Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Laurencia snackeyi and Its Sesquiterpenes
3.2. Chemotaxonomic Value of Halogenated Snyderane-Type Sesquiterpenes in Laurencia snackeyi
Cmpd | Yield as in Milligram Per Gram of Crude Extract (mg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Malaysia | Japan | Vietnam | ||||||||
2023 [25] | 2017 [29] | 2014 [26] | 2013 [42] | 2011 [28] | 1997 [16] | 2020 [18] | 2005 [43] | 2001 [27] | 1997 [16] | |
1 | <200 | 52.17 | 63.33 | 74.03 | 25.70 | 14.33 | 10.32 | 22.48 | ||
2 | <200 | 53.61 | 42.03 | 25.70 | 16.44 | 9.52 | 22.92 | |||
3 | 1.14 | |||||||||
4 | 34.78 | 17.74 | 52.05 | 19.31 | 0.85 | |||||
5 | 5.42 | 68.00 | ||||||||
6 | ||||||||||
7 | 20.06 | |||||||||
8 | <100 | 36.52 | 31.67 | 38.04 | 30.17 | |||||
9 | 1.00 | |||||||||
10 | 0.57 |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, R.; Geetanjali. Chemotaxonomy of Medicinal Plants: Possibilities and Limitations. In Natural Products and Drug Discovery; Mandal, S.C., Mandal, V., Konishi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–136. [Google Scholar]
- Umoh, O.T. Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian Plant Res. J. 2020, 5, 43–52. [Google Scholar] [CrossRef]
- Hao, D.C.; Gu, X.-J.; Xiao, P.G. Chemotaxonomy: A phylogeny-based approach. In Medicinal Plants; Hao, D.C., Gu, X.-J., Xiao, P.G., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 1–48. [Google Scholar]
- Hegnauer, R. Chemotaxonomic observations. VI. Phytochemistry & systems; a forward & backward glance at the development of chemotaxonomy. Pharm. Acta Helv. 1958, 33, 287–305. [Google Scholar] [PubMed]
- Schleifer, K.H.; Stackebrandt, E. Molecular Systematics of Prokaryotes. Annu. Rev. Microbiol. 1983, 37, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Verma, M.; Sharma, P.; Kumar, M.; Kumari, K.; Singh, A.; Kumari, H.; Jit, S.; Gupta, S.K.; Khanna, M.; et al. Polyphasic approach of bacterial classification—An overview of recent advances. Indian J. Microbiol. 2007, 47, 98–108. [Google Scholar] [CrossRef]
- Padilla, D.K.; Savedo, M.M. Chapter Two—A Systematic Review of Phenotypic Plasticity in Marine Invertebrate and Plant Systems. In Advances in Marine Biology; Lesser, M., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 65, pp. 67–94. [Google Scholar]
- Byrne, M.; Foo, S.A.; Ross, P.M.; Putnam, H.M. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Chang. Biol. 2020, 26, 80–102. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.; Schizas, N.V.; Yoshioka, P.M. Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol. Biol. 2008, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Broitman, B.R.; Lagos, N.A.; Opitz, T.; Figueroa, D.; Maldonado, K.; Ricote, N.; Lardies, M.A. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 2021, 90, 1961–1972. [Google Scholar] [CrossRef]
- Dang, X.; Lim, Y.-K.; Li, Y.; Roberts, S.B.; Li, L.; Thiyagarajan, V. Epigenetic-associated phenotypic plasticity of the ocean acidification-acclimated edible oyster in the mariculture environment. Mol. Ecol. 2023, 32, 412–427. [Google Scholar] [CrossRef]
- Morales, E.A.; Trainor, F.R. Algal Phenotypic Plasticity: Its Importance in Developing New Concepts The Case for Scenedesmus. Algae 1997, 12, 147–157. [Google Scholar]
- Page, T.M.; Diaz-Pulido, G. Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation. PLoS ONE 2020, 15, e0235125. [Google Scholar] [CrossRef]
- Rowley, S.J.; Pochon, X.; Watling, L. Environmental influences on the Indo-Pacific octocoral Isis hippuris Linnaeus 1758 (Alcyonacea: Isididae): Genetic fixation or phenotypic plasticity? PeerJ 2015, 3, e1128. [Google Scholar] [CrossRef]
- Hentschel, U.; Piel, J.; Degnan, S.M.; Taylor, M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 2012, 10, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Takahashi, Y.; Okamoto, K.; Matsuo, Y.; Suzuki, M. Morphology and halogenated secondary metabolites of Laurencia snackeyi (Weber–van Bosse) stat. nov. (Ceramiales, Rhodophyta). Eur. J. Phycol. 1997, 32, 293–301. [Google Scholar] [CrossRef]
- Horton, T.; Kroh, A.; Ahyong, S.; Bailly, N.; Bieler, R.; Boyko, C.B.; Brandão, S.N.; Gofas, S.; Hooper, J.N.A.; Hernandez, F.; et al. World Register of Marine Species (WoRMS). 2022. Available online: https://www.marinespecies.org/ (accessed on 9 November 2023).
