Recommendations. Ecotoxicol. Environ. Saf. 2020, 187, 109839. [Google Scholar] [CrossRef] [PubMed]
- Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment. 2015. Available online: https://www.unep.org/resources/report/sources-fate-and-effects-microplastics-marine-environment-global-assessment (accessed on 6 December 2020).
- Prata, J.C.; Silva, A.L.P.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Borghi, A.; Strazza, C.; Magrassi, F.; Taramasso, A.C.; Gallo, M. Life Cycle Assessment for Eco-Design of Product–Package Systems in the Food Industry—The Case of Legumes. Sustain. Prod. Consum. 2018, 13, 24–36. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I. Life Cycle Impact Assessment and Related Issues Raised by the Medellin Declaration 2019, 22,23. Available online: https://www.sciencedirect.com/topics/engineering/life-cycle-impact-assessment (accessed on 6 December 2020).
- marILCA Integrating Potential Environmental Impacts of Marine Litter into LCA 2019. 2020. Available online: https://marilca.org/ (accessed on 6 December 2020).
- Ogunola, O.S.; Onada, O.A.; Falaye, A.E. Mitigation Measures to Avert the Impacts of Plastics and Microplastics in the Marine Environment (A Review). Environ. Sci. Pollut. Res. 2018, 25, 9293–9310. [Google Scholar] [CrossRef]
- BLUENET BLUENET, Creating New Life for Abandoned, Lost or Discarded Fishing and Aquaculture Gears to Prevent Marine Litter Generation, 2017. 2020. Available online: https://www.bluenetproject.eu/ (accessed on 6 December 2020).
- OCEANNET Ocean-Based Negative Emission Technologies-Analyzing the Feasibility, Risks, and Co-Benefits for Stabilizing the Climate (OceanNETs) 2020. 2020. Available online: https://cordis.europa.eu/project/id/869357 (accessed on 6 December 2020).
- Stolte, A.; Schneider, F. Recycling Options for Derelict Fishing Gear. 2018. Available online: https://researchportal.bath.ac.uk/en/publications/recycling-options-for-derelict-fishing-gear (accessed on 6 December 2020).
- TERNUA Recycled Materials 2015. 2020. Available online: https://www.ternua.com/com/recycled-materials/ (accessed on 6 December 2020).
- ECONYL ECONYL® Regenerated Nylon 2011. 2020. Available online: https://www.econyl.com/press/econyl-regenerated-nylon-celebrates-a-decade-of-endless-possibilities/ (accessed on 6 December 2020).
- NOFIR Recycling Discarded Equipment from Fishing and Fish Farming 2011. 2020. Available online: https://nofir.no/en/ (accessed on 6 December 2020).
- PLASTIX The World Has a Problem: Plastic Waste 2012. 2020. Available online: https://plastixglobal.com (accessed on 6 December 2020).
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From Waste Plastics to Industrial Raw Materials: A Life Cycle Assessment of Mechanical Plastic Recycling Practice Based on a Real-World Case Study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef]
- Eljarrat, E. Los Aditivos Químicos Asociados Al Plástico: Otro Reto En La Lucha Contra La Contaminación Por Plásticos. In Proceedings of the Jornada Descifrando el Futuro de los Materiales Biodegradables Para Aplicaciones Marinas, 23.03.2021, Basque Country. 2021. Available online: https://www.idaea.csic.es/event/los-aditivos-quimicos-asociados-al-plastico-otro-reto-en-la-lucha-contra-la-contaminacion-por-plasticos/ (accessed on 6 December 2020).
- Awasthi, A.K.; Tan, Q.; Li, J. Biotechnological Potential for Microplastic Waste. Trends Biotechnol. 2020, 38, 1196–1199. [Google Scholar] [CrossRef]
- Parley. Five Years of Working with Parley to end Plastic Waste 2020. 2020. Available online: https://news.adidas.com/made-with-recycled-materials/five-years-of-working-with-parley-to-end-plastic-waste/s/40d88ae9-a487-4dbf-af48-9ebb16882247 (accessed on 6 December 2020).
