An experimental Study Investigating the Effects on Brassica oleracea: Estuarine Seaweeds as Biostimulants in Seedling Development?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material
2.2. Collection and Preparation of Seaweed Biomass
2.3. Macroelements and Physicochemical Content of Seaweeds
2.4. Preparation of Aqueous Seaweed Extracts (AEs)
2.5. Germination Assays
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Content of AEs and Macroelements in Seaweeds
3.2. Characterization of Aqueous Seaweed Extracts AEs
3.3. Effect of AEs on Kale Seed Germination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakow, G. Species Origin and Economic Importance of Brassica. In Brassica. Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2004; Volume 54, pp. 3–11. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134332-6. [Google Scholar]
- Rahman, K.M.A.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Soares, J.R.; Cassman, N.A.; Kielak, A.M.; Pijl, A.; Carmo, J.B.; Lourenço, K.S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E. Nitrous Oxide Emission Related to Ammonia-Oxidizing Bacteria and Mitigation Options from N Fertilization in a Tropical Soil. Sci. Rep. 2016, 6, 30349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.J.; Simon, J.; Rowley, G.; Bedmar, E.J.; Richardson, D.J.; Gates, A.J.; Delgado, M.J. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 68, ISBN 9780128048238. [Google Scholar]
- Benes, K.M.; Bracken, M.E.S. Nitrate Uptake Varies with Tide Height and Nutrient Availability in the Intertidal Seaweed Fucus Vesiculosus. J. Phycol. 2016, 52, 863–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermejo, R.; MacMonagail, M.; Heesch, S.; Mendes, A.; Edwards, M.; Fenton, O.; Knöller, K.; Daly, E.; Morrison, L.; Leandro, A.; et al. Spraying Marine Algae Extracts and Some Growth Regulators to Enhance Fruit Set, Yield and Fruit Quality of Winter Guava. J. Appl. Phycol. 2021, 20, 404–416. [Google Scholar]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigateswater Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens. Mar. Drugs 2021, 19, 59. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Silva, L.D.; Bahcevandziev, K.; Pereira, L. Production of Bio-Fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). J. Oceanol. Limnol. 2019, 37, 918–927. [Google Scholar] [CrossRef]
- Bermejo, R.; MacMonagail, M.; Heesch, S.; Mendes, A.; Edwards, M.; Fenton, O.; Knöller, K.; Daly, E.; Morrison, L. The Arrival of a Red Invasive Seaweed to a Nutrient Over-Enriched Estuary Increases the Spatial Extent of Macroalgal Blooms. Mar. Environ. Res. 2020, 158, 104944. [Google Scholar] [CrossRef]
- Martins, I.; Oliveira, J.M.; Flindt, M.R.; Marques, J.C. The Effect of Salinity on the Growth Rate of the Macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego Estuary (West Portugal). Acta Oecologica 1999, 20, 259–265. [Google Scholar] [CrossRef]
- Teixeira, H.; Salas, F.; Borja, Á.; Neto, J.M.; Marques, J.C. A Benthic Perspective in Assessing the Ecological Status of Estuaries: The Case of the Mondego Estuary (Portugal). Ecol. Indic. 2008, 8, 404–416. [Google Scholar] [CrossRef]
- Pacheco, D.; Araújo, G.S.; Cotas, J.; Gaspar, R.; Neto, J.M.; Pereira, L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar. Drugs 2020, 18, 560. [Google Scholar] [CrossRef] [PubMed]