- Ishii, T.; Hisada, W.; Abe, T.; Kikuchi, N.; Suzuki, M. A New Record of the Marine Red Alga Laurencia snackeyi from Japan and its Chemotaxonomic Significance. Rec. Nat. Prod. 2020, 14, 150–153. [Google Scholar] [CrossRef]
- Silva, P.C.; Menez, E.G.; Moe, R.L. Catalog of the Benthic Marine Algae of the Philippines; Smithsonian Institution Press: Washington, DC, USA, 1987; Volume 27. [Google Scholar]
- Silva, P.C.; Basson, P.W.; Moe, R.L. Catalogue of the Benthic Marine Algae of the Indian Ocean; University of California Press: Berkeley, CA, USA, 1996. [Google Scholar]
- Phillips, J.A.; McGregor, G.B. Rhodomelaceae. In Census of the Queensland Flora 2021; Brown, G.K., Ed.; Queensland Department of Environment and Science: Brisbane, Australia, 2021. [Google Scholar]
- Palaniveloo, K.; Vairappan, C.S. Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J. Appl. Phycol. 2014, 26, 1199–1205. [Google Scholar] [CrossRef]
- Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia Paradox: An Endless Source of Chemodiversity. In Progress in the Chemistry of Organic Natural Products 102; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 91–252. [Google Scholar]
- Cassano, V.; Metti, Y.; Millar, A.J.K.; Gil-Rodríguez, M.C.; Sentíes, A.; Díaz-Larrea, J.; Oliveira, M.C.; Fujii, M.T. Redefining the taxonomic status of Laurencia dendroidea (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. Eur. J. Phycol. 2012, 47, 67–81. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Ong, K.H.; Satriawan, H.; Abdul Razak, S.; Suciati, S.; Hung, H.-Y.; Hirayama, S.; Rizman-Idid, M.; Tan, J.K.; Yong, Y.S.; et al. In vitro and in silico cholinesterase inhibitory potential of metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 2023, 13, 337. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.J.P.; Kang, M.-C.; Lee, W.-W.; Lee, H.-S.; Kamada, T.; Vairappan, C.S.; Jeon, Y.-J. 5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. Algae 2014, 29, 333–341. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Marma, M.S.; Higa, T.; Bernardinelli, G.; Jefford, C.W. New Bromoterpenes from the Red Alga Laurencia luzonensis. J. Nat. Prod. 2001, 64, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.L.; Matsunaga, S.; Vairappan, C.S. Halogenated chamigranes of red alga Laurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem. Syst. Ecol. 2011, 39, 213–215. [Google Scholar] [CrossRef]
- Kamada, T.; Vairappan, C.S. Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Nat. Prod. Res. 2017, 31, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; König, G.M.; Sticher, O. New Sesquiterpenes and C15 Acetogenins from the Marine Red Alga Laurencia implicata. J. Nat. Prod. 1991, 54, 1025–1033. [Google Scholar] [CrossRef]
- Su, H.; Shi, D.-Y.; Li, J.; Guo, S.-J.; Li, L.-L.; Yuan, Z.-H.; Zhu, X.-B. Sesquiterpenes from Laurencia similis. Molecules 2009, 14, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yuan, Z.-H.; Li, J.; Guo, S.-J.; Deng, L.-P.; Han, L.-J.; Zhu, X.-B.; Shi, D.-Y. Sesquiterpenes from the Marine Red Alga Laurencia saitoi. Helv. Chim. Acta 2009, 92, 1291–1297. [Google Scholar] [CrossRef]
- Su, J.-Y.; Zhong, Y.-L.; Zeng, L.-M.; Wu, H.-M.; Ma, K. Terpenoids from Laurencia karlae. Phytochemistry 1995, 40, 195–197. [Google Scholar] [CrossRef]
- Paul, V.J.; Fenical, W. Palisadins A,B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 1980, 21, 2787–2790. [Google Scholar] [CrossRef]
- de Nys, R.; Wright, A.D.; König, G.M.; Sticher, O.; Alino, P.M. Five New Sesquiterpenes from the Red Alga Laurencia flexilis. J. Nat. Prod. 1993, 56, 877–883. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on sesquiterpenes from red macroalgae of the Laurencia genus and their biological activities (2015–2020). Algal Res. 2021, 56, 102330. [Google Scholar] [CrossRef]
- Trung, D.V.; Truc, N.T.T.; Duy, C.N.H.; Nhan, L.T.T.; Phung, N.K.P.; Duong, N.T.T. Halogenated sesquiterpenes from the red alga Laurencia intermedia Yamada. Vietnam J. Chem. 2019, 57, 723–727. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. Available online: https://www.algaebase.org (accessed on 1 March 2024).