- Dauvergne, P. Why Is the Global Governance of Plastic Failing the Oceans? Glob. Environ. Chang. 2018, 51, 22–31. [Google Scholar] [CrossRef]
- Ritchey, M.S.T. Scenarios and Strategies for Extended Producer Responsibility. 2004. Available online: https://www.researchgate.net/publication/237760747_Scenarios_and_Strategies_for_Extended_Producer_Responsibility_Using_Morphological_Analysis_to_Evaluate_EPR_System_Strategies_in_Sweden (accessed on 6 December 2020).
- Doughty, R.; Eriksen, M. The Case for a Ban on Microplastics in Personal Care Products. Tulane Environ. Law J. 2014, 27, 277–298. [Google Scholar]
- Rochman, C.M.; Cook, A.M.; Koelmans, A.A. Plastic Debris and Policy: Using Current Scientific Understanding to Invoke Positive Change. Environ. Toxicol. Chem. 2016, 35, 1617–1626. [Google Scholar] [CrossRef] [Green Version]
- Combating Marine Plastic Litter and Microplastics: An Assessment of the Effectiveness of Relevant International, Regional and Subregional Governance Strategies and Approaches. 2017. Available online: https://www.researchgate.net/publication/346487759_Combating_marine_plastic_litter_and_microplastics_an_assessment_of_the_effectiveness_of_relevant_international_regional_and_subregional_governance_strategies_and_approaches (accessed on 6 December 2020).
- The Honolulu Strategy: A Global Framework for Prevention and Management of Marine Debris. 2012. Available online: https://wedocs.unep.org/handle/20.500.11822/10670#:~:text=The%20Honolulu%20Strategy%20is%20a%20framework%20for%20a,the%20world%2C%20regardless%20of%20specific%20conditions%20or%20challenges (accessed on 6 December 2020).
- Brennan, C.; Ashley, M.; Molloy, O. A System Dynamics Approach to Increasing Ocean Literacy. Front. Mar. Sci. 2019, 6, 360. [Google Scholar] [CrossRef]
- Clausen, L.P.W.; Hansen, O.F.H.; Oturai, N.B.; Syberg, K.; Hansen, S.F. Stakeholder Analysis with Regard to a Recent European Restriction Proposal on Microplastics. PLoS ONE 2020, 15, e0235062. [Google Scholar] [CrossRef]
- Libera Libera-Unidos Contra La Bazuraleza 2018. 2020. Available online: https://proyectolibera.org/basuraleza (accessed on 6 December 2020).
- Ashley, M.; Pahl, S.; Glegg, G.; Fletcher, S. A Change of Mind: Applying Social and Behavioral Research Methods to the Assessment of the Effectiveness of Ocean Literacy Initiatives. Front. Mar. Sci. 2019, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Ooms, J.; Landman, H.; Politiek, E.T.; Van Bruggen, R.P.; Joosten, E.A. Test to Assess and Prevent the Emission of Primary Synthetic Microparticles (Primary Microplastics); Food Chain Safety and Environment, Belgium: DG Environment, FPS Health. 2015. Available online: https://documents.pub/document/test-to-assess-and-prevent-the-emission-of-primary-to-assess-and-prevent-the.html?page=1 (accessed on 6 December 2020).
- ECHA Microplastics. Available online: https://echa.europa.eu/hot-topics/microplastics (accessed on 6 December 2020).
- Henderson, L.; Green, C. Making Sense of Microplastics? Public Understandings of Plastic Pollution. Mar. Pollut. Bull. 2020, 152, 110908. [Google Scholar] [CrossRef]
- BlueMED Understanding and Acting for a Healthy Plastic Free Mediterranean Sea 2020. 2020. Available online: https://westmed-initiative.ec.europa.eu/events/understanding-and-acting-for-a-healthy-plastic-free-mediterranean-sea-16-june-23-july-online-trainings/ (accessed on 6 December 2020).