- Cunniff, P. Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Lucas, M.D.; Sequeira, E.M. Determinação Do Cu, Zn, Mn, Fe, Ca, Mg, K, e Na Totais Das Plantas Por Espectrofotometria de Absorção Atómica e Fotometria de Chama. Pedologia 1976, 11, 163–169. [Google Scholar]
- Thermo Elemental. ICP or ICP-MS ? Which Technique Should I Use? In A Thermo Electron Buisness; Thermo Elemental: Waltham, MA, USA, 2002; pp. 1–20. [Google Scholar]
- Sousa, T.; Cotas, J.; Bahcevandziev, K.; Pereira, L. Effects of “Sargaço” Extraction Residues on Seed Germination. Millenium-J. Educ. Technol. Health 2020, 2, 29–37. [Google Scholar] [CrossRef]
- Pacheco, D.; Cotas, J.; Rocha, C.P.; Araújo, G.S.; Figueirinha, A.; Gonçalves, A.M.M.; Bahcevandziev, K.; Pereira, L. Seaweeds’ Carbohydrate Polymers as Plant Growth Promoters. Carbohydr. Polym. Technol. Appl. 2021, 2, 100097. [Google Scholar] [CrossRef]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid Bioassays to Evaluate the Plant Growth Promoting Activity of Ascophyllum nodosum (L.) Le Jol. Using a Model Plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of Liquid Seaweed Extracts on Growth of Tomato Seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Orchard, T.J. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 1977, 5, 61–69. [Google Scholar]
- De Melo, P.C.; Sousa, T.; Teixeira, R.; Cotas, J.; Gonçalves, A.M.M.; Pacheco, D.; Bahcevandziev, K.; Pereira, L. Seaweeds and Their Derivates as a Multirole Tool in Agriculture. In Seaweed Biotechnology; Apple Academic Press: Burlington, ON, Canada, 2022; pp. 201–227. [Google Scholar]
- Arnison, P.G.; Donaldson, P.; Ho, L.C.C.; Keller, W.A. The Influence of Various Physical Parameters on Anther Culture of Broccoli (Brassica Oleracea Var. Italica). Plant Cell Tissue Organ Cult. 1990, 20, 147–155. [Google Scholar] [CrossRef]
- Yuan, S.X.; Su, Y.B.; Liu, Y.M.; Fang, Z.Y.; Yang, L.M.; Zhuang, M.; Zhang, Y.Y.; Sun, P.T. Effects of PH, MES, Arabinogalactan-Proteins on Microspore Cultures in White Cabbage. Plant Cell Tissue Organ Cult. 2012, 110, 69–76. [Google Scholar] [CrossRef]
- Meywes, E. 2021. Available online: https://www.instrumentchoice.com.au/news/how-does-a-ph-and-conductivity-meter-work (accessed on 8 June 2021).
- Turk, M.; Eser, O. Effects of salt stress on germination of some silage maize (Zea mays L.) cultivars. Sci. Pap.-Ser. A, Agron. 2016, 59, 466–469. [Google Scholar]
- Yuan, S.X.; Su, Y.B.; Liu, Y.M.; Fang, Z.Y.; Yang, L.M.; Zhuang, M.; Zhang, Y.Y.; Sun, P.T.; Wijesekara, I.; Kim, S.K.; et al. Effect of Liquid Seaweed Extracts on Growth of Tomato Seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2021, 8, 404–416. [Google Scholar]
- Pramanick, B.; Brahmachari, K.; Ghosh, A.; Zodape, S.T. Effect of Seaweed Saps on Growth and Yield Improvement of Transplanted Rice in Old Alluvial Soil of West Bengal. Bangladesh J. Bot. 2014, 43, 53–58. [Google Scholar] [CrossRef]
- Ramkissoon, A.; Ramsubhag, A.; Jayaraman, J. Phytoelicitor Activity of Three Caribbean Seaweed Species on Suppression of Pathogenic Infections in Tomato Plants. J. Appl. Phycol. 2017, 29, 3235–3244. [Google Scholar] [CrossRef]