- Yong, Y.S.; Chong, E.T.J.; Chen, H.C.; Lee, P.C.; Ling, Y.S. A Comparative Study of Pentafluorophenyl and Octadecylsilane Columns in High-throughput Profiling of Biological Fluids. J. Chin. Chem. Soc. 2017, 64, 699–710. [Google Scholar] [CrossRef]
- Emerenciano, V.P.; Militão, J.S.L.T.; Campos, C.C.; Romoff, P.; Kaplan, M.A.C.; Zambon, M.; Brant, A.J.C. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Syst. Ecol. 2001, 29, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Yan, Y.; Yang, X.; Li, W. Flavonoids from tribe Delphineae (Ranunculaceae): Phytochemical review and chemotaxonomic value. Biochem. Syst. Ecol. 2021, 97, 104300. [Google Scholar] [CrossRef]
- Vairappan, C.S.; Kamada, T.; Lee, W.-W.; Jeon, Y.-J. Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 2013, 25, 1805–1813. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Wahome, P.G.; Miono, T.; Hashimoto, T.; Yokoyama, M.; Shrestha, K.L.; Higa, T. Terpenoids from Laurencia luzonensis. J. Nat. Prod. 2005, 68, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.J.; Soengas, R.; Martins, C.B.; Correia, M.J.; Ferreira, J.D.; Santos, L.M.A.; Ortiz, F.L. Chemotaxonomic Profiling Through NMR1. J. Phycol. 2020, 56, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Daejung, K.; Jiyoung, K.; Jung Nam, C.; Kwang-Hyeon, L. Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling. J. Microbiol. Biotechnol. 2011, 21, 5–13. [Google Scholar] [CrossRef]
- Sofrenić, I.; Anđelković, B.; Gođevac, D.; Ivanović, S.; Simić, K.; Ljujić, J.; Tešević, V.; Milosavljević, S. Metabolomics as a Potential Chemotaxonomical Tool: Application on the Selected Euphorbia Species Growing Wild in Serbia. Plants 2023, 12, 262. [Google Scholar] [CrossRef]
- Alves, G.; Wang, G.; Ogurtsov, A.Y.; Drake, S.K.; Gucek, M.; Sacks, D.B.; Yu, Y.-K. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1721–1737. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.-S.; Kim, Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. J. Microbiol. 2018, 56, 209–216. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Ding, H.; Song, M.; Yin, J.; Yu, H.; Li, Z.; Han, L.; Zhang, Z. Authentication of Zingiber Species Based on Analysis of Metabolite Profiles. Front. Plant Sci. 2021, 12, 705446. [Google Scholar] [CrossRef]
- Płachno, B.J.; Strzemski, M.; Dresler, S.; Adamec, L.; Wojas-Krawczyk, K.; Sowa, I.; Danielewicz, A.; Miranda, V.F.O. A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations. Molecules 2021, 26, 72. [Google Scholar] [CrossRef] [PubMed]
Cmpd * | Co-Occurrence in Other Laurencia Species | Co-Occurrence in Non-Laurencia Species |
---|---|---|
1 | L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
2 | L. intermedia Yamada 1931 [37] L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
4 | L. intermedia [37] L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] |
5 | n.r. | Ohelopapa flexilis [35] |
7 | L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
8 | L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, B.F.; Ng, W.L.; Lum, W.M.; Yeap, S.K.; Yong, Y.S. Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology 2024, 4, 363-369. https://doi.org/10.3390/phycology4030019
Ng BF, Ng WL, Lum WM, Yeap SK, Yong YS. Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology. 2024; 4(3):363-369. https://doi.org/10.3390/phycology4030019
Chicago/Turabian StyleNg, Boon Ful, Wei Lun Ng, Wai Mun Lum, Swee Keong Yeap, and Yoong Soon Yong. 2024. "Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda" Phycology 4, no. 3: 363-369. https://doi.org/10.3390/phycology4030019
APA StyleNg, B. F., Ng, W. L., Lum, W. M., Yeap, S. K., & Yong, Y. S. (2024). Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology, 4(3), 363-369. https://doi.org/10.3390/phycology4030019