- OceanPlastic Ocean Plastic Webinars 2020. 2020. Available online: https://oceanplasticwebina.wixsite.com/homepage (accessed on 6 December 2020).
- European-Bioplastics Bioplastic Market Data 2019. 2020. Available online: https://www.european-bioplastics.org/market/ (accessed on 6 December 2020).
- Liu, F.; Li, J.; Zhang, X. Bioplastic Production from Wastewater Sludge and Application. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 12071. [Google Scholar] [CrossRef]
- Lorevice, M.; Otoni, C.; Moura, M.; Mattoso, L. Chitosan Nanoparticles on the Improvement of Thermal, Barrier, and Mechanical Properties of High- and Low-Methyl Pectin Films. Food Hydrocoll. 2016, 52, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Otoni, C.; Avena-Bustillos, R.; Azeredo, H.; Lorevice, M.; Moura, M.; Mattoso, L.; McHugh, T. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Ray, N. Commercial Production of Sonali Bags. 2020. Available online: https://today.thefinancialexpress.com.bd/print/commercial-production-of-sonali-bags-1571580056 (accessed on 6 December 2020).
- Maritime-Forum Workshop on Circular Design of Fishing Gear 2020. 2020. Available online: https://webgate.ec.europa.eu/maritimeforum/en/node/4486 (accessed on 6 December 2020).
- Raddadi, N.; Fava, F. Biodegradation of Oil-Based Plastics in the Environment: Existing Knowledge and Needs of Research and Innovation. Sci. Total Environ. 2019, 679, 148–158. [Google Scholar] [CrossRef]
- Grimaldo, E.; Herrmann, B.; Jacques, N.; Vollstad, J.; Su, B. Effect of Mechanical Properties of Monofilament Twines on the Catch Efficiency of Biodegradable Gillnets. PLoS ONE 2020, 15, e0234224. [Google Scholar] [CrossRef]
- Kershaw, P. Biodegradable Plastics and Marine Litter: Misconceptions, Concerns and Impacts on Marine Environments. 2015. Available online: https://www.unep.org/resources/report/biodegradable-plastics-and-marine-litter-misconceptions-concerns-and-impacts (accessed on 6 December 2020).
- Van den Oever, M.; Molenveld, K.; Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics—Facts and Figures. In Focus on Food Packaging in the Netherlands. 2017. Available online: https://research.wur.nl/en/publications/bio-based-and-biodegradable-plastics-facts-and-figures-focus-on-f (accessed on 6 December 2020).
- UNEP from Pollution to Solution. Litter, A Glob. Assess. OF Mar. 2021. Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 6 December 2020).
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Riggi, E.; Santagata, G.; Malinconico, M. Bio-Based and Biodegradable Plastics for Use in Crop Production. Recent Pat. Food. Nutr. Agric. 2011, 3, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Oosterhuis, F.; Papyrakis, E.; Boteler, B. Economic Instruments and Marine Litter Control. Ocean Coast. Manag. 2014, 102, 47–54. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Van Fan, Y.; Jiang, P. Plastics: Friends or Foes? The Circularity and Plastic Waste Footprint. Energy Sources, Part A Recover. Util. Environ. Eff. 2020, 43, 1549–1565. [Google Scholar] [CrossRef]
- Munck-Kampmann, B.E.; Werther, I.; Christensen, L.H. Policy Brief—Recycling in the Circular Economy: How to Improve the Recycling Markets for Construction Materials, Biowaste, Plastics and Critical Metals; ANP; Nordic Council of Ministers: Copenhagen, Denmark, 2018; ISBN 9789289357708.
- Schwartz, P. Research Handbook on International Environmental Law. In Elgar Encyclopedia of Environmental Law; Edward Elgar Publishing Limited: Cheltenham, UK, 2018; ISBN 9781786436986. [Google Scholar]
- EIP-AGRI Reducing the Plastic Footprint of Agriculture. 2021. Available online: https://ec.europa.eu/eip/agriculture/en/focus-groups/reducing-plastic-footprint-agriculture (accessed on 6 December 2020).