- Castellanos-Barriga, L.G.; Santacruz-Ruvalcaba, F.; Hernández-Carmona, G.; Ramírez-Briones, E.; Hernández-Herrera, R.M. Effect of Seaweed Liquid Extracts from Ulva lactuca on Seedling Growth of Mung Bean (Vigna Radiata). J. Appl. Phycol. 2017, 29, 2479–2488. [Google Scholar] [CrossRef]
- Hussein, M.H.; Eltanahy, E.; Al Bakry, A.F.; Elsafty, N.; Elshamy, M.M. Seaweed Extracts as Prospective Plant Growth Bio-Stimulant and Salinity Stress Alleviator for Vigna sinensis and Zea mays. J. Appl. Phycol. 2021, 33, 1273–1291. [Google Scholar] [CrossRef]
Species | Moisture (%) | Protein (%) | Lipids (%) | Ash (%) | Fiber (%) | Carbohydrates (%) |
---|---|---|---|---|---|---|
U. lactuca | 94.8 ± 1.6 | 0.6 ± 0.1 | 0.1 ± 0.01 | 2.31 ± 0.11 | 1.5 ± 0.23 | 2 ± 0.1 |
F. ceranoides | 96.7 ± 1.6 | 0.5 ± 0.1 | 0.4 ± 0.03 | 1.08 ± 0.05 | 0.6 ± 0.09 | 1 ± 0.1 |
G. gracilis | 96.2 ± 1.6 | 0.9 ± 0.1 | <0.3 | 1.86 ± 0.09 | 0.4 ± 0.06 | 1 ± 0,1 |
Species | Na (mg/kg) | K (mg/kg) | Fe (mg/kg) | Pb (mg/kg) |
---|---|---|---|---|
U. lactuca | 0.41 ± 0.1 | 1589 ± 318 | 124 ± 25 | 3.4 ± 0.6 |
F. ceranoides | 1.59 ± 0.32 | 3625 ± 725 | 92.3 ± 18.5 | <0.1 |
G. gracilis | 0.67 ± 0.13 | 6841 ± 1368 | 521 ± 104 | 0.26 ± 0.05 |
Extract (CE) | Color | pH | TDS (mg/L) |
---|---|---|---|
UL | Greenish yellow | 6.81 | >1997.71 |
FC | Dark green | 6.66 | >1997.71 |
GG | Brownish orange | 6.36 | >1997.71 |
Extract (AE) | pH | EC (µS cm−1) | TDS (mg/L) |
---|---|---|---|
UL | 7.07 | 327 | 164.81 |
FC | 6.66 | 149 | 74.91 |
GG | 6.36 | 288 | 143.83 |
Measurements | C | UL | FC | GG |
---|---|---|---|---|
GP (%) | 96.0 ± 0.1 | 97.3 ± 0.1 | 94.7 ± 0.1 | 97.3 ± 0.1 |
Apex Length (cm) | 6.77 ± 0.20 a | 7.69 ± 0.29 a | 7.14 ± 0.27 a | 9.03 ± 0.30 a |
Radicle Length (cm) | 6.33 ± 0.34 b | 5.64 ± 0.30 b | 5.83 ± 0.32 b | 6.45 ± 0.30 a |
Avg. total length (cm) | 13.10 ± 0.54 a | 13.33 ± 0.58 a | 12.97 ± 0.60 a | 15.48 ± 0.59 a |
Apex Fresh Weight (g) | 0.052 ± 0.002 b | 0.065 ± 0.005 b | 0.054 ± 0.002 b | 0.069 ± 0.003 a |
Fresh Radicle Weight (g) | 0.006 ± 0.001 a | 0.007 ± 0.001 a | 0.007 ± 0.001 a | 0.007 ± 0.001 a |
Avg. weight of seedlings (g) | 0.059 ± 0.002 a | 0.071 ± 0.006 a | 0.062 ± 0.002 a | 0.076 ± 0.004 a |
SVI | 1257.7 | 1297.5 | 1227.6 | 1506.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, M.; Pacheco, D.; Cotas, J.; Bahcevandziev, K.; Pereira, L. An experimental Study Investigating the Effects on Brassica oleracea: Estuarine Seaweeds as Biostimulants in Seedling Development? Phycology 2022, 2, 419-428. https://doi.org/10.3390/phycology2040023
Mendes M, Pacheco D, Cotas J, Bahcevandziev K, Pereira L. An experimental Study Investigating the Effects on Brassica oleracea: Estuarine Seaweeds as Biostimulants in Seedling Development? Phycology. 2022; 2(4):419-428. https://doi.org/10.3390/phycology2040023
Chicago/Turabian StyleMendes, Madalena, Diana Pacheco, João Cotas, Kiril Bahcevandziev, and Leonel Pereira. 2022. "An experimental Study Investigating the Effects on Brassica oleracea: Estuarine Seaweeds as Biostimulants in Seedling Development?" Phycology 2, no. 4: 419-428. https://doi.org/10.3390/phycology2040023
APA StyleMendes, M., Pacheco, D., Cotas, J., Bahcevandziev, K., & Pereira, L. (2022). An experimental Study Investigating the Effects on Brassica oleracea: Estuarine Seaweeds as Biostimulants in Seedling Development? Phycology, 2(4), 419-428. https://doi.org/10.3390/phycology2040023