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Ocean. 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to Microplastic Pollution—Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Gu, Y.; Wu, Y.; Gong, Y.; Mu, X.; Han, H.; Chang, T. A Systematic Review of the Deposit-Refund System for Beverage Packaging: Operating Mode, Key Parameter and Development Trend. J. Clean. Prod. 2020, 251, 119660. [Google Scholar] [CrossRef]
- Kim, S.-G.; Lee, W.-I.L.; Yuseok, M. The Estimation of Derelict Fishing Gear in the Coastal Waters of South Korea: Trap and Gill-Net Fisheries. Mar. Policy 2014, 46, 119–122. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Transportation Fate and Removal of Microplastic Pollution—A Perspective on Environmental Pollution. Case Stud. Chem. Environ. Eng. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Godfrey, L. Waste Plastic, the Challenge Facing Developing Countries—Ban It, Change It, Collect It? Recycling 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Foteinis, S. How Small Daily Choices Play a Huge Role in Climate Change: The Disposable Paper Cup Environmental Bane. J. Clean. Prod. 2020, 255, 120294. [Google Scholar] [CrossRef]
- Misund, A.; Tiller, R.; Canning-Clode, J.; Freitas, M.; Schmidt, J.O.; Javidpour, J. Can We Shop Ourselves to a Clean Sea? An Experimental Panel Approach to Assess the Persuasiveness of Private Labels as a Private Governance Approach to Microplastic Pollution. Mar. Pollut. Bull. 2020, 153, 110927. [Google Scholar] [CrossRef] [PubMed]
- Stoll, T.; Stoett, P.; Vince, J.; Hardesty, B.D. Governance and Measures for the Prevention of Marine Debris BT—Handbook of Microplastics in the Environment; Rocha-Santos, T., Costa, M., Mouneyrac, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–23. ISBN 978-3-030-10618-8. [Google Scholar]
- Vince, J. Third Party Certification: Implementation Challenges in Private-Social Partnerships. Policy Des. Pract. 2018, 1, 323–336. [Google Scholar] [CrossRef]
- Henry, B.; Laitala, K.; Klepp, I.G. Microfibres from Apparel and Home Textiles: Prospects for Including Microplastics in Environmental Sustainability Assessment. Sci. Total Environ. 2019, 652, 483–494. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of Synthetic Microplastic Plastic Fibres from Domestic Washing Machines: Effects of Fabric Type and Washing Conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Napper, I.E.; Barrett, A.C.; Thompson, R.C. The Efficiency of Devices Intended to Reduce Microfibre Release during Clothes Washing. Sci. Total Environ. 2020, 738, 140412. [Google Scholar] [CrossRef]
- Cai, Y.; Mitrano, D.M.; Heuberger, M.; Hufenus, R.; Nowack, B. The Origin of Microplastic Fiber in Polyester Textiles: The Textile Production Process Matters. J. Clean. Prod. 2020, 267, 121970. [Google Scholar] [CrossRef]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P.A. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef] [Green Version]
- Mossotti, R.; Montarsolo, A.; Patrucco, A.; Zoccola, M.; Caringella, R.; Pozzo, P.D.; Tonin, C. Mitigation of the Impact Caused by Microfibers Released During Washings by Implementing New Chitosan Finishing Treatments. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Cocca, M., DiPace, E., Errico, M.E., Gentile, G., Montarsolo, A., Mossotti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 2364-6934978-3-319-71279-6. [Google Scholar]
- Cesa, F.S.; Turra, A.; Checon, H.H.; Leonardi, B.; Baruque-Ramos, J. Laundering and Textile Parameters Influence Fibers Release in Household Washings. Environ. Pollut. 2020, 257, 113553. [Google Scholar] [CrossRef]
- McIlwraith, H.K.; Lin, J.; Erdle, L.M.; Mallos, N.; Diamond, M.L.; Rochman, C.M. Capturing Microfibers – Marketed Technologies Reduce Microfiber Emissions from Washing Machines. Mar. Pollut. Bull. 2019, 139, 40–45. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and Road Wear Particles (TRWP)—A Review of Generation, Properties, Emissions, Human Health Risk, Ecotoxicity, and Fate in the Environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Vogelsang, C. Microplastics in Road Dust—Characteristics Pathways and Measures; Norwegian Institute for Water Research (NIVA) and Institute of Transport Economics: Report number: M-959|2018. 2019. Available online: https://www.semanticscholar.org/paper/Microplastics-in-road-dust-%E2%80%93-characteristics%2C-and-Vogelsang-Lusher/e884d2252570ef999058a4c053ed6b7fd09872e3 (accessed on 6 December 2020).
- OECD Nanotechnology and Tyres. 2014. Available online: https://www.oecd.org/chemicalsafety/nanosafety/nanotechnology-and-tyres-9789264209152-en.htm (accessed on 6 December 2020).
- IMO. Hull Scrapings and Marine Coatings as a Source of Microplastics; International Maritime Organization. 2019. Available online: https://www.gpmarinelitter.org/resources/report/hull-scrapings-and-marine-coatings-source-microplastics (accessed on 6 December 2020).
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618–9624. [Google Scholar] [CrossRef]
- Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Bombelli, P.; Howe, C.; Bertocchini, F. Polyethylene Bio-Degradation by Caterpillars of the Wax Moth Galleria Mellonella. Curr. Biol. 2017, 27, R292–R293. [Google Scholar] [CrossRef] [Green Version]
- Huerta, E.; Gertsen, H.; Gooren, H.P.A.; Peters, P.; Salánki, T.; Ploeg, M.; Besseling, E.; Koelmans, A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus Terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environ. Sci. Technol. 2015, 49, 12087–12093. [Google Scholar] [CrossRef]
- Delacuvellerie, A.; Cyriaque, V.; Gobert, S.; Benali, S.; Ruddy, W. The Plastisphere in Marine Ecosystem Hosts Potential Specific Microbial Degraders Including Alcanivorax Borkumensis as a Key Player for the Low-Density Polyethylene Degradation. J. Hazard. Mater. 2019, 380, 120899. [Google Scholar] [CrossRef]
- Paço, A.; Duarte, K.; Da Costa, J.; Santos, P.; Pereira, R.; Pereira, M.E.; Freitas, A.; Duarte, A.; Rocha-Santos, T. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10–15. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.G.; K, A.; M, H.; K, S.; G, D. Review on Plastic Wastes in Marine Environment—Biodegradation and Biotechnological Solutions. Mar. Pollut. Bull. 2019, 150, 110733. [Google Scholar] [CrossRef]
- Suzuki, M.; Tachibana, Y.; Oba, K.; Takizawa, R.; Kasuya, K.-I. Microbial Degradation of Poly(ε-Caprolactone) in a Coastal Environment. Polym. Degrad. Stab. 2018, 149, 1–8. [Google Scholar] [CrossRef]
- Caruso, G. Plastic Degrading Microorganisms as a Tool for Bioremediation of Plastic Contamination in Aquatic Environments. J. Pollut. Eff. Control 2015, 3, 3. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Sustainable Energy from Waste Organic Matters via Efficient Microbial Processes. Sci. Total Environ. 2020, 722, 137927. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Sekhar, V.C.; Bhaskar, T.; Nampoothiri, K.M. Microbial Assisted High Impact Polystyrene (HIPS) Degradation. Bioresour. Technol. 2016, 213, 204–207. [Google Scholar] [CrossRef]
- Rajendran, S.; Ramya, R.; Kannan, K.; Arokiaswamy, R.A.; Rajesh Kannan, V. Investigation of Biodegradation Potentials of High Density Polyethylene Degrading Marine Bacteria Isolated from the Coastal Regions of Tamil Nadu, India. Mar. Pollut. Bull. 2019, 138, 549–560. [Google Scholar] [CrossRef]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of Polyethylene by Bacteria and Fungi from Dandora Dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef] [Green Version]
- Tribedi, P.; Sil, A. Low-Density Polyethylene Degradation by Pseudomonas Sp AKS2 Biofilm. Environ. Sci. Pollut. Res. Int. 2012, 20, 4146–4153. [Google Scholar] [CrossRef]
- Huang, X.; Cao, L.; Qin, Z.; Li, S.; Kong, W.; Liu, Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus Subtilis 168 Mediated by Its Native Signal Peptide. J. Agric. Food Chem. 2018, 66, 13217–13227. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus Strains Isolated from Mangrove Ecosystems in Peninsular Malaysia for Microplastic Degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Narayan, R.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Dos and Do Nots When Assessing the Biodegradation of Plastics. Environ. Sci. Technol. 2019, 53, 9967–9969. [Google Scholar] [CrossRef] [Green Version]
- Ignatyev, I.A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A Review. ChemSusChem 2014, 7, 1579–1593. [Google Scholar] [CrossRef]
- Baytekin, B.; Baytekin, H.T.; Grzybowski, B.A. Retrieving and Converting Energy from Polymers: Deployable Technologies and Emerging Concepts. Energy Environ. Sci. 2013, 6, 3467–3482. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the Unexplored Potential of European Waste Materials for Road Construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Zhuo, C. Upcycling Waste Plastics into Carbon Nanomaterials: A Review. J. Appl. Polym. Sci. 2014, 131, 1–14. [Google Scholar] [CrossRef]
- Peng, K.; Morrow, G.; Zhang, X.; Tipeng, W.; Zhongfu, T.; Agarwa, J. Systematic Comparison of Hydrogen Production from Fossil Fuels and Biomass Resources. Int. J. Agric. Biol. Eng. 2017, 10, 192–200. [Google Scholar] [CrossRef]
- Bernardo, C.A.; Simões, C.; Pinto, L. Environmental and Economic Life Cycle Analysis of Plastic Waste Management Options: A Review; AIP Publishing LLC.: Melville, NY, USA, 2016; Volume 1779. [Google Scholar]
- Faussone, G.C.; Kržan, A.; Grilc, M. Conversion of Marine Litter from Venice Lagoon into Marine Fuels via Thermochemical Route: The Overview of Products, Their Yield, Quality and Environmental Impact. Sustainability 2021, 13, 9481. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane Bioreactor and Rapid Sand Filtration for the Removal of Microplastics in an Urban Wastewater Treatment Plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Sol, D.; Laca, A.; Laca, A.; Díaz, M. Approaching the Environmental Problem of Microplastics: Importance of WWTP Treatments. Sci. Total Environ. 2020, 740, 140016. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; Van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Song, B.; Zhu, Y.; Zeng, G.; Zhang, Y.; Yang, Y.; Wen, X.; Chen, M.; Yi, H. Removal of Microplastics via Drinking Water Treatment: Current Knowledge and Future Directions. Chemosphere 2020, 251, 126612. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Kelly, F.J.; Wright, S.L. Advances and Challenges of Microplastic Pollution in Freshwater Ecosystems: A UK Perspective. Environ. Pollut. 2020, 256, 113445. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Karabatak, B. Microplastics and Pollutants in Biosolids Have Contaminated Agricultural Soils: An Analytical Study and a Proposal to Cease the Use of Biosolids in Farmlands and Utilise Them in Sustainable Bricks. Waste Manag. 2020, 107, 252–265. [Google Scholar] [CrossRef] [PubMed]
- European-Parliament Minimum Requirements for Water Reuse. 2019. Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2019-0071_EN.html (accessed on 6 December 2020).
- De Frond, H.L.; van Sebille, E.; Parnis, J.M.; Diamond, M.L.; Mallos, N.; Kingsbury, T.; Rochman, C.M. Estimating the Mass of Chemicals Associated with Ocean Plastic Pollution to Inform Mitigation Efforts. Integr. Environ. Assess. Manag. 2019, 15, 596–606. [Google Scholar] [CrossRef]
- De Carvalho, D.G.; Baptista Neto, J.A. Microplastic Pollution of the Beaches of Guanabara Bay, Southeast Brazil. Ocean Coast. Manag. 2016, 128, 10–17. [Google Scholar] [CrossRef]
- Ocean-Conservancy Building a Clean Swell; Ocean Conservancy. 2018. Available online: https://cn.bing.com/search?q=Ocean-Conservancy+Building+a+Clean+Swell%3B+Ocean+Conservancy%2C+2018&qs=n&form=QBRE&sp=-1&pq=211.+ocean-conservancy+building+a+clean+swell%3B+ocean+conservancy%2C+2018&sc=10-70&sk=&cvid=CC2057223DD5446D80382A16217D56C7&ghsh=0&ghacc=0&ghpl= (accessed on 6 December 2020).
- Zero-Plastiko-Urdaibai. Zero Plastiko Urdaibai Collects 8 Tonnes of Waste in the Urdaibai Biosphere Reserve 2019. 2020. Available online: http://www.islandbiosphere.org/Contingut.aspx?IdPub=1409 (accessed on 6 December 2020).
- Freeman, S.; Booth, A.M.; Sabbah, I.; Tiller, R.; Dierking, J.; Klun, K.; Rotter, A.; Ben-David, E.; Javidpour, J.; Angel, D.L. Between Source and Sea: The Role of Wastewater Treatment in Reducing Marine Microplastics. J. Environ. Manag. 2020, 266, 110642. [Google Scholar] [CrossRef]
- Ocean-Conservancy Meet Clean Swell 2020. 2020. Available online: https://oceanconservancy.org/clean-on-2020/ (accessed on 6 December 2020).
- De Poloni, G. Meet the Drain Sock—A Simple Pollution Solution Taking the World by Storm 2019. 2020. Available online: https://wattsupwiththat.com/2019/06/10/meet-the-drain-sock-a-simple-pollution-solution-taking-the-world-by-storm/ (accessed on 6 December 2020).
- Ocean-Cleanup. The Largest Cleanup in History 2020. 2020. Available online: https://happyeconews.com/2020/07/06/biggest-open-ocean-clean-up-ever/#:~:text=Ocean%20Voyages%20Institute%20Sets%20Record%20with%20Largest%20Open,as%20the%20Great%20Pacific%20Garbage%20Patch%20or%20Gyre (accessed on 6 December 2020).
- Ocean-Cleanup. The Ocean Cleanup Is Awarded $1 Million to Combate Jamaica’s Highest Polluting Waterway 2020. 2020. Available online: https://theoceancleanup.com/updates/the-ocean-cleanup-is-awarded-1-million-to-combat-jamaicas-highest-polluting-waterway/ (accessed on 6 December 2020).
- Andrés, M.; Delpey, M.; Ruiz, I.; Declerck, A.; Sarrade, C.; Bergeron, P.; Basurko, O.C. Measuring and Comparing Solutions for Floating Marine Litter Removal: Lessons Learned in the South-East Coast of the Bay of Biscay from an Economic Perspective. Mar. Policy 2021, 127, 104450. [Google Scholar] [CrossRef]
- Ruiz, I.; Basurko, O.C.; Rubio, A.; Delpey, M.; Granado, I.; Declerck, A.; Mader, J.; Cózar, A. Litter Windrows in the South-East Coast of the Bay of Biscay: An Ocean Process Enabling Effective Active Fishing for Litter. Front. Mar. Sci. 2020, 7, 308. [Google Scholar] [CrossRef]
- OSPAR. Comission OSPAR Scoping Study on Best Practices for the Design and Recycling of Fishing Gear as a Means to Reduce Quantities of Fishing Gear Found as Marine Litter in the North-East Atlantic; Ospar Comission—Environmental Impacts of Human Activites. 2020. Available online: https://repository.oceanbestpractices.org/handle/11329/1399 (accessed on 6 December 2020).
- Franco-Trecu, V.; Drago, M.; Katz, H.; Machin, E.; Marin, Y. With the Noose around the Neck: Marine Debris Entangling Otariid Species. Environ. Pollut. 2017, 220, 985–989. [Google Scholar] [CrossRef]
- Krüger, L.; Casado-Coy, N.; Valle, C.; Ramos, M.; Sánchez-Jerez, P.; Gago, J.; Carretero, O.; Beltran-Sanahuja, A.; Sanz-Lazaro, C. Plastic Debris Accumulation in the Seabed Derived from Coastal Fish Farming. Environ. Pollut. 2020, 257, 113336. [Google Scholar] [CrossRef]
- AQUA-LIT. Notas Del Taller de Mar Mediterráneo; Valencia. 2020. Available online: https://aqua-lit.eu/assets/content/AQUA-LIT_MedLL_programme.pdf (accessed on 6 December 2020).
- ASC. ASC’s Focus on Plastics, Marine Litter and Ghost Gear 2019. 2020. Available online: https://www.asc-aqua.org/programme-improvements/marine-litter/ (accessed on 6 December 2020).
- Huntington, T. Marine Litter and Aquaculture Gear—White Paper. Report Produced by Poseidon Aquatic Resources Management Ltd for the Aquaculture Stewardship Council. 2019. Available online: https://www.asc-aqua.org/.../11/ASC_Marine-Litter-and-Aquaculture-Gear-November-2019.pdf (accessed on 6 December 2020).
- OSPAR. Ospar Convention. 1998. Available online: https://www.ospar.org/convention (accessed on 6 December 2020).
Policy | Target Area | Year(s) |
---|---|---|
MSFD | Europe | 2008 |
Global Partnership on Marine Litter (GPML) at Rio +20 | Worldwide | 2012 |
OSPAR/HELCOM/Barcelona Convention/Associated Action Plans | Europe | 2014–2020 |
Ban on microbeads | Several countries | 2015–2020 |
ICRI call on microbeads | Worldwide | 2016 |
UNEA Resolutions 1/6 and 2/11 | Worldwide | 2016 |
SDG14 | Worldwide | 2017 |
UN Plan to reduce microplastics | Worldwide | 2018 |
European Green Deal | Europe | 2019 |
Oceans and the Law of the Sea A/74/19 | Worldwide | 2019 |
Updated Basel Convention | Worldwide | 2019 |
ECHA restriction on microplastics | Europe | 2019 |
Antarctic Treaty | Antarctic | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munhoz, D.R.; Harkes, P.; Beriot, N.; Larreta, J.; Basurko, O.C. Microplastics: A Review of Policies and Responses. Microplastics 2023, 2, 1-26. https://doi.org/10.3390/microplastics2010001
Munhoz DR, Harkes P, Beriot N, Larreta J, Basurko OC. Microplastics: A Review of Policies and Responses. Microplastics. 2023; 2(1):1-26. https://doi.org/10.3390/microplastics2010001
Chicago/Turabian StyleMunhoz, Davi R., Paula Harkes, Nicolas Beriot, Joana Larreta, and Oihane C. Basurko. 2023. "Microplastics: A Review of Policies and Responses" Microplastics 2, no. 1: 1-26. https://doi.org/10.3390/microplastics2010001
APA StyleMunhoz, D. R., Harkes, P., Beriot, N., Larreta, J., & Basurko, O. C. (2023). Microplastics: A Review of Policies and Responses. Microplastics, 2(1), 1-26. https://doi.org/10.3390/microplastics2